JPH06275300A - Fuel cell system - Google Patents

Fuel cell system

Info

Publication number
JPH06275300A
JPH06275300A JP5065598A JP6559893A JPH06275300A JP H06275300 A JPH06275300 A JP H06275300A JP 5065598 A JP5065598 A JP 5065598A JP 6559893 A JP6559893 A JP 6559893A JP H06275300 A JPH06275300 A JP H06275300A
Authority
JP
Japan
Prior art keywords
fuel cell
pure hydrogen
hydrogen
unreacted
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5065598A
Other languages
Japanese (ja)
Inventor
Osamu Tajima
収 田島
Katsuyuki Makihara
勝行 槇原
Hiroshi Mukai
広志 向井
Hiroyuki Ito
裕之 伊藤
Kunihiro Nakato
邦弘 中藤
Nobuyoshi Nishizawa
信好 西沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP5065598A priority Critical patent/JPH06275300A/en
Publication of JPH06275300A publication Critical patent/JPH06275300A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide a fuel cell system effectively utilizing the unreacted hydrogen discharged to the outside as the combustion exhaust gas at a low cost. CONSTITUTION:A fuel cell system is provided with a fuel cell main body 1 generating power with pure hydrogen used as fuel, a pure hydrogen storage means 2 storing the pure hydrogen fed to the fuel cell main body 1, and recycling means 5, 6 recycling the unreacted pure hydrogen not contributing to the cell reaction of the fuel cell main body 1 to the fuel cell main body 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は純水素を燃料として用い
た燃料電池システムに関し、詳しくは電池反応に際に排
出される未反応水素の処理方法の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel cell system using pure hydrogen as a fuel, and more particularly to an improvement in a method for treating unreacted hydrogen discharged during a cell reaction.

【0002】[0002]

【従来の技術】燃料電池は天然ガス,メタノール,ナフ
サ,石炭等の燃料を改質して得られる水素と,空気中の
酸素とから電気エネルギーを発生させる装置であり、高
い発電効率を得ることができる。そのため、宇宙用から
自動車用まで、大規模発電から小規模発電まで、種々の
用途に使用できる将来有望な新しい発電システムとして
注目されている。
2. Description of the Related Art A fuel cell is a device for generating electric energy from hydrogen obtained by reforming a fuel such as natural gas, methanol, naphtha, and coal, and oxygen in the air. You can Therefore, it is attracting attention as a promising new power generation system that can be used in various applications from space use to automobile use, large-scale power generation to small-scale power generation.

【0003】特に近年では、天然ガス等の改質ガスを燃
料として用いる代わりに、純水素を燃料として用いたシ
ステムが提案されており、改質ガスに比べて水素分圧が
高い分だけ発電効率も高いという利点がある。このよう
なシステムでは、純水素は水素ボンベ等に充填されてお
り、この水素ボンベからアノードに純水素を供給するこ
とにより発電を行っている。
Particularly in recent years, a system using pure hydrogen as a fuel instead of using a reformed gas such as natural gas as a fuel has been proposed, and the power generation efficiency is higher because the hydrogen partial pressure is higher than that of the reformed gas. There is an advantage that it is also high. In such a system, pure hydrogen is filled in a hydrogen cylinder or the like, and power is generated by supplying pure hydrogen from the hydrogen cylinder to the anode.

【0004】[0004]

【発明が解決しようとする課題】ところが、電池反応の
際の純水素の利用率は一般に90〜95%程度であるた
め、5〜10%程度の純水素が未反応水素として排出さ
れる。従来、電池反応の際に生じる未反応水素は、触媒
燃焼器で燃焼処理した後、系外に排出していたが、触媒
燃焼するための触媒燃焼器や,排ガスバーナ等の特別の
装置が別途必要になるため、システムが大型化しコスト
も高くなるという課題を有していた。また、ボンベ内の
純水素を100%電池反応に利用することができないた
め発電時間が短くなるという課題も有している。
However, since the utilization rate of pure hydrogen in the battery reaction is generally about 90 to 95%, about 5 to 10% of pure hydrogen is discharged as unreacted hydrogen. Conventionally, unreacted hydrogen generated during cell reaction was discharged to the outside of the system after being burnt by a catalytic combustor, but a special device such as a catalytic combustor for catalytic combustion and an exhaust gas burner was separately provided. Since it is necessary, there is a problem that the system becomes large and the cost becomes high. There is also a problem that the generation time is shortened because the pure hydrogen in the cylinder cannot be used for 100% battery reaction.

【0005】本発明は上記課題に鑑みてなされたもので
あり、燃焼排ガスとして系外に排出されていた未反応水
素の有効利用を図ると共に、低コストな燃料電池システ
ムを提供することを目的とする。
The present invention has been made in view of the above problems, and it is an object of the present invention to effectively utilize unreacted hydrogen discharged from the system as combustion exhaust gas and to provide a low-cost fuel cell system. To do.

【0006】[0006]

【課題を解決するための手段】本発明は上記課題を解決
するため、以下のことを特徴とする。 純水素を燃料として発電を行う燃料電池本体と、前
記燃料電池本体に供給する純水素を貯蔵する純水素貯蔵
手段と、前記燃料電池本体での電池反応に寄与しなかっ
た未反応の純水素を、前記燃料電池本体にリサイクルす
るリサイクル手段とを備えたことを特徴とする。 前記純水素貯蔵手段は、水素吸蔵合金を充填したボ
ンベであることを特徴とする。
The present invention is characterized by the following in order to solve the above problems. A fuel cell main body for generating power using pure hydrogen as a fuel, a pure hydrogen storage means for storing pure hydrogen supplied to the fuel cell main body, and unreacted pure hydrogen that has not contributed to a cell reaction in the fuel cell main body. And a recycling means for recycling the fuel cell body. The pure hydrogen storage means is a cylinder filled with a hydrogen storage alloy.

【0007】[0007]

【作用】上記構成の如くリサイクル手段を備えていれ
ば、電池反応に寄与しなかった未反応の純水素(通常、
5〜10%程度)を燃料電池本体にリサイクルすること
ができるため、純水素供給手段から供給される純水素を
略100%電極反応に利用することができる。この場
合、純水素供給手段が上記のような水素吸蔵合金を充
填したボンベ等であれば、ボンベの発電時間が5〜10
%程度延長するのでボンベ交換等の煩わしい作業を減ら
すことができる。
If the recycling means is provided as in the above structure, unreacted pure hydrogen that does not contribute to the battery reaction (usually,
(About 5 to 10%) can be recycled to the fuel cell main body, so that pure hydrogen supplied from the pure hydrogen supply means can be used for about 100% electrode reaction. In this case, if the pure hydrogen supply means is a cylinder filled with the above hydrogen storage alloy, the power generation time of the cylinder is 5 to 10
Since it is extended by about%, the troublesome work such as cylinder replacement can be reduced.

【0008】また、純水素を略100%電池反応に利用
することができ系外に排出する未反応水素がほとんどな
いので、触媒燃焼器等が不要になる。したがって、シス
テムの大型化を抑制することができ、且つ、コストの低
減を図ることもできる。
Also, since almost 100% of pure hydrogen can be used for the battery reaction and there is almost no unreacted hydrogen discharged to the outside of the system, a catalyst combustor or the like becomes unnecessary. Therefore, it is possible to suppress an increase in the size of the system and to reduce the cost.

【0009】[0009]

【実施例】【Example】

(第一実施例) 〔実施例1〕図1は本発明の第一実施例に係る出力25
0W級の燃料電池システムの概略構成図であり、純水素
と空気中の酸素とで発電を行う燃料電池本体1と,この
燃料電池本体1に供給する純水素を貯蔵するMHボンベ
2と,このMHボンベ2内の純水素を燃料電池本体1に
供給する純水素供給配管3と,この配管3内での純水素
の流量等を制御するレギュレータ4と,燃料電池本体1
から排出される未反応の純水素を純水素供給配管3を介
して燃料電池本体1にリサイクルする未反応水素リサイ
クル管5と,この未反応水素リサイクル管5内の未反応
水素が純水素供給配管3まで帰還されるよう未反応水素
を加圧(>200mmAq)して流すブロワ6とから主
に構成されている。また、純水素供給配管3であってレ
ギュレータ4よりも下流側の配管3には逆流防止用の逆
止弁8が設けられている。
(First Embodiment) [First Embodiment] FIG. 1 shows an output 25 according to the first embodiment of the present invention.
1 is a schematic configuration diagram of a 0 W class fuel cell system, which includes a fuel cell main body 1 that generates electric power using pure hydrogen and oxygen in the air, an MH cylinder 2 that stores pure hydrogen to be supplied to the fuel cell main body 1, Pure hydrogen supply pipe 3 for supplying pure hydrogen in the MH cylinder 2 to the fuel cell body 1, a regulator 4 for controlling the flow rate of pure hydrogen in the pipe 3, and the fuel cell body 1
Unreacted hydrogen recycle pipe 5 for recycling unreacted pure hydrogen discharged from the fuel cell main body 1 through the pure hydrogen supply pipe 3, and unreacted hydrogen in the unreacted hydrogen recycle pipe 5 is pure hydrogen supply pipe It is mainly composed of a blower 6 which pressurizes (> 200 mmAq) and flows unreacted hydrogen so as to return to 3. A check valve 8 for preventing backflow is provided in the pure hydrogen supply pipe 3 which is downstream of the regulator 4 in the pipe 3.

【0010】前記燃料電池本体1は、出力250W級の
リン酸型燃料電池が使用され、リン酸電解質(図示せ
ず)を介して、カソード1aとアノード1bとが配置さ
れた構成である。前記MHボンベ2内には、約400リ
ットルの水素を吸蔵させた水素吸蔵合金(例えば、Mm
Ni4.32Mn0.18Al0.1 Fe0.1 Co0.3 )が充填さ
れている。尚、MHボンベ2を使用する代わりに、純水
素を充填した市販の水素ボンベ等を使用することも勿論
可能である。
The fuel cell main body 1 is a phosphoric acid fuel cell having an output of 250 W, and has a cathode 1a and an anode 1b arranged via a phosphoric acid electrolyte (not shown). In the MH cylinder 2, a hydrogen storage alloy (for example, Mm
Ni 4.32 Mn 0.18 Al 0.1 Fe 0.1 Co 0.3 ) is filled. Instead of using the MH cylinder 2, it is of course possible to use a commercially available hydrogen cylinder filled with pure hydrogen.

【0011】次に、上記の如く構成された燃料電池シス
テムの作動について具体的に説明する。先ず、レギュレ
ータ4を開弁して、MHボンベ2内から水素供給配管3
を介して燃料電池本体1のアノード1bに純水素を供給
すると共に、燃料電池本体1のカソード1aに空気(酸
素)を供給すると、やがて電池反応が開始される。
Next, the operation of the fuel cell system configured as described above will be specifically described. First, the regulator 4 is opened, and the hydrogen supply pipe 3 is fed from inside the MH cylinder 2.
When pure hydrogen is supplied to the anode 1b of the fuel cell main body 1 via air and air (oxygen) is supplied to the cathode 1a of the fuel cell main body 1, the cell reaction is started.

【0012】しばらくして、電池反応が進行すると、燃
料電池本体1からは電池反応に寄与しなかった未反応の
純水素(通常、5〜10%程度)が生じる。この未反応
の純水素は、ブロワ6によって未反応水素リサイクル管
5を純水素供給配管3側へと加圧(>200mmAq)
供給される。その後、未反応の純水素(圧力100〜2
00mmAq)は、アノード1b側にリサイクルされ、
再び電池反応に利用される。この場合、MHボンベ2か
ら供給される純水素の圧力は4kg/cm2 程度であ
り、レギュレータ4の下流側では100〜200mmA
qになるよう制御されている。このように、本発明によ
れば、従来系外に排出するだけで全く利用されていなか
った未反応水素を有効に利用することができる。
When the cell reaction proceeds after a while, unreacted pure hydrogen (usually about 5 to 10%) that does not contribute to the cell reaction is generated from the fuel cell body 1. This unreacted pure hydrogen is pressurized by the blower 6 through the unreacted hydrogen recycle pipe 5 toward the pure hydrogen supply pipe 3 (> 200 mmAq).
Supplied. Then, unreacted pure hydrogen (pressure 100 to 2
00 mmAq) is recycled to the anode 1b side,
It is used again for battery reaction. In this case, the pressure of pure hydrogen supplied from the MH cylinder 2 is about 4 kg / cm 2 , and 100 to 200 mmA on the downstream side of the regulator 4.
It is controlled to be q. As described above, according to the present invention, unreacted hydrogen that has not been used at all by simply discharging it to the outside of the system can be effectively used.

【0013】このように構成された燃料電池システム
を、以下(A)システムと称する。 〔比較例1〕図3に示すように、燃料電池本体11から
排出される未反応の純水素を、燃料電池本体11にリサ
イクルするのではなく、未反応水素排出管52を介して
触媒燃焼供給30で燃焼処理した後、系外に排出する構
成とする他は上記第一実施例の実施例1と略同様の燃料
電池システムを作製した。尚、図3において40は触媒
燃焼器であり、30は触媒燃焼器に燃焼ガスを供給する
ための排ガスバーナであり、21は水素吸蔵合金を充填
したMHボンベである。
The fuel cell system thus constructed is hereinafter referred to as (A) system. Comparative Example 1 As shown in FIG. 3, unreacted pure hydrogen discharged from the fuel cell main body 11 is not recycled to the fuel cell main body 11, but is supplied by catalytic combustion via the unreacted hydrogen discharge pipe 52. A fuel cell system was manufactured in substantially the same manner as in Example 1 of the above-described first example except that the fuel was burned at 30 and then discharged to the outside of the system. In FIG. 3, reference numeral 40 is a catalytic combustor, 30 is an exhaust gas burner for supplying combustion gas to the catalytic combustor, and 21 is an MH cylinder filled with a hydrogen storage alloy.

【0014】このように構成された燃料電池システム
を、以下(X)システムと称する。 〔実験1〕上記本発明の(A)システムと,比較例の
(X)システムとを用いて、定格(250W)運転を行
った場合の発電時間を調べた。尚、実験はともに約40
0リットルの水素を充填したMHボンベを使用した。
The fuel cell system thus constructed is hereinafter referred to as (X) system. [Experiment 1] Using the (A) system of the present invention and the (X) system of the comparative example, the power generation time when the rated (250 W) operation was performed was examined. The experiment is about 40
An MH cylinder filled with 0 liter of hydrogen was used.

【0015】その結果、本発明の(A)システムでは運
転時間が110分であるのに対して、比較例の(X)シ
ステムでは100分であった。したがって、本発明の
(A)システムは、比較例の(X)システムに比べて明
らかに運転時間が延長していることが認められる。これ
は、本発明の(A)システムでは、電池反応の際に生じ
る未反応水素を有効にリサイクルすることにより純水素
の利用率を略100%にまで高めることができるのに対
して、比較例の(X)システムでは10%程度の未反応
水素を系外に排出しているため純水素の利用率が90%
程度と低いことに起因する。
As a result, the operating time of the system (A) of the present invention was 110 minutes, while that of the system (X) of the comparative example was 100 minutes. Therefore, it is recognized that the operating time of the system (A) of the present invention is obviously longer than that of the system (X) of the comparative example. This is because, in the system (A) of the present invention, the utilization rate of pure hydrogen can be increased to about 100% by effectively recycling the unreacted hydrogen generated during the battery reaction, whereas the comparative example In (X) system, about 10% of unreacted hydrogen is discharged out of the system, so the utilization rate of pure hydrogen is 90%.
Due to the low degree.

【0016】(第二実施例)図2は本発明の第二実施例
に係る燃料電池システムの概略構成図であり、ブロワ6
を用いる代わりにインジェクタ7を使用し、逆止弁8を
未反応水素リサイクル管5に設ける他は、上記第一実施
例と略同様の構成である。尚、上記第一実施例と同様の
機能を有する構成部分については第一実施例と同様の番
号を付して説明を省略する。
(Second Embodiment) FIG. 2 is a schematic configuration diagram of a fuel cell system according to a second embodiment of the present invention.
Instead of using the injector 7, an injector 7 is used, and a check valve 8 is provided in the unreacted hydrogen recycle pipe 5, which is substantially the same as the first embodiment. The components having the same functions as those in the first embodiment are designated by the same numbers as those in the first embodiment, and the description thereof will be omitted.

【0017】先ず、レギュレータ4を開弁して、MHボ
ンベ2内から水素供給配管3を介して燃料電池本体1の
アノード1bに純水素を供給すると共に、燃料電池本体
1のカソード1aに空気(酸素)を供給すると、やがて
電池反応が開始される。しばらくして、電池反応が進行
すると、燃料電池本体1からは電池反応に寄与しなかっ
た未反応の純水素(通常、5〜10%程度)が生じる。
この未反応の純水素は、未反応水素リサイクル管5を純
水素供給配管3側へと流れた後、インジェクタ7によっ
て100〜200mmAq程度に加圧される。そして、
レギュレータ4を介してアノード1b側にリサイクルさ
れ、再び電池反応に利用される。この場合、MHボンベ
2から供給される純水素の圧力は4kg/cm2 程度で
あり、レギュレータ4の下流側では100〜200mm
Aqになるよう制御されている。このように、本発明に
よれば、従来系外に排出するだけで全く利用されていな
かった未反応水素を有効に利用することができる。
First, the regulator 4 is opened to supply pure hydrogen from the inside of the MH cylinder 2 to the anode 1b of the fuel cell body 1 through the hydrogen supply pipe 3 and to the cathode 1a of the fuel cell body 1 with air ( When oxygen is supplied, the cell reaction will be started. When the cell reaction proceeds after a while, unreacted pure hydrogen (usually about 5 to 10%) that does not contribute to the cell reaction is generated from the fuel cell main body 1.
The unreacted pure hydrogen flows through the unreacted hydrogen recycle pipe 5 to the pure hydrogen supply pipe 3 side, and then is pressurized by the injector 7 to about 100 to 200 mmAq. And
It is recycled to the anode 1b side via the regulator 4 and used again for the battery reaction. In this case, the pressure of pure hydrogen supplied from the MH cylinder 2 is about 4 kg / cm 2 , and 100 to 200 mm on the downstream side of the regulator 4.
It is controlled to become Aq. As described above, according to the present invention, unreacted hydrogen that has not been used at all by simply discharging it to the outside of the system can be effectively used.

【0018】尚、電池反応の際には燃料電池本体1から
は未反応水素の他に水が含まれるが、この水は未反応水
素リサイクル管5の途中に熱交換器等を設けることによ
って蒸発除去できるので、電池反応に寄与しなかった純
水素のみをリサイクルすることができる。 〔その他の事項〕上記実施例においては、水素吸蔵合金
として希土類系のMmNi4.32Mn0.18Al0.1 Fe
0.1 Co0.3 を用いたが、本発明はこれに何ら限定され
るものではなく、例えばTi−Mn系,Ti−Fe系,
Ti−Zr系,Mg−Ni系,Zr−Mn系等の水素吸
蔵合金を用いることも勿論可能である。
During the cell reaction, water is contained from the fuel cell main body 1 in addition to unreacted hydrogen, and this water is evaporated by providing a heat exchanger or the like in the middle of the unreacted hydrogen recycle pipe 5. Since it can be removed, only pure hydrogen that did not contribute to the battery reaction can be recycled. [Other Matters] In the above examples, the rare earth-based MmNi 4.32 Mn 0.18 Al 0.1 Fe is used as the hydrogen storage alloy.
Although 0.1 Co 0.3 was used, the present invention is not limited to this. For example, Ti--Mn type, Ti--Fe type,
Of course, it is also possible to use a hydrogen storage alloy such as Ti-Zr type, Mg-Ni type, Zr-Mn type.

【0019】[0019]

【発明の効果】以上の本発明によれば、電池反応に寄与
しなかった未反応の純水素(通常、5〜10%程度)を
燃料電池本体にリサイクルすることができるため、純水
素供給手段から供給される純水素を略100%電極反応
に利用することができる。この場合、純水素供給手段が
MHボンベ等であれば、ボンベの発電時間が5〜10%
程度延長するのでボンベ交換等の煩わしい作業を減らす
ことができる。
As described above, according to the present invention, unreacted pure hydrogen (usually about 5 to 10%) that has not contributed to the cell reaction can be recycled to the fuel cell body. Almost 100% of the pure hydrogen supplied from can be used for the electrode reaction. In this case, if the pure hydrogen supply means is an MH cylinder or the like, the power generation time of the cylinder is 5 to 10%.
Since it is extended to some extent, cumbersome work such as cylinder replacement can be reduced.

【0020】また、純水素を略100%電池反応に利用
することができ系外に排出する未反応水素がほとんどな
いので、触媒燃焼器等が不要になる。したがって、シス
テムの大型化を抑制することができ、且つ、コストの低
減を図ることもできる。
Also, since almost 100% of pure hydrogen can be used for the battery reaction and there is almost no unreacted hydrogen discharged to the outside of the system, a catalyst combustor or the like becomes unnecessary. Therefore, it is possible to suppress an increase in the size of the system and to reduce the cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例に係る燃料電池システムの
概略構成図である。
FIG. 1 is a schematic configuration diagram of a fuel cell system according to a first embodiment of the present invention.

【図2】本発明の第二実施例に係る燃料電池システムの
概略構成図である。
FIG. 2 is a schematic configuration diagram of a fuel cell system according to a second embodiment of the present invention.

【図3】従来の燃料電池システムの概略構成図である。FIG. 3 is a schematic configuration diagram of a conventional fuel cell system.

【符号の説明】[Explanation of symbols]

1 燃料電池本体 2 MHボンベ 5 未反応水素リサイクル管 6 ブロワ 1 Fuel cell main body 2 MH cylinder 5 Unreacted hydrogen recycling pipe 6 Blower

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 裕之 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 中藤 邦弘 守口市京阪本通2丁目18番地 三洋電機株 式会社内 (72)発明者 西沢 信好 守口市京阪本通2丁目18番地 三洋電機株 式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Hiroyuki Ito 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. (72) Inventor Kunihiro Nakato 2-18 Keihan Hondori, Moriguchi Sanyo Electric Co., Ltd. In-house (72) Inventor Nobuyoshi Nishizawa 2-18 Keihan-hondori, Moriguchi-shi Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 純水素を燃料として発電を行う燃料電池
本体と、 前記燃料電池本体に供給する純水素を貯蔵する純水素貯
蔵手段と、 前記燃料電池本体での電池反応に寄与しなかった未反応
の純水素を、前記燃料電池本体にリサイクルするリサイ
クル手段と、 を備えたことを特徴とする燃料電池システム。
1. A fuel cell body for generating electric power using pure hydrogen as fuel, a pure hydrogen storage means for storing pure hydrogen supplied to the fuel cell body, and a fuel cell body that does not contribute to a cell reaction in the fuel cell body. A fuel cell system comprising: a recycling means for recycling pure hydrogen of the reaction to the fuel cell body.
【請求項2】 前記純水素貯蔵手段は、水素吸蔵合金を
充填したボンベであることを特徴とする請求項1記載の
燃料電池システム。
2. The fuel cell system according to claim 1, wherein the pure hydrogen storage means is a cylinder filled with a hydrogen storage alloy.
JP5065598A 1993-03-24 1993-03-24 Fuel cell system Pending JPH06275300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5065598A JPH06275300A (en) 1993-03-24 1993-03-24 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5065598A JPH06275300A (en) 1993-03-24 1993-03-24 Fuel cell system

Publications (1)

Publication Number Publication Date
JPH06275300A true JPH06275300A (en) 1994-09-30

Family

ID=13291622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5065598A Pending JPH06275300A (en) 1993-03-24 1993-03-24 Fuel cell system

Country Status (1)

Country Link
JP (1) JPH06275300A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158022A (en) * 2000-11-20 2002-05-31 Sony Corp Electricity generating device, and hydrogen cartridge for the use of the same
WO2006064946A1 (en) * 2004-12-15 2006-06-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2007069472A1 (en) * 2005-12-12 2007-06-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system and mobile body
WO2007077907A1 (en) * 2006-01-06 2007-07-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2007077904A1 (en) * 2006-01-06 2007-07-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its operation stop method
US7285351B2 (en) 2002-10-01 2007-10-23 Honda Giken Kogyo Kabushiki Kaisha Apparatus for dilution of discharged fuel
US7358002B2 (en) 2002-10-17 2008-04-15 Honda Motor Co., Ltd. Exhaust gas processing device for fuel cell
US7371477B2 (en) 2002-10-03 2008-05-13 Honda Motor Co., Ltd. Exhaust gas processing device for fuel cell
US7846597B2 (en) 2005-12-19 2010-12-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for operating the system
US8178247B2 (en) 2006-01-06 2012-05-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its operation stop method
US8192884B2 (en) 2007-07-19 2012-06-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system and mobile object
WO2013111655A1 (en) * 2012-01-26 2013-08-01 コニカミノルタ株式会社 Fuel cell system
US8642224B2 (en) 2005-12-15 2014-02-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system with a learning capability to readjust the driving characteristic of a gas supply device and vehicle

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4655355B2 (en) * 2000-11-20 2011-03-23 ソニー株式会社 Power generation device and hydrogen cartridge used therefor
JP2002158022A (en) * 2000-11-20 2002-05-31 Sony Corp Electricity generating device, and hydrogen cartridge for the use of the same
US7285351B2 (en) 2002-10-01 2007-10-23 Honda Giken Kogyo Kabushiki Kaisha Apparatus for dilution of discharged fuel
US7371477B2 (en) 2002-10-03 2008-05-13 Honda Motor Co., Ltd. Exhaust gas processing device for fuel cell
US7358002B2 (en) 2002-10-17 2008-04-15 Honda Motor Co., Ltd. Exhaust gas processing device for fuel cell
WO2006064946A1 (en) * 2004-12-15 2006-06-22 Toyota Jidosha Kabushiki Kaisha Fuel cell system
WO2007069472A1 (en) * 2005-12-12 2007-06-21 Toyota Jidosha Kabushiki Kaisha Fuel cell system and mobile body
US8071249B2 (en) 2005-12-12 2011-12-06 Toyota Jidosha Kabushiki Kaisha Fuel cell system and mobile article
US8642224B2 (en) 2005-12-15 2014-02-04 Toyota Jidosha Kabushiki Kaisha Fuel cell system with a learning capability to readjust the driving characteristic of a gas supply device and vehicle
US7846597B2 (en) 2005-12-19 2010-12-07 Toyota Jidosha Kabushiki Kaisha Fuel cell system and method for operating the system
WO2007077904A1 (en) * 2006-01-06 2007-07-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its operation stop method
JP2007207745A (en) * 2006-01-06 2007-08-16 Toyota Motor Corp Fuel cell system, and its operation stop method
US8178247B2 (en) 2006-01-06 2012-05-15 Toyota Jidosha Kabushiki Kaisha Fuel cell system and its operation stop method
WO2007077907A1 (en) * 2006-01-06 2007-07-12 Toyota Jidosha Kabushiki Kaisha Fuel cell system
US8192884B2 (en) 2007-07-19 2012-06-05 Toyota Jidosha Kabushiki Kaisha Fuel cell system and mobile object
WO2013111655A1 (en) * 2012-01-26 2013-08-01 コニカミノルタ株式会社 Fuel cell system

Similar Documents

Publication Publication Date Title
JPH06275300A (en) Fuel cell system
US4464444A (en) Fuel cell power generation system and method of operating the same
KR101441489B1 (en) Fuel cell system and driving method thereof
JP2008533656A (en) Reformer, fuel cell system, and method of operating fuel cell system
JP2002124280A (en) Fuel cell power-generating system
JPH06203865A (en) Fuel cell system
JP2989332B2 (en) Fuel cell system
KR100405142B1 (en) Electric power system for Fuel Cell generation
JPH11329457A (en) Fuel cell system
JP2005209648A (en) Parallel stack freeze proof system
JPH1167251A (en) Fuel cell power generating device
JPH11135140A (en) Combined power generating facilities recycling anode exhaust gas
JP2001197790A (en) Hybrid generating set
JPH07208200A (en) Combustion equipment for turbine compressor and method thereof
CN100379075C (en) Fuel battery generating system with self-starter
JP2000185901A (en) Reforming device and fuel battery system
KR20220058651A (en) Energy storage for combustion turbine using molten carbonate electrolyzer cell
JPH0534783B2 (en)
JP2006147246A (en) Fuel cell system
JP3211505B2 (en) Method for controlling anode inlet temperature of molten carbonate fuel cell power generator
JP3582131B2 (en) Molten carbonate fuel cell power generator
JPS6313277A (en) In-system gas replacement of fuel cell
CN218241898U (en) Fuel cell power generation system
JPH10223236A (en) Fuel cell electricity-generating apparatus
JPS6266578A (en) Air cooling type fuel cell power generating system