JPH06275274A - Nonaqueous battery - Google Patents

Nonaqueous battery

Info

Publication number
JPH06275274A
JPH06275274A JP5084133A JP8413393A JPH06275274A JP H06275274 A JPH06275274 A JP H06275274A JP 5084133 A JP5084133 A JP 5084133A JP 8413393 A JP8413393 A JP 8413393A JP H06275274 A JPH06275274 A JP H06275274A
Authority
JP
Japan
Prior art keywords
battery
positive electrode
composite oxide
discharge capacity
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5084133A
Other languages
Japanese (ja)
Other versions
JP3188026B2 (en
Inventor
Mayumi Uehara
真弓 上原
Toshiyuki Noma
俊之 能間
Hiroshi Kurokawa
宏史 黒河
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13822011&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH06275274(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP08413393A priority Critical patent/JP3188026B2/en
Publication of JPH06275274A publication Critical patent/JPH06275274A/en
Application granted granted Critical
Publication of JP3188026B2 publication Critical patent/JP3188026B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To increase the discharge capacity by specifying the size of the crystal piece of the composite oxide of a positive electrode active material and the grid volume. CONSTITUTION:A negative electrode 2 is made of a prescribed material in a nonaqueous battery, and a composite oxide expressed by the composition formula LixNiyCo1-yO2 is used for a positive electrode active material, where 0<x<1.3, 0<=y<=1, 1.8<=a<=2.2. The size of the crystal piece on the grid face of the composite oxide is set to 50Angstrom or above, and the grid volume is set to 0.295-0.305nm<3>. The positive electrode 1 and the negative electrode 2 are arranged face to face via a separator 3 impregnated with an electrolyte into a polypropylene porous film, and they are stored in a case to manufacture a battery BA1. When the size of the grid face of the crystal of the composite oxide of the positive electrode 2 is set to 50Angstrom or above, the discharge capacity can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水系電池に係わり、詳
しくは放電容量を増大させることを目的とした正極活物
質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous battery, and more particularly, to improvement of a positive electrode active material for increasing discharge capacity.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム電池等の非水系電池が、含水電解液を使用した
水系電池と異なり水の分解電圧を考慮する必要がないた
め高電圧設計が可能であるなどの理由から、脚光を浴び
つつある。
2. Description of the Related Art In recent years,
A non-aqueous battery such as a lithium battery is in the limelight for the reason that it is possible to design a high voltage because it is not necessary to consider the decomposition voltage of water unlike an aqueous battery using a water-containing electrolyte.

【0003】而して、この種の電池の好適な正極活物質
として、高電位を示すことから、組成式LiNiy Co
1-y 2 (0≦y≦1)で表される複合酸化物が提案さ
れている。
As a suitable positive electrode active material for this type of battery, it exhibits a high potential, and therefore has a composition formula of LiNi y Co.
A composite oxide represented by 1-y O 2 (0 ≦ y ≦ 1) has been proposed.

【0004】しかしながら、上記の複合酸化物を使用し
た電池には、放電容量が未だ充分でないという問題があ
った。
However, the battery using the above complex oxide has a problem that the discharge capacity is still insufficient.

【0005】そこで、鋭意研究した結果、本発明者ら
は、使用するLiNiy Co1-y 2の結晶の格子面
(003)面の結晶子の大きさと、その放電容量との間
に密接な関係があることを見出した。因みに、従来は、
10〜40Å程度の結晶子の大きさのものが正極活物質
として一般的に使用されていた。
Then, as a result of earnest studies, the present inventors have found that the size of the crystallite of the lattice plane (003) of the crystal of LiNi y Co 1 -y O 2 used and the discharge capacity thereof are closely related to each other. I found that there is a relationship. By the way, conventionally,
Those having a crystallite size of about 10 to 40Å have been generally used as a positive electrode active material.

【0006】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、放電容量が大き
い非水系電池を提供するにある。
The present invention has been made on the basis of such findings, and an object thereof is to provide a non-aqueous battery having a large discharge capacity.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係る非水系電池(以下、「本発明電池」と称
する。)は、負極にリチウムイオンを吸蔵放出可能な材
料又は金属リチウムが使用され、正極活物質として組成
式Lix Niy Co1-y a (0<x<1.3;0≦y
≦1;1.8≦a≦2.2)で表される複合酸化物が使
用されてなる非水系電池であって、前記複合酸化物の格
子面(003)面における結晶子の大きさ(以下、単に
「結晶子の大きさ」と略称する。)が50Å以上である
ことを特徴とする。
A non-aqueous battery according to the present invention for achieving the above object (hereinafter referred to as "the battery of the present invention") is a material or metallic lithium capable of inserting and extracting lithium ions in a negative electrode. Is used as the positive electrode active material, and the composition formula Li x Ni y Co 1-y O a (0 <x <1.3; 0 ≦ y
≦ 1; 1.8 ≦ a ≦ 2.2), which is a non-aqueous battery using a composite oxide, wherein the size of the crystallite on the lattice plane (003) plane of the composite oxide ( Hereinafter, it will be simply referred to as “crystallite size”) is 50 Å or more.

【0008】本発明が改良せんとする電池(対象電池)
は、負極に金属リチウム、又はリチウム合金、コーク
ス、黒鉛などのリチウムイオンを吸蔵放出可能な材料が
使用され、正極活物質として組成式Lix Niy Co
1-y a (0<x<1.3;0≦y≦1;1.8≦a≦
2.2)で表される複合酸化物が使用されてなる電池電
圧が約3.5〜4V、或いはそれ以上の高電圧型の非水
系電池である。
Battery to be improved by the present invention (target battery)
For the negative electrode, metallic lithium or a material capable of inserting and extracting lithium ions such as lithium alloy, coke, and graphite is used, and the composition formula Li x Ni y Co is used as the positive electrode active material.
1-y O a (0 <x <1.3; 0 ≦ y ≦ 1; 1.8 ≦ a ≦
A high voltage type non-aqueous battery having a battery voltage of about 3.5 to 4 V or more, which is obtained by using the composite oxide represented by 2.2).

【0009】本発明では、この対象電池の複合酸化物
(正極活物質)の結晶子の大きさが50Å以上に規制さ
れる。150Å以上がより好ましい。結晶子の大きさが
50Å未満の場合は、後述する実施例に示すように、放
電容量が150mAh/g未満と小さくなる。
In the present invention, the size of the crystallite of the composite oxide (positive electrode active material) of the target battery is regulated to 50 Å or more. It is more preferably 150 Å or more. When the crystallite size is less than 50 Å, the discharge capacity is as small as less than 150 mAh / g, as shown in Examples described later.

【0010】本発明における複合酸化物は、例えばリチ
ウムの水酸化物、酸化物、炭酸塩又は硝酸塩と、ニッケ
ルの水酸化物、酸化物、炭酸塩又は硝酸塩と、コバルト
の水酸化物、酸化物、炭酸塩又は硝酸塩とを所定の割合
で混合し、焼成することにより得られる。焼成温度、焼
成時間及び焼成後の冷却速度などを変えることにより所
望の結晶子の大きさのものが得られる。
The composite oxide in the present invention includes, for example, lithium hydroxide, oxide, carbonate or nitrate, nickel hydroxide, oxide, carbonate or nitrate, and cobalt hydroxide or oxide. , Carbonate or nitrate at a predetermined ratio and then baked. A desired crystallite size can be obtained by changing the firing temperature, firing time, cooling rate after firing, and the like.

【0011】上記複合酸化物は、結晶子の大きさが50
Å以上であるとともに、その格子体積が0.295〜
0.305nm3 であるか、又は、粒径が10μm以下
であるものが放電容量が大きいので好ましい。
The complex oxide has a crystallite size of 50.
Å or more, and the lattice volume is 0.295 ~
It is preferably 0.305 nm 3 or has a particle size of 10 μm or less because the discharge capacity is large.

【0012】本発明電池は、上述した如く、負極にリチ
ウムイオンを吸蔵放出可能な材料又は金属リチウムが使
用されてなる非水系電池の正極活物質として、放電容量
の大きな結晶子の大きさが50Å以上の特定の複合酸化
物を使用した点に最大の特徴を有する。それゆえ、本発
明電池を構成する電解液等の他の部材については特に制
限されず、非水系電池用として従来使用され、或いは提
案されている種々の材料を制限無く使用することが可能
である。
As described above, the battery of the present invention has a large crystal capacity of 50Å as a positive electrode active material of a non-aqueous battery in which a material capable of inserting and extracting lithium ions or metallic lithium is used for the negative electrode. The greatest feature is that the above-mentioned specific composite oxide is used. Therefore, other members such as the electrolytic solution constituting the battery of the present invention are not particularly limited, and various materials conventionally used for non-aqueous batteries or proposed various materials can be used without limitation. .

【0013】たとえば、電解液としては、プロピレンカ
ーボネート、エチレンカーボネート、ビニレンカーボネ
ートなどの有機溶媒や、これらとジメチルカーボネー
ト、ジエチルカーボネート、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、エトキシメトキシエタ
ンなどの低沸点溶媒との混合溶媒に、LiPF6 、Li
ClO4 、LiCF3 SO3 などの電解液溶質を0.7
〜1.5M(モル/リットル)、就中1Mの割合で溶か
した溶液が例示される。
For example, the electrolytic solution may be an organic solvent such as propylene carbonate, ethylene carbonate or vinylene carbonate, or dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane or ethoxymethoxyethane. In a mixed solvent with a low boiling point solvent such as LiPF 6 , Li
Electrolyte solutes such as ClO 4 and LiCF 3 SO 3 are added to 0.7
An example is a solution dissolved at a ratio of up to 1.5 M (mol / liter), especially 1 M.

【0014】[0014]

【作用】本発明電池においては、放電容量の大きな正極
活物質が使用されているので、電池容量が大きくなる。
In the battery of the present invention, since the positive electrode active material having a large discharge capacity is used, the battery capacity becomes large.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited by the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0016】(実施例1)扁平型の非水系電池(本発明
電池)を作製した。
Example 1 A flat non-aqueous battery (the battery of the present invention) was produced.

【0017】〔正極の作製〕水酸化リチウムと水酸化ニ
ッケルと水酸化コバルトとをモル比10:9:1の割合
で乳鉢中で混合し、750°Cで40時間焼成した後、
1°C/分の冷却速度で室温まで冷却し、次いでこれを
石川式らいかい乳鉢中で120分間粉砕して組成式Li
Ni0.9 Co0.1 2 で表される複合酸化物粉末を得
た。この複合酸化物粉末の結晶子の大きさ、格子体積及
び粒径は、それぞれ200Å、0.300nm3 、1μ
mであった。
[Preparation of Positive Electrode] Lithium hydroxide, nickel hydroxide and cobalt hydroxide were mixed in a mortar at a molar ratio of 10: 9: 1 and baked at 750 ° C. for 40 hours,
The mixture was cooled to room temperature at a cooling rate of 1 ° C / min, and then pulverized in an Ishikawa type raid mortar for 120 minutes to form a composition formula Li.
A composite oxide powder represented by Ni 0.9 Co 0.1 O 2 was obtained. The crystallite size, lattice volume, and particle size of this composite oxide powder are 200 Å, 0.300 nm 3 , and 1 μm, respectively.
It was m.

【0018】結晶子の大きさは、粉末X線回折パターン
(線源:CuKα線)の2θ=19°(格子面(00
3)面の回折ピーク位置)付近のピークの積分幅より、
下記のシェラー(Sherrer)の式をもとに算出した。格子
体積は、JCPDSカード9−63(LiNiO2 )に
示されるミラー指数より格子定数を求めて算出した。ま
た、粒径は、レーザー回折法により求めた。
The crystallite size is 2θ = 19 ° in the powder X-ray diffraction pattern (source: CuKα ray) (lattice plane (00
3) From the integrated width of the peak near the diffraction peak position of the surface),
It was calculated based on the following Scherrer formula. The lattice volume was calculated by obtaining the lattice constant from the Miller index shown in JCPDS card 9-63 (LiNiO 2 ). The particle size was determined by the laser diffraction method.

【0019】ε=λ/(βcosθ) 但し、ε:結晶子の大きさの平均(Å) λ:測定X線波長(Å) β:積分幅(積分強度/ピーク強度) θ:回折線のブラッグ角(度)Ε = λ / (β cos θ) where ε: average crystallite size (Å) λ: measured X-ray wavelength (Å) β: integral width (integral intensity / peak intensity) θ: Bragg of diffraction line angle)

【0020】上記複合酸化物粉末と、導電剤としてのア
セチレンブラックと、結着剤としてのフッ素樹脂粉末と
を、重量比率90:6:4で混合して正極合剤を得た。
この正極合剤を成形圧2トン/cm2 で加圧成形した
後、250°Cで加熱処理して、直径20mmの円板状
の正極を作製した。なお、正極集電体として、ステンレ
ス鋼板(SUS304)を使用した。
The composite oxide powder, acetylene black as a conductive agent, and fluororesin powder as a binder were mixed in a weight ratio of 90: 6: 4 to obtain a positive electrode mixture.
The positive electrode mixture was pressure-molded at a molding pressure of 2 ton / cm 2 and then heat-treated at 250 ° C. to prepare a disk-shaped positive electrode having a diameter of 20 mm. A stainless steel plate (SUS304) was used as the positive electrode current collector.

【0021】〔負極の作製〕リチウム圧延板を打ち抜い
て、金属リチウムからなる直径20mmの円板状の負極
を作製した。なお、負極集電体として、ステンレス鋼板
(SUS304)を使用した。
[Production of Negative Electrode] A rolled lithium plate was punched out to produce a disk-shaped negative electrode made of metallic lithium and having a diameter of 20 mm. A stainless steel plate (SUS304) was used as the negative electrode current collector.

【0022】〔電解液の調製〕プロピレンカーボネート
(PC)と1,2−ジメトキシエタン(DME)との等
体積混合溶媒に、LiClO4 (過塩素酸リチウム)を
1M(モル/リットル)の割合で溶かして電解液を調製
した。
[Preparation of Electrolyte Solution] LiClO 4 (lithium perchlorate) at a ratio of 1 M (mol / liter) was added to an equal volume mixed solvent of propylene carbonate (PC) and 1,2-dimethoxyethane (DME). An electrolyte solution was prepared by melting.

【0023】〔電池の作製〕以上の正負両極及び電解液
を用いて扁平型の本発明電池BA1(電池寸法:直径2
4mm、厚み:3.0mm)を作製した。セパレータと
しては、ポリプロピレン製の微多孔膜(ポリプラスチッ
クス社製、商品名「セルガード」)を使用し、これに先
に述べた電解液を含浸させた。
[Production of Battery] A flat type battery BA1 of the present invention (battery size: diameter 2
4 mm, thickness: 3.0 mm) was produced. As the separator, a polypropylene microporous film (manufactured by Polyplastics Co., trade name “Celguard”) was used and impregnated with the electrolytic solution described above.

【0024】図1は作製した本発明電池BA1を模式的
に示す断面図であり、同図に示す本発明電池BA1は、
正極1、負極2、これら両電極1,2を互いに離間する
セパレータ3、正極缶4、負極缶5、正極集電体6、負
極集電体7及びポリプロピレン製の絶縁パッキング8な
どからなる。
FIG. 1 is a cross-sectional view schematically showing the produced battery BA1 of the present invention. The battery BA1 of the present invention shown in FIG.
It comprises a positive electrode 1, a negative electrode 2, a separator 3 separating these electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7 and an insulating packing 8 made of polypropylene.

【0025】正極1及び負極2は、電解液を含浸したセ
パレータ3を介して対向して正負両極缶4、5が形成す
る電池ケース内に収容されており、正極1は正極集電体
6を介して正極缶4に、また負極2は負極集電体7を介
して負極缶5に接続され、電池内部で生じた化学エネル
ギーを正極缶4及び負極缶5の両端子から電気エネルギ
ーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative bipolar cans 4 and 5 which face each other with a separator 3 impregnated with an electrolytic solution interposed therebetween. The positive electrode 1 has a positive electrode current collector 6. To the positive electrode can 4 and the negative electrode 2 to the negative electrode can 5 via the negative electrode current collector 7 so that the chemical energy generated inside the battery can be output as electrical energy from both terminals of the positive electrode can 4 and the negative electrode can 5 to the outside. You can take it out.

【0026】(実施例2〜9及び比較例)焼成温度、焼
成時間、冷却温度及び粉砕時間を、表1に示すように変
えたこと以外は実施例1と同様にして、同組成の複合酸
化物粉末を作製し、以後も実施例1と同様にして本発明
電池BA2〜BA9及び比較電池BC1を作製した。各
電池に使用した複合酸化物粉末の結晶子の大きさ、格子
体積及び粒径を表2に示す。
(Examples 2 to 9 and Comparative Example) A composite oxide of the same composition was prepared in the same manner as in Example 1 except that the firing temperature, firing time, cooling temperature and grinding time were changed as shown in Table 1. Material powder was produced, and thereafter, batteries BA2 to BA9 of the present invention and comparative battery BC1 were produced in the same manner as in Example 1. Table 2 shows the crystallite size, lattice volume, and particle size of the composite oxide powder used in each battery.

【0027】[0027]

【表1】 [Table 1]

【0028】[0028]

【表2】 [Table 2]

【0029】〔結晶子の大きさ、格子体積及び粒径と放
電容量との関係〕室温(25°C)下、3mAで充電終
止電圧4.2Vまで充電した後、3mAで放電終止電圧
2.75Vまで放電して、結晶子の大きさと放電容量と
の関係、格子体積と放電容量との関係、及び、粒径と放
電容量との関係を調べた。結果を図2〜図4に示す。
[Relationship between Crystallite Size, Lattice Volume, and Particle Size and Discharge Capacity] At room temperature (25 ° C.), the battery was charged to a charge end voltage of 4.2 V at 3 mA, and then discharged at 3 mA to a discharge end voltage of 2. After discharging up to 75 V, the relationship between the crystallite size and the discharge capacity, the relationship between the lattice volume and the discharge capacity, and the relationship between the particle size and the discharge capacity were examined. The results are shown in FIGS.

【0030】図2は、結晶子の大きさと放電容量との関
係を、縦軸に正極活物質単位重量当たりの放電容量(m
Ah/g)を、横軸に結晶子の大きさ(Å)をとって示
したグラフであり、同図より結晶子の大きさが50Å以
上の場合に放電容量が150mAh/g以上となり、結
晶子の大きさが150Å以上の場合は放電容量が180
mAh/gと格段に大きくなることが分かる。
FIG. 2 shows the relationship between the crystallite size and the discharge capacity, with the vertical axis indicating the discharge capacity per unit weight of the positive electrode active material (m).
Ah / g) is a graph showing the crystallite size (Å) on the horizontal axis. From the figure, when the crystallite size is 50 Å or more, the discharge capacity becomes 150 mAh / g or more. If the size of the child is 150Å or more, the discharge capacity is 180
It turns out that it becomes remarkably large as mAh / g.

【0031】図3は、格子体積と放電容量との関係を、
縦軸に正極活物質単位重量当たりの放電容量(mAh/
g)を、横軸に格子体積(nm3 )をとって示したグラ
フであり、同図より格子体積が0.295〜0.305
nm3 の場合に放電容量が150mAh/g以上となる
ことが分かる。
FIG. 3 shows the relationship between the lattice volume and the discharge capacity,
The vertical axis represents the discharge capacity per unit weight of the positive electrode active material (mAh /
g) is a graph in which the abscissa represents the lattice volume (nm 3 ), and the lattice volume is 0.295 to 0.305.
It can be seen that the discharge capacity is 150 mAh / g or more in the case of nm 3 .

【0032】図4は、粒径と放電容量との関係を、縦軸
に正極活物質単位重量当たりの放電容量(mAh/g)
を、横軸に粒径(μm)をとって示したグラフであり、
同図より粒径が10μm以下の場合に放電容量が165
mAh/g以上となることが分かる。
FIG. 4 shows the relationship between the particle size and the discharge capacity, the vertical axis being the discharge capacity per unit weight of the positive electrode active material (mAh / g).
Is a graph in which the horizontal axis represents the particle size (μm),
From the figure, the discharge capacity is 165 when the particle size is 10 μm or less.
It turns out that it becomes more than mAh / g.

【0033】叙上の実施例では、本発明を扁平型の非水
系二次電池に適用する場合を例に挙げて説明したが、電
池の形状は特に限定されず、円筒型、角型など種々の形
状の非水系二次電池に適用し得るものである。
In the above embodiments, the case where the present invention is applied to the flat type non-aqueous secondary battery has been described as an example, but the shape of the battery is not particularly limited, and various types such as a cylindrical type and a square type are used. It can be applied to a non-aqueous secondary battery having the above shape.

【0034】また、複合酸化物の原料としてリチウム、
ニッケル、コバルトの各水酸化物を使用する場合を一例
として説明したが、先に示した他の材料を使用してなる
複合酸化物を使用した場合においても上述した本発明電
池BA1〜BA9と同様の放電容量の大きな非水系電池
が得られる。
Further, lithium is used as a raw material for the composite oxide.
Although the case of using each hydroxide of nickel and cobalt has been described as an example, the same as the above-described batteries BA1 to BA9 of the present invention when the complex oxide formed by using the other material described above is used. A non-aqueous battery having a large discharge capacity can be obtained.

【0035】[0035]

【発明の効果】本発明電池では格子面(003)面にお
ける結晶子の大きさが50Å以上の特定の複合酸化物が
正極活物質として使用されているので放電容量が大きい
など、本発明は優れた特有の効果を奏する。
INDUSTRIAL APPLICABILITY In the battery of the present invention, a specific composite oxide having a crystallite size of 50 Å or more on the lattice plane (003) is used as the positive electrode active material, so that the discharge capacity is large and the present invention is excellent. Has a unique effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】扁平型の非水系電池(本発明電池)の断面図で
ある。
FIG. 1 is a cross-sectional view of a flat non-aqueous battery (the battery of the present invention).

【図2】格子面(003)面における結晶子の大きさと
放電容量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the crystallite size on the lattice plane (003) plane and the discharge capacity.

【図3】格子体積と放電容量との関係を示すグラフであ
る。
FIG. 3 is a graph showing the relationship between the lattice volume and the discharge capacity.

【図4】粒径と放電容量との関係を示すグラフである。FIG. 4 is a graph showing the relationship between particle size and discharge capacity.

【符号の説明】[Explanation of symbols]

BA1 非水系電池(本発明電池) 1 正極 2 負極 3 セパレータ BA1 non-aqueous battery (battery of the present invention) 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nishio 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Within the corporation

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】負極にリチウムイオンを吸蔵放出可能な材
料又は金属リチウムが使用され、正極活物質として組成
式Lix Niy Co1-y a (0<x<1.3;0≦y
≦1;1.8≦a≦2.2)で表される複合酸化物が使
用されてなる非水系電池であって、前記複合酸化物の格
子面(003)面における結晶子の大きさが50Å以上
であることを特徴とする非水系電池。
1. A material capable of inserting and extracting lithium ions or metallic lithium is used for the negative electrode, and the composition formula Li x Ni y Co 1-y O a (0 <x <1.3; 0 ≦ y
≤1; 1.8 ≤ a ≤ 2.2), which is a non-aqueous battery using a composite oxide, wherein the crystallite size on the lattice plane (003) plane of the composite oxide is A non-aqueous battery that is 50 Å or more.
【請求項2】前記複合酸化物の格子体積が0.295〜
0.305nm3 である請求項1記載の非水系電池。
2. The complex oxide has a lattice volume of 0.295 to.
The non-aqueous battery according to claim 1, having a size of 0.305 nm 3 .
【請求項3】前記複合酸化物の粒径が10μm以下であ
る請求項1記載の非水系電池。
3. The non-aqueous battery according to claim 1, wherein the particle size of the composite oxide is 10 μm or less.
JP08413393A 1993-03-17 1993-03-17 Non-aqueous battery Expired - Lifetime JP3188026B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08413393A JP3188026B2 (en) 1993-03-17 1993-03-17 Non-aqueous battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08413393A JP3188026B2 (en) 1993-03-17 1993-03-17 Non-aqueous battery

Publications (2)

Publication Number Publication Date
JPH06275274A true JPH06275274A (en) 1994-09-30
JP3188026B2 JP3188026B2 (en) 2001-07-16

Family

ID=13822011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08413393A Expired - Lifetime JP3188026B2 (en) 1993-03-17 1993-03-17 Non-aqueous battery

Country Status (1)

Country Link
JP (1) JP3188026B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014051148A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石金属株式会社 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
WO2014051148A1 (en) * 2012-09-28 2014-04-03 Jx日鉱日石金属株式会社 Positive-electrode active substance for lithium-ion cell, positive electrode for lithium-ion cell, and lithium-ion cell
JP5916876B2 (en) * 2012-09-28 2016-05-11 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JPWO2014051148A1 (en) * 2012-09-28 2016-08-25 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery

Also Published As

Publication number Publication date
JP3188026B2 (en) 2001-07-16

Similar Documents

Publication Publication Date Title
JP4644895B2 (en) Lithium secondary battery
US7192672B2 (en) Process for producing positive electrode active material for lithium secondary battery
EP1281673B1 (en) Cathode active material made of cobalt-oxide particles for non-aqueous electrolyte secondary cell and process for producing the same, and non-aqueous electrolyte secondary cell
JP6871888B2 (en) Positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery and lithium secondary battery
JP3032757B1 (en) Non-aqueous electrolyte secondary battery
US20070111097A1 (en) Lithium-cobalt composite oxide, process for its production, positive electrode for lithium secondary cell employing it, and lithium secondary cell
US6924064B2 (en) Positive active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising same
JP2000082466A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
US20050220701A1 (en) Process for producing positive electrode active material for lithium secondary battery
KR20150100406A (en) Positive active material, preparing method thereof, positive electrode for lithium secondary battery including the same, and lithium secondary battery employing the same
JPH08124559A (en) Manufacture of lithium secondary battery and of negative electrode active material
JP2000231920A (en) Lithium secondary battery
JPH0660887A (en) Nonaqueous battery
JP5021982B2 (en) Nonaqueous electrolyte secondary battery
JP2006236830A (en) Lithium secondary battery
JP3188026B2 (en) Non-aqueous battery
JPH06243871A (en) Nonaqueous secondary battery
JP2006318926A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JPH08264179A (en) Lithium battery
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JPH1145715A (en) Manufacture of nonaqueous electrolytic secondary battery and of its negative electrode
JP2005158737A (en) Positive electrode for lithium secondary battery, and lithium secondary battery
JPH08250119A (en) Lithium secondary battery
JP2000100434A (en) Lithium secondary battery
JP3625679B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080511

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090511

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 12