JPH06273803A - Active matrix liquid crystal display device - Google Patents

Active matrix liquid crystal display device

Info

Publication number
JPH06273803A
JPH06273803A JP437894A JP437894A JPH06273803A JP H06273803 A JPH06273803 A JP H06273803A JP 437894 A JP437894 A JP 437894A JP 437894 A JP437894 A JP 437894A JP H06273803 A JPH06273803 A JP H06273803A
Authority
JP
Japan
Prior art keywords
liquid crystal
display device
crystal display
pair
active matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP437894A
Other languages
Japanese (ja)
Other versions
JP3296913B2 (en
Inventor
Toru Sasaki
亨 佐々木
Katsumi Kondo
克己 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP437894A priority Critical patent/JP3296913B2/en
Publication of JPH06273803A publication Critical patent/JPH06273803A/en
Application granted granted Critical
Publication of JP3296913B2 publication Critical patent/JP3296913B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To increase a degree of freedom for the selection of a usable liquid crystal composition and an oriented film material and to prevent picture quality from being deteriorated by forming a capacitive element between a picture element electrode on one side out of the picture elements making a pair and a scanning wiring via an insulating material. CONSTITUTION:The scanning wirings 10 are arranged on a substrate 31 in parallel with each other, and gate insulating film 13 and a channel layer 16 are formed, and both a rectangular first picture element electrode 1 and a signal wiring 11 are arranged so as to cross with the scanning wiring 10. The picture element electrode on the other side which forms the pair with the first picture element electrode 1 is constituted in such a way that adjacent picture elements are connected with each other, and it is formed on a substrate 32 on the other side as a stripe shape second picture element electrode 2. The second picture element electrode 2 functions almost similarly as a common electrode on a conventional active matrix liquid crystal display device. Therefore, an electric field 7 is impressed a liquid crystal composition 50 between the first and second picture element electrodes. The capacitive element 12 is formed as structure to hold the gate insulating film 13 between by extending the first picture element electrode 1 to the scanning wiring 10.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、量産性が良好で低コス
トかつ高画質のアクティブマトリクス型液晶表示装置に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an active matrix type liquid crystal display device having good mass productivity, low cost and high image quality.

【0002】[0002]

【従来の技術】従来のアクティブマトリクス型液晶表示
装置では、液晶組成物層を駆動する電極として2枚の基
板界面上に形成し相対向させた透明電極を用いていた。
これは、液晶組成物層に印加する電界の方向を基板界面
にほぼ垂直な方向とすることで動作する、ツイステッド
ネマチック(TN)表示方式に代表される表示方式を採
用していることによる。以下、この液晶組成物層に印加
する主たる電界方向が基板界面にほぼ垂直な方向である
表示方式を縦電界方式と称する。
2. Description of the Related Art In a conventional active matrix type liquid crystal display device, transparent electrodes, which are formed on the interface between two substrates and face each other, are used as electrodes for driving a liquid crystal composition layer.
This is because a display system typified by a twisted nematic (TN) display system, which operates by making the direction of the electric field applied to the liquid crystal composition layer substantially perpendicular to the substrate interface, is adopted. Hereinafter, a display system in which the main electric field direction applied to the liquid crystal composition layer is a direction substantially perpendicular to the substrate interface is referred to as a vertical electric field system.

【0003】また、一方の基板上に形成した櫛歯状電極
対を用いて液晶組成物層に電界を印加する方式が、例え
ば特公昭63−21907 号により提案されている。ここで言
う櫛歯状電極対は、図5中の1,2で示すような櫛の歯
のような形状を有する2つの電極を互いの歯の部分が重
ならずに噛み合うように配置したものである。この場
合、液晶組成物層を駆動する電極は透明である必要はな
く、導電性が高く不透明な金属電極を用いることができ
る。また、液晶組成物分子の配向は、電極間に電圧を印
加しない状態において、ホモジニアス配向,90°ツイ
スト配向あるいはホメオトロピック配向を取ることがで
き、TNモード,ゲストホスト(GH)モードあるいは
電界制御複屈折(ECB)モードなどの電圧効果型表示
方式や、電流効果型の動的散乱(DS)モード表示方式
を用いることができる。以下、この液晶組成物層に印加
する主たる電界方向が基板界面にほぼ平行な方向である
表示方式を横電界方式と称する。
Further, a method of applying an electric field to a liquid crystal composition layer using a comb-teeth-shaped electrode pair formed on one substrate has been proposed, for example, in Japanese Patent Publication No. 63-21907. The comb-tooth-shaped electrode pair referred to here is one in which two electrodes having a comb-tooth-like shape as shown by 1 and 2 in FIG. 5 are arranged so that their teeth do not overlap and mesh with each other. Is. In this case, the electrode that drives the liquid crystal composition layer does not need to be transparent, and a metal electrode having high conductivity and opacity can be used. In addition, the orientation of the liquid crystal composition molecules can be a homogeneous orientation, a 90 ° twist orientation, or a homeotropic orientation in a state in which a voltage is not applied between the electrodes. A voltage effect type display method such as a refraction (ECB) mode or a current effect type dynamic scattering (DS) mode display method can be used. Hereinafter, the display method in which the main electric field direction applied to the liquid crystal composition layer is substantially parallel to the substrate interface is referred to as a lateral electric field method.

【0004】横電界方式の動作原理を図2および図3を
用いて説明する。
The operating principle of the horizontal electric field system will be described with reference to FIGS. 2 and 3.

【0005】図2(a),(b)は液晶表示装置内での液
晶の動作を示す断面図を、図2(c),(d)はその平面
図を表す。図2ではアクティブ素子を省略し、また、画
素内での櫛歯状電極対の一部分を示した。
2 (a) and 2 (b) are sectional views showing the operation of the liquid crystal in the liquid crystal display device, and FIGS. 2 (c) and 2 (d) are plan views thereof. In FIG. 2, the active element is omitted, and a part of the comb-teeth electrode pair in the pixel is shown.

【0006】電圧無印加時の断面図を図2(a)に、そ
の時の平面図を図2(c)に示す。少なくとも一方が透
明な一対の基板3の向き合った表面に櫛歯状の形状をし
た対をなす画素電極1,2が形成され、その上に配向膜
4が塗布および配向処理されている。間には液晶組成物
が挟持されている。棒状の液晶分子5は、画素電極1,
2間に電圧が印加されない時には櫛歯状画素電極対1,
2の長辺方向に対して若干の角度を持つように配向され
ている。上下界面上での液晶分子5の配向方向はここで
は平行である場合を例に説明する。また、液晶組成物の
誘電率異方性は正を想定している。
FIG. 2A shows a sectional view when no voltage is applied, and FIG. 2C shows a plan view at that time. Pixel electrodes 1 and 2 each having a comb-like shape are formed on opposite surfaces of a pair of substrates 3 of which at least one is transparent, and an alignment film 4 is applied and alignment-treated thereon. A liquid crystal composition is sandwiched between them. The rod-shaped liquid crystal molecules 5 are the pixel electrodes 1,
When no voltage is applied between the two, the comb-teeth-shaped pixel electrode pair 1,
2 is oriented to have a slight angle with respect to the long side direction. Here, the case where the alignment directions of the liquid crystal molecules 5 on the upper and lower interfaces are parallel will be described as an example. In addition, the dielectric anisotropy of the liquid crystal composition is assumed to be positive.

【0007】次に、櫛歯状画素電極対1,2間に電圧を
与えて液晶組成物層に電界7を印加すると図2(c),
(d)に示したように電界7の方向に液晶分子5がその
向きを変える。偏光板6を所定の角度に配置することで
電界印加によって光透過率を変えることが可能になる。
図3に示すように、印加電圧の実効値を増大させると相
対的な光透過率が変化する。このように、横電界方式に
よれば透明電極を使用せずにコントラストを与える表示
が可能になる。
Next, when a voltage is applied between the pair of comb-teeth-shaped pixel electrodes 1 and 2 to apply an electric field 7 to the liquid crystal composition layer, as shown in FIG.
As shown in (d), the liquid crystal molecules 5 change their directions in the direction of the electric field 7. By arranging the polarizing plate 6 at a predetermined angle, it becomes possible to change the light transmittance by applying an electric field.
As shown in FIG. 3, when the effective value of the applied voltage is increased, the relative light transmittance changes. As described above, according to the horizontal electric field method, it is possible to perform display with contrast without using a transparent electrode.

【0008】なお、図2では櫛歯状画素電極対1,2を
一方の基板表面に形成したが、一対の基板両方に分けて
も何ら効果は変わるものではない。ただし、配線を微細
化する場合や熱,外力等による種々の変形などを鑑みる
と、一方の基板に備えたほうがより高精度なアライメン
トが可能になり、望ましい。また、液晶組成物の誘電率
異方性は正を想定したが、負であっても構わない。その
場合には初期配向状態を画素電極の長辺方向に垂直な方
向から若干の角度を持つように配向させる。さらに、偏
光板6を配置する角度を変えれば、図3とは逆の傾きを
有する特性を得ることもできる。
Although the pair of comb-teeth-shaped pixel electrodes 1 and 2 are formed on the surface of one substrate in FIG. 2, the effect does not change even if they are divided into a pair of substrates. However, in the case of miniaturizing the wiring and in consideration of various deformations due to heat, external force, etc., it is preferable to provide the substrate on one side because more accurate alignment becomes possible. Although the dielectric anisotropy of the liquid crystal composition is assumed to be positive, it may be negative. In that case, the initial alignment state is aligned so as to have a slight angle from the direction perpendicular to the long side direction of the pixel electrode. Further, by changing the angle at which the polarizing plate 6 is arranged, it is possible to obtain a characteristic having an inclination opposite to that in FIG.

【0009】[0009]

【発明が解決しようとする課題】従来の縦電界方式のア
クティブマトリクス型液晶表示装置では、透明電極の電
圧変動を防止するために、透明電極に電荷蓄積用の容量
素子を接続していた。しかしながら、前記の縦電界方式
では、可能な限り光の利用効率を向上させるために容量
素子の大きさを縮小すると、前記の透明電極に蓄積され
た電荷を保持するためには約1012Ωcm以上の極めて高
い比抵抗の液晶組成物を使用する必要が生じる。このた
め、低い光学しきい値電圧や適切な大きさの複屈折等を
有し、かつ不純物によって汚染されにくい液晶組成物の
選択の自由度が大幅に限定されていた。さらに、液晶組
成物層の比抵抗は基板界面上の液晶組成物分子を所定方
向に配向制御する配向膜材料にも依存するため、液晶組
成物層の比抵抗を高く保つ配向膜材料を用いる必要があ
る。このため、適切なプレチルト角(基板界面上の液晶
組成物分子の傾き角)を発現し、かつ直流電荷の残留し
にくい配向膜として実用可能な材料は限定されていた。
これらのため、表示むらや残像などの画質劣化が発生し
やすかった。
In the conventional vertical electric field type active matrix type liquid crystal display device, in order to prevent the voltage fluctuation of the transparent electrode, the transparent electrode is connected to the capacitance element for storing charges. However, in the vertical electric field method, if the size of the capacitive element is reduced in order to improve the light utilization efficiency as much as possible, in order to retain the charge accumulated in the transparent electrode, it is about 10 12 Ωcm or more. Therefore, it is necessary to use a liquid crystal composition having an extremely high specific resistance. For this reason, the degree of freedom in selecting a liquid crystal composition having a low optical threshold voltage, birefringence of an appropriate size, etc. and being less likely to be contaminated by impurities has been greatly limited. Further, since the specific resistance of the liquid crystal composition layer also depends on the alignment film material that controls the alignment of the liquid crystal composition molecules on the substrate interface in a predetermined direction, it is necessary to use an alignment film material that keeps the specific resistance of the liquid crystal composition layer high. There is. For this reason, materials that can produce a suitable pretilt angle (tilt angle of liquid crystal composition molecules on the substrate interface) and are practically usable as an alignment film in which a DC charge hardly remains are limited.
For these reasons, image quality deterioration such as display unevenness and afterimage is likely to occur.

【0010】また、前記の従来の横電界方式では、電荷
蓄積用の容量素子を接続していなかったため櫛歯状電極
対の電圧変動を抑えることが不可能であり、表示むらが
発生しやすかった。さらに、櫛歯状電極対を用いるため
光の利用効率は著しく低下し、液晶表示装置の明るさを
向上させることが困難になっていた。
Further, in the above-described conventional lateral electric field method, since the capacitance element for storing charge is not connected, it is impossible to suppress the voltage fluctuation of the comb-teeth-shaped electrode pair, and display unevenness is likely to occur. . Furthermore, since the comb-teeth-shaped electrode pair is used, the light utilization efficiency is significantly reduced, and it has been difficult to improve the brightness of the liquid crystal display device.

【0011】さらに、前記の従来の横電界方式において
も画素電極近傍では基板界面に垂直な方向の電界成分が
発生し、この部分における光漏れによって斜め方向から
見たコントラスト比が低下するという問題があった。
Further, even in the above-mentioned conventional lateral electric field system, an electric field component in the direction perpendicular to the substrate interface is generated in the vicinity of the pixel electrode, and light leakage in this part causes a decrease in the contrast ratio when viewed from an oblique direction. there were.

【0012】本発明はこれらの課題を同時に解決するも
ので、その第1の目的は、使用可能な液晶組成物および
配向膜材料の選択の自由度を広げ、画質劣化を防止する
ことにある。
The present invention solves these problems at the same time, and a first object thereof is to expand the degree of freedom in selection of usable liquid crystal compositions and alignment film materials and prevent image quality deterioration.

【0013】第2の目的は、液晶表示装置の明るさを向
上させることにある。
A second object is to improve the brightness of the liquid crystal display device.

【0014】第3の目的は、斜め方向から見たコントラ
スト比が高い横電界方式を実現する方法を提供すること
にある。
A third object is to provide a method for realizing a lateral electric field system having a high contrast ratio when viewed from an oblique direction.

【0015】[0015]

【課題を解決するための手段】前記の目的を達成するた
めに以下の手段を用いる。
The following means are used to achieve the above-mentioned object.

【0016】少なくとも一方が透明な一対の基板と、前
記基板間に挟持された液晶組成物層と、前記基板のいず
れか一方の基板の向き合った表面にマトリクス状に配置
された複数の走査配線および信号配線と、対をなす画素
電極と、前記画素電極および前記走査配線および信号配
線に接続されたアクティブ素子と、前記各走査配線に接
続された走査配線駆動手段と、前記各信号配線に接続さ
れた信号配線駆動手段とを備えた液晶表示装置におい
て、 [手段1]前記対をなす画素電極を短冊状の形状とし、
その一方の電極の長辺方向を他方の電極の長辺方向とほ
ぼ平行とし、さらに、対をなす画素電極のうちの少なく
とも一方の電極と、前記走査配線との間に絶縁物を介し
て容量素子を形成する。あるいは、対をなす画素電極の
うちの一方の電極を、隣接する画素における対をなす画
素電極のうちの一方の電極と接続し、対をなす画素電極
のうちの他方の電極との間に絶縁物を介して容量素子を
形成する。特に、前記容量素子を比抵抗が1010Ωcm以
上の絶縁物を介して形成する。
A pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates, and a plurality of scanning wirings arranged in a matrix on the facing surfaces of one of the substrates, A signal wire, a pixel electrode forming a pair, an active element connected to the pixel electrode, the scan wire and the signal wire, a scan wire drive unit connected to each scan wire, and a signal wire connected to each signal wire. In the liquid crystal display device including the signal wiring driving means, [Means 1] the paired pixel electrodes have a strip shape,
The long side direction of the one electrode is made substantially parallel to the long side direction of the other electrode, and a capacitor is provided between at least one electrode of the pair of pixel electrodes and the scanning wiring via an insulator. Form an element. Alternatively, one of the paired pixel electrodes is connected to one of the paired pixel electrodes of the adjacent pixel and is insulated from the other of the paired pixel electrodes. A capacitor is formed through the object. Particularly, the capacitance element is formed through an insulator having a specific resistance of 10 10 Ωcm or more.

【0017】[手段2]前記液晶組成物の比抵抗を10
10Ωcm以上とする。望ましくは、前記容量素子を構成す
る絶縁物の比抵抗と誘電率の積が、液晶組成物の比抵抗
と誘電率の積の値以上である部材を用いる。さらに、前
記走査配線駆動手段から出力される駆動信号における1
垂直走査期間を、前記容量素子を構成する絶縁物の比抵
抗と誘電率の積で表わされる時定数よりも小さく設定す
ることが望ましい。
[Means 2] The liquid crystal composition has a specific resistance of 10
It should be 10 Ωcm or more. Desirably, a member is used in which the product of the specific resistance and the dielectric constant of the insulator forming the capacitive element is equal to or larger than the product of the specific resistance and the dielectric constant of the liquid crystal composition. Further, 1 in the drive signal output from the scanning wiring drive means.
It is desirable that the vertical scanning period is set to be smaller than the time constant represented by the product of the specific resistance and the dielectric constant of the insulator forming the capacitive element.

【0018】[手段3]前記対をなす画素電極の短辺の
長さを、対をなす画素電極間の距離より短くする。ま
た、二つ以上の非導電性構成部材を有し、かつそれらの
うちの少なくとも一つの部材の誘電率が前記液晶組成物
の誘電率よりも小さい部材を用いる。望ましくは、前記
液晶組成物層に接する部材として、その誘電率が前記液
晶組成物の誘電率よりも小さい部材を用いる。
[Means 3] The short sides of the pair of pixel electrodes are made shorter than the distance between the pair of pixel electrodes. Further, a member having two or more non-conductive constituent members and at least one member of them having a dielectric constant smaller than that of the liquid crystal composition is used. Desirably, a member having a dielectric constant smaller than that of the liquid crystal composition is used as the member in contact with the liquid crystal composition layer.

【0019】[0019]

【作用】前記第1の手段によれば、対をなす画素電極は
液晶組成物層に対して主として基板界面に平行な電界を
印加する構造を有しており、電極間の距離は従来の縦電
界方式のアクティブマトリクス型液晶表示装置における
相対向させた透明電極間の距離に比べて大きくとること
ができる。また、等価的な断面積は従来のものより小さ
く抑えることができる。したがって、本発明による対を
なす画素電極間の電気抵抗は従来のアクティブマトリク
ス型液晶表示装置における相対向させた透明電極間の電
気抵抗は桁違いに大きくすることができる。さらに、本
発明による対をなす画素電極間の静電容量は容量素子と
並列接続になり、電気抵抗も十分高い容量素子を実現で
きる。これにより、画素電極に蓄積された電荷を保持す
ることが容易になり、従来より低い比抵抗の液晶組成物
を用いることが可能になる。また、画素電極は櫛歯状電
極対に比べて単純な形状であるため、光の利用効率を向
上させる。さらに、画素電極近傍において発生する基板
界面に垂直な方向の電界成分を横電界成分に比べて小さ
く抑えることが可能になる。また、対をなす画素電極の
うちの一方の電極を、隣接する画素における対をなす画
素電極のうちの一方の電極と接続した場合には、従来の
アクティブマトリクス型液晶表示装置における共通電極
とほぼ同等の作用をする。
According to the first means, the paired pixel electrodes have a structure for applying an electric field mainly to the liquid crystal composition layer in parallel to the substrate interface, and the distance between the electrodes is the same as in the conventional vertical direction. The distance can be made larger than the distance between the transparent electrodes facing each other in the electric field type active matrix liquid crystal display device. Also, the equivalent cross-sectional area can be suppressed smaller than that of the conventional one. Therefore, the electric resistance between the pair of pixel electrodes according to the present invention can be increased by an order of magnitude higher than the electric resistance between the transparent electrodes facing each other in the conventional active matrix liquid crystal display device. Furthermore, the capacitance between the pair of pixel electrodes according to the present invention is connected in parallel with the capacitance element, and a capacitance element having a sufficiently high electric resistance can be realized. As a result, it becomes easy to hold the charge accumulated in the pixel electrode, and it becomes possible to use a liquid crystal composition having a specific resistance lower than that of a conventional one. Moreover, since the pixel electrode has a simpler shape than the comb-teeth-shaped electrode pair, the light utilization efficiency is improved. Further, the electric field component generated in the vicinity of the pixel electrode in the direction perpendicular to the substrate interface can be suppressed to be smaller than the lateral electric field component. Further, when one of the paired pixel electrodes is connected to one of the paired pixel electrodes of the adjacent pixels, it is almost the same as the common electrode in the conventional active matrix liquid crystal display device. Has the same effect.

【0020】前記第2の手段によれば、従来より低い比
抵抗の液晶組成物を用いても画素電極に蓄積された電荷
を保持するのに十分な電気抵抗を有する液晶組成物層を
構成することが可能になり、さらに、1垂直走査期間内
に画素電極に蓄積された電荷が漏れていくのを抑制する
ことが可能になるため、画素電極の電圧変動を十分小さ
く抑えることが容易になる。
According to the second means, even if a liquid crystal composition having a lower specific resistance than the conventional one is used, a liquid crystal composition layer having an electric resistance sufficient to retain the charges accumulated in the pixel electrode is formed. In addition, it is possible to prevent the charge accumulated in the pixel electrode from leaking within one vertical scanning period, and thus it becomes easy to suppress the voltage fluctuation of the pixel electrode to a sufficiently small level. .

【0021】前記第3の手段によれば、液晶組成物層に
電界が集中しやすくなるため、液晶組成物層に横電界を
効率良く印加でき、画素電極近傍において発生する基板
界面に垂直な方向の電界成分を横電界成分に比べて小さ
く抑えることが可能になる。
According to the third means, since the electric field is easily concentrated in the liquid crystal composition layer, the lateral electric field can be efficiently applied to the liquid crystal composition layer, and the direction perpendicular to the substrate interface generated in the vicinity of the pixel electrode. It becomes possible to suppress the electric field component of (3) smaller than the horizontal electric field component.

【0022】[0022]

【実施例】以下、本発明の実施例を図面を用いて詳細に
説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0023】[実施例1]図1(a)は本実施例におけ
るアクティブマトリクス型液晶表示装置の平面図の一部
である。図1(b)は図1(a)のA−A′における断
面図、図1(c)は図1(a)のB−B′における断面
図である。基板として表面を研磨したガラス基板を2枚
用いた。図1(a)に示すように、一方の基板31上に
走査配線10を互いに平行に配置し、膜厚約300nm
の窒化シリコンからなるゲート絶縁膜13,アモルファ
スシリコンからなるチャネル層16を形成し、短冊状の
第1の画素電極1および信号配線11をいずれも走査配
線10と交差するような方向に配置した。これにより、
走査配線10と信号配線11の各交点付近にアクティブ
素子である薄膜トランジスタが形成される。第1の画素
電極1と対をなすべき他方の画素電極は隣接する画素ど
うしで接続し、ストライプ状の第2の画素電極2として
図1(b)に示すように他方の基板32上に形成した。
この第2の画素電極は従来のアクティブマトリクス型液
晶表示装置における共通電極とほぼ同等の作用をする。
これにより、第1の画素電極1と第2の画素電極2の間
で液晶組成物層50に対して電界7が印加され、かつそ
の方向が基板界面にほぼ平行な横電界方式が実現でき
る。対をなす画素電極1,2は従来の櫛歯状電極対に比
べて単純な形状であるため、光の利用効率は以下のよう
になる。画素ピッチは水平方向(すなわち共通電極2の
間隔)が80μm、垂直方向(すなわち走査配線10の
間隔)が240μmである場合、各部の寸法を、第1の
画素電極1の幅(短辺の長さ)は4μm、共通電極2の
幅(短辺の長さ)は12μm、第1の画素電極1と第2
の画素電極2の間の距離は23μmとして、第1の画素
電極1および第2の画素電極2の短辺の長さをそれらの
間の距離よりも短くすることができた。この時、光の利
用効率を画素面積に占める有効表示面積と定義すると、
50.3%になる。したがって、本実施例によるアクテ
ィブマトリクス型液晶表示装置の透過率は8.4% にな
った。容量素子12は、図1(c)に示すように、第1
の画素電極1を走査配線10の上に27μmだけ伸ばし
てゲート絶縁膜13を挟む構造として形成した。よっ
て、この容量素子12の静電容量は約21.4fFになっ
た。
[Embodiment 1] FIG. 1A is a part of a plan view of an active matrix type liquid crystal display device in this embodiment. 1B is a sectional view taken along the line AA ′ in FIG. 1A, and FIG. 1C is a sectional view taken along the line BB ′ in FIG. Two glass substrates whose surfaces were polished were used as the substrates. As shown in FIG. 1A, the scanning wirings 10 are arranged parallel to each other on one of the substrates 31, and the film thickness is about 300 nm.
The gate insulating film 13 made of silicon nitride and the channel layer 16 made of amorphous silicon were formed, and the strip-shaped first pixel electrodes 1 and the signal lines 11 were arranged in a direction intersecting the scanning lines 10. This allows
A thin film transistor, which is an active element, is formed near each intersection of the scanning wiring 10 and the signal wiring 11. The other pixel electrode that should form a pair with the first pixel electrode 1 is connected to adjacent pixels, and is formed as a stripe-shaped second pixel electrode 2 on the other substrate 32 as shown in FIG. 1B. did.
The second pixel electrode has almost the same function as the common electrode in the conventional active matrix type liquid crystal display device.
Accordingly, an electric field 7 is applied to the liquid crystal composition layer 50 between the first pixel electrode 1 and the second pixel electrode 2, and a lateral electric field method in which the direction is substantially parallel to the substrate interface can be realized. Since the pair of pixel electrodes 1 and 2 has a simpler shape than the conventional comb-teeth-shaped electrode pair, the light use efficiency is as follows. When the pixel pitch is 80 μm in the horizontal direction (that is, the spacing between the common electrodes 2) and 240 μm in the vertical direction (that is, the spacing between the scanning wirings 10), the dimensions of each part are set to the width of the first pixel electrode 1 (the length of the short side Is 4 μm, the width of the common electrode 2 (length of the short side) is 12 μm, and the first pixel electrode 1 and the second pixel electrode
The distance between the pixel electrodes 2 was 23 μm, and the length of the short sides of the first pixel electrode 1 and the second pixel electrode 2 could be shorter than the distance between them. At this time, if the light use efficiency is defined as the effective display area occupying the pixel area,
It will be 50.3%. Therefore, the transmittance of the active matrix type liquid crystal display device according to this example was 8.4%. As shown in FIG. 1C, the capacitive element 12 has a first
The pixel electrode 1 was extended by 27 μm on the scanning wiring 10 to form a structure sandwiching the gate insulating film 13. Therefore, the capacitance of the capacitive element 12 was about 21.4 fF.

【0024】さらに、この表面に保護膜としてエポキシ
系の樹脂からなる透明な有機ポリマ14,15を積層
し、ポリイミド系の樹脂からなる配向膜4を積層した。
各基板上の配向膜4を、プレチルト角が約0.5度 、両
基板界面上のラビング方向8が互いにほぼ反平行で、か
つ印加電界方向7とのなす角度が85度になるようにラ
ビング処理を施した。両基板間に誘電率異方性が正でそ
の値が4.5 であり、複屈折が0.072(589nm,
20℃)のネマチック液晶組成物50を挟んだ。ギャッ
プは液晶封入状態で4.5μm とした。これにより、第
1の画素電極1と第2の画素電極2の間の静電容量は約
2.14fF になった。一方の基板の外側には偏光板6
をその偏光透過軸がラビング方向8にほぼ平行になるよ
うに配置し、他方の基板の外側には偏光板6をそれに直
交するように配置した。これによりノーマリクローズ特
性を得る。各走査配線10および各信号配線11にはそ
れぞれ走査配線駆動用LSIおよび信号配線駆動用LS
I(図示せず)を接続した。第1の画素電極1に蓄積さ
れた電荷は、第1の画素電極1と第2の画素電極2の間
の静電容量と容量素子12を並列接続した容量である約
23.5fF に蓄積されることになり、液晶組成物50
の比抵抗が5×1010Ωcmであっても第1の画素電極1
の電圧変動を抑制することができる。このため、画質劣
化を防止することができた。
Further, transparent organic polymers 14 and 15 made of an epoxy resin were laminated on this surface as a protective film, and an alignment film 4 made of a polyimide resin was laminated.
The alignment film 4 on each substrate is rubbed so that the pretilt angle is about 0.5 degrees, the rubbing directions 8 on the interfaces of both substrates are substantially antiparallel to each other, and the angle formed with the applied electric field direction 7 is 85 degrees. Treated. The dielectric anisotropy between both substrates is positive and its value is 4.5, and the birefringence is 0.072 (589 nm,
The nematic liquid crystal composition 50 at 20 ° C. was sandwiched. The gap was 4.5 μm with the liquid crystal enclosed. As a result, the electrostatic capacitance between the first pixel electrode 1 and the second pixel electrode 2 became about 2.14 fF. A polarizing plate 6 is provided outside one of the substrates.
Was arranged so that its polarization transmission axis was substantially parallel to the rubbing direction 8, and the polarizing plate 6 was arranged outside the other substrate so as to be orthogonal thereto. As a result, normally closed characteristics are obtained. Each scanning wiring 10 and each signal wiring 11 has a scanning wiring driving LSI and a signal wiring driving LS, respectively.
I (not shown) was connected. The electric charge accumulated in the first pixel electrode 1 is accumulated in about 23.5 fF which is the capacitance between the electrostatic capacitance between the first pixel electrode 1 and the second pixel electrode 2 and the capacitance element 12 connected in parallel. Therefore, the liquid crystal composition 50
Even if the specific resistance of the first pixel electrode is 5 × 10 10 Ωcm,
The voltage fluctuation can be suppressed. Therefore, it is possible to prevent the deterioration of image quality.

【0025】本実施例で用いた液晶組成物50は比誘電
率6.7 ,比抵抗5×1010Ωcmなる値を有し、また、
容量素子12を構成する絶縁物として用いた窒化シリコ
ンは比誘電率6.7 ,比抵抗5×1016Ωcmなる値を有
する。すなわち、液晶組成物50,容量素子12を構成
する絶縁物ともその比抵抗は1010Ωcm以上であり、窒
化シリコンの誘電率と比抵抗の積は約3×104 秒と液
晶組成物50の誘電率と比抵抗の積約0.03 秒より大
きい。また、走査配線駆動用LSIから出力される駆動
信号における1垂直走査期間は通常の液晶表示装置にお
いては約16.6msであって、約3×104 秒よりはるかに
小さいことを満たしている。このため、第1の画素電極
1に蓄積された電荷が漏れていく時定数を十分大きくと
ることが可能になり、第1の画素電極1の電圧変動を十
分小さく抑えることが容易になる。本実施例で用いた液
晶組成物50は不純物によって汚染されにくい特性を有
し、また、本実施例で用いた配向膜4は直流電荷が全く
残留しない特性を有する。したがって、表示むらや残像
などの画質劣化を防止することができた。
The liquid crystal composition 50 used in this example has a relative dielectric constant of 6.7 and a specific resistance of 5 × 10 10 Ωcm.
Silicon nitride used as an insulator forming the capacitor 12 has a relative dielectric constant of 6.7 and a specific resistance of 5 × 10 16 Ωcm. That is, the specific resistance of both the liquid crystal composition 50 and the insulator forming the capacitive element 12 is 10 10 Ωcm or more, and the product of the dielectric constant of silicon nitride and the specific resistance is about 3 × 10 4 seconds, which is equal to that of the liquid crystal composition 50. The product of the dielectric constant and the specific resistance is greater than about 0.03 seconds. Further, one vertical scanning period in the drive signal output from the scan wiring driving LSI is about 16.6 ms in a normal liquid crystal display device, which satisfies far less than about 3 × 10 4 seconds. For this reason, it is possible to set a sufficiently large time constant for the charges accumulated in the first pixel electrode 1 to leak, and it becomes easy to suppress the voltage fluctuation of the first pixel electrode 1 to be sufficiently small. The liquid crystal composition 50 used in this example has a characteristic that it is unlikely to be contaminated by impurities, and the alignment film 4 used in this example has a characteristic that no DC charge remains. Therefore, it is possible to prevent image quality deterioration such as display unevenness and afterimage.

【0026】さらに、本実施例で用いた配向膜4は比誘
電率3.4 なる値を有する。すなわち、液晶組成物層5
0と接する非導電性部材である配向膜4は液晶組成物層
50の比誘電率6.7 より小さい比誘電率を有する。電
磁気学の理論によれば電界は誘電率の高い部分に集中し
やすい性質を有するため、配向膜4よりも液晶組成物層
50に電界が集中しやすくなる。また、電界は電極表面
に対して垂直な方向に出入りする性質を有するため、第
1の画素電極1および第2の画素電極2の表面近傍では
基板界面に垂直な方向の縦電界成分が発生する。しか
し、第1の画素電極1と第2の画素電極2の間では電界
はその連続性を保つように曲がって横電界を形成する。
本実施例では、第1の画素電極1および第2の画素電極
2の短辺の長さを第1の画素電極1と第2の画素電極2
の間の距離よりも短くしたことにより、縦電界成分の領
域よりも横電界成分の領域を大きくとることができる。
これらのため、液晶組成物層50に電界が集中しやすく
なって、液晶組成物層50に横電界を効率良く印加で
き、第1の画素電極1および第2の画素電極2の近傍に
おいて発生する基板界面に垂直な方向の電界成分を横電
界成分7に比べて小さく抑えることが可能になる。した
がって、第1の画素電極1および第2の画素電極2の近
傍において液晶分子が立ち上がることが抑えられるた
め、これによる光漏れを防止することができ、斜め方向
から見たコントラスト比は100以上になった。
Further, the alignment film 4 used in this embodiment has a value of relative permittivity of 3.4. That is, the liquid crystal composition layer 5
The orientation film 4, which is a non-conductive member in contact with 0, has a relative dielectric constant smaller than the relative dielectric constant 6.7 of the liquid crystal composition layer 50. According to the theory of electromagnetics, the electric field tends to be concentrated in the portion having a high dielectric constant, so that the electric field is more likely to be concentrated in the liquid crystal composition layer 50 than in the alignment film 4. Further, since the electric field has a property of entering and leaving in a direction perpendicular to the electrode surface, a vertical electric field component in a direction perpendicular to the substrate interface is generated in the vicinity of the surfaces of the first pixel electrode 1 and the second pixel electrode 2. . However, between the first pixel electrode 1 and the second pixel electrode 2, the electric field bends so as to maintain its continuity and forms a lateral electric field.
In this embodiment, the lengths of the short sides of the first pixel electrode 1 and the second pixel electrode 2 are set to the first pixel electrode 1 and the second pixel electrode 2.
By making the distance shorter than the distance between them, the region of the horizontal electric field component can be made larger than the region of the vertical electric field component.
For these reasons, the electric field is likely to be concentrated in the liquid crystal composition layer 50, the lateral electric field can be efficiently applied to the liquid crystal composition layer 50, and the lateral electric field is generated in the vicinity of the first pixel electrode 1 and the second pixel electrode 2. The electric field component in the direction perpendicular to the substrate interface can be suppressed smaller than the lateral electric field component 7. Therefore, rising of the liquid crystal molecules in the vicinity of the first pixel electrode 1 and the second pixel electrode 2 is suppressed, light leakage due to this can be prevented, and the contrast ratio seen from an oblique direction becomes 100 or more. became.

【0027】なお、本実施例ではガラス基板を用いた
が、透明なプラスチック基板のようなものでもよく、ま
た、どちらか一方の基板はシリコン基板のような不透明
なものでも構わない。また、各配線の形状は図2に示す
形状に限られる訳ではない。また、ゲート絶縁膜として
は窒化シリコンだけでなく、酸化シリコンや酸化アル
ミ,酸化タンタル,酸化チタンなどの絶縁物を用いても
よく、それらの積層物でも構わない。さらにその場合、
使用した部材の誘電率や比抵抗は本実施例記載の数値で
なくても本発明の要件を満たしていればよい。また、チ
ャネル層としてはアモルファスシリコンだけでなく、多
結晶シリコンやセレン化カドミウムなどの半導体を用い
てもよく、アクティブ素子である薄膜トランジスタの個
数は複数であっても構わない。また、各電極の寸法や距
離は必ずしも本実施例の値を採用する必要はなく、アク
ティブマトリクス型液晶表示装置の画素ピッチや画面サ
イズに応じて寸法や距離を変えても構わない。また、保
護膜は必ずしもエポキシ系の樹脂からなる透明な有機ポ
リマである必要はなく、配向膜も必ずしもポリイミド系
の樹脂である必要はなく、これらの部材の誘電率や特性
が本発明の要件を満たしていればよい。また、配向膜の
プレチルト角やラビング角度も本実施例記載の数値でな
くてもよく、部材によっては保護膜が配向膜を兼ねるこ
とも可能である。また、液晶組成物は本実施例記載の誘
電率異方性や複屈折,比抵抗,比誘電率を有していなく
ても、比抵抗や誘電率が本発明の要件を満たしていれば
よい。さらに、液晶組成物分子の配向は、ホモジニアス
配向,90°ツイスト配向あるいはホメオトロピック配
向であってもよく、TNモード,GHモード,ECBモ
ードなどの方式であっても構わない。また、ギャップも
所望の特性が得られるように変えてよい。また、偏光板
を配置する角度もラビング角度や液晶組成物分子の配向
に応じて変えることができる。また、1垂直走査期間は
約16.6ms に限らず、本発明の要件を満たす範囲で
変えても構わない。このように、本実施例は本発明を完
全に制限するものではない。
Although the glass substrate is used in the present embodiment, it may be a transparent plastic substrate or one of the substrates may be an opaque substrate such as a silicon substrate. The shape of each wiring is not limited to the shape shown in FIG. Further, as the gate insulating film, not only silicon nitride but also an insulating material such as silicon oxide, aluminum oxide, tantalum oxide, titanium oxide, or the like may be used, or a laminated body thereof may be used. And in that case,
The dielectric constant and the specific resistance of the members used are not limited to the numerical values described in this embodiment as long as they satisfy the requirements of the present invention. Further, not only amorphous silicon but also a semiconductor such as polycrystalline silicon or cadmium selenide may be used for the channel layer, and the number of thin film transistors which are active elements may be plural. Further, the size and distance of each electrode do not necessarily have to adopt the values of this embodiment, and the size and distance may be changed according to the pixel pitch and screen size of the active matrix liquid crystal display device. Further, the protective film does not necessarily have to be a transparent organic polymer made of an epoxy resin, and the alignment film does not necessarily have to be a polyimide resin, and the dielectric constant and characteristics of these members meet the requirements of the present invention. It only has to meet. Further, the pretilt angle and the rubbing angle of the alignment film do not have to be the values described in this embodiment, and the protective film may also serve as the alignment film depending on the member. Further, the liquid crystal composition does not need to have the dielectric anisotropy, birefringence, specific resistance, or specific dielectric constant described in this example, as long as the specific resistance or dielectric constant satisfies the requirements of the present invention. . Further, the orientation of the liquid crystal composition molecules may be homogeneous orientation, 90 ° twist orientation or homeotropic orientation, and may be TN mode, GH mode, ECB mode or the like. Also, the gap may be changed to obtain desired characteristics. The angle at which the polarizing plate is arranged can also be changed according to the rubbing angle and the orientation of the liquid crystal composition molecules. Further, one vertical scanning period is not limited to about 16.6 ms, and may be changed within a range satisfying the requirements of the present invention. As described above, the present embodiment does not completely limit the present invention.

【0028】[比較例1]従来の縦電界方式であるツイ
ステッドネマチック(TN)方式を用いたアクティブマ
トリクス型液晶表示装置を第1の比較例とする。図4に
示すように、この方式では、アクティブ素子を形成した
基板31側に透明な画素電極1をマトリクス状に配置
し、これに対向する基板32の表面に表示領域全面にわ
たる共通電極2′を形成している。ネマチック液晶組成
物50および配向膜4の材料としては実施例1と同一の
部材を用い、ギャップは7.3μm 、液晶分子のツイス
ト角は90度とした。
Comparative Example 1 An active matrix type liquid crystal display device using the conventional twisted nematic (TN) system, which is a vertical electric field system, will be referred to as a first comparative example. As shown in FIG. 4, in this method, the transparent pixel electrodes 1 are arranged in a matrix on the side of the substrate 31 on which the active elements are formed, and a common electrode 2'that covers the entire display area is formed on the surface of the substrate 32 facing the transparent pixel electrodes 1. Is forming. The same members as in Example 1 were used as the materials for the nematic liquid crystal composition 50 and the alignment film 4, the gap was 7.3 μm, and the twist angle of liquid crystal molecules was 90 °.

【0029】本比較例で用いた液晶組成物50の比抵抗
は5×1010Ωcmであるため、縦電界方式のアクティブ
マトリクス型液晶表示装置に用いるには比抵抗が低い。
このため、画素電極1に蓄積された電荷が漏れやすくな
り、画素電極1の電圧変動を小さく抑えることが不可能
になって、画質劣化が発生した。また、本比較例で用い
た配向膜4のプレチルト角は約0.5 度であるため、基
板31および32の表面の断差構造のある部分で液晶分
子の逆チルトや逆ツイストなどの配向不良ドメインが発
生した。これによる光漏れによって斜め方向だけでなく
正面から見たコントラスト比も10以下に低下した。
Since the liquid crystal composition 50 used in this comparative example has a specific resistance of 5 × 10 10 Ωcm, it has a low specific resistance for use in a vertical electric field type active matrix liquid crystal display device.
For this reason, the charge accumulated in the pixel electrode 1 easily leaks, and it becomes impossible to suppress the voltage fluctuation of the pixel electrode 1 to a small extent, resulting in deterioration of image quality. In addition, since the pretilt angle of the alignment film 4 used in this comparative example is about 0.5 degree, alignment defects such as reverse tilt and reverse twist of the liquid crystal molecules are generated at the portions of the surfaces of the substrates 31 and 32 having the differential structure. Domain occurred. Due to light leakage due to this, the contrast ratio when viewed from the front as well as in the oblique direction was reduced to 10 or less.

【0030】以上のように、従来のTN方式のアクティ
ブマトリクス型液晶表示装置では使用不可能な液晶組成
物や配向膜材料も、本発明による実施例1では十分使用
可能であり、液晶組成物や配向膜材料の選択の自由度が
拡大する。
As described above, the liquid crystal composition and the alignment film material, which cannot be used in the conventional active matrix type liquid crystal display device of the TN system, can be sufficiently used in Example 1 according to the present invention. The degree of freedom in selecting the alignment film material is expanded.

【0031】[比較例2]図5に示すような、従来の櫛
歯状電極対を用いた横電界方式のアクティブマトリクス
型液晶表示装置を第2の比較例とする。本比較例は、画
素電極が櫛歯状電極対であることおよび容量素子を形成
していないことを除いて実施例1と同一である。本方式
では、電極の加工精度の点から最小寸法を4μm以下に
することが不可能であった。このため櫛歯状画素電極
1,2の櫛歯に相当する部分の幅(短辺の長さ)を櫛歯
どうしが噛み合う間隔(対をなす電極間の距離)と等し
くとると、光の利用効率は15.2% と低下してしま
い、本比較例のアクティブマトリクス型液晶表示装置の
透過率は2.5% になった。また、櫛歯状画素電極1,
2の近傍において発生する基板界面に垂直な方向の電界
成分を横電界成分に比べて小さく抑えることが不可能に
なった。このため、斜め方向から見たコントラスト比が
10以下に低下した。また、櫛歯状画素電極1,2に並
列に容量素子を有しないため、櫛歯状画素電極1,2の
電圧変動を抑えることが不可能であり、表示むらが発生
した。
[Comparative Example 2] An active matrix type liquid crystal display device of the horizontal electric field type using a conventional comb-teeth electrode pair as shown in FIG. 5 is used as a second comparative example. This comparative example is the same as Example 1 except that the pixel electrode is a comb-teeth-shaped electrode pair and that no capacitive element is formed. In this method, it was impossible to set the minimum dimension to 4 μm or less in terms of the processing accuracy of the electrode. Therefore, if the width of the portion corresponding to the comb teeth of the comb-teeth-shaped pixel electrodes 1 and 2 (the length of the short side) is made equal to the interval at which the comb teeth mesh with each other (the distance between the pair of electrodes), the light utilization The efficiency was reduced to 15.2%, and the transmittance of the active matrix type liquid crystal display device of this comparative example was 2.5%. Also, the comb-shaped pixel electrodes 1,
It becomes impossible to suppress the electric field component generated in the vicinity of 2 in the direction perpendicular to the substrate interface to be smaller than the lateral electric field component. For this reason, the contrast ratio when viewed from an oblique direction was reduced to 10 or less. Further, since no capacitive element is provided in parallel with the comb-teeth-shaped pixel electrodes 1 and 2, it is impossible to suppress the voltage variation of the comb-teeth-shaped pixel electrodes 1 and 2, and display unevenness occurs.

【0032】以上のように、従来の櫛歯状電極対を用い
た場合には、本発明による実施例1に比べて、光の利用
効率が低下して明るさが低下し、画素電極の電圧変動に
よって表示むらが発生し、斜め方向から見たコントラス
ト比が低下した。
As described above, when the conventional comb-teeth-shaped electrode pair is used, the light utilization efficiency is lowered and the brightness is lowered, and the voltage of the pixel electrode is reduced, as compared with the first embodiment according to the present invention. The fluctuation caused display unevenness and lowered the contrast ratio when viewed from an oblique direction.

【0033】[比較例3]本比較例は容量素子を構成す
る絶縁物の比抵抗が5×109Ωcm と低いこと以外は実
施例1と同一である。この場合、容量素子12を構成す
る絶縁物の比抵抗と誘電率の積は約0.003秒(=3m
s)であり、液晶組成物層50の比抵抗と誘電率の積
0.03 秒より小さい。通常の液晶表示装置においては
走査配線駆動用LSIから出力される駆動信号における
1垂直走査期間は約16.6ms であって、この1垂直
走査期間を約3msより小さく設定すると走査配線駆動
用LSIおよび信号配線駆動用LSIを通常の5倍以上の
高速で動作するようにする必要があり、非常に高価なL
SIを用いなければならないという問題が生じる。逆
に、走査配線駆動用LSIから出力される駆動信号にお
ける1垂直走査期間を約16.6ms のままに設定する
と、本比較例では、第1の画素電極1に並列に容量素子
12を有していても、第1の画素電極1に蓄積された電
荷が漏れていく時定数を十分大きくとることが不可能に
なる。このため、第1の画素電極1の電圧変動を十分小
さく抑えることが不可能であり、表示むらが発生した。
[Comparative Example 3] This comparative example is the same as Example 1 except that the specific resistance of the insulator constituting the capacitor is as low as 5 × 10 9 Ωcm. In this case, the product of the specific resistance and the dielectric constant of the insulating material forming the capacitive element 12 is about 0.003 seconds (= 3 m
s), which is smaller than the product of the specific resistance and the dielectric constant of the liquid crystal composition layer 50, which is 0.03 seconds. In a normal liquid crystal display device, one vertical scanning period in the drive signal output from the scanning wiring driving LSI is about 16.6 ms. If this one vertical scanning period is set to be less than about 3 ms, the scanning wiring driving LSI and It is necessary to operate the signal wiring drive LSI at a speed five times or more higher than usual, which is very expensive.
The problem arises that SI must be used. On the contrary, if one vertical scanning period in the drive signal output from the scanning wiring driving LSI is set to be about 16.6 ms, this comparative example has the capacitive element 12 in parallel with the first pixel electrode 1. However, it becomes impossible to set a sufficiently large time constant for leakage of charges accumulated in the first pixel electrode 1. Therefore, it is impossible to suppress the voltage fluctuation of the first pixel electrode 1 to a sufficiently small value, and display unevenness occurs.

【0034】[比較例4]本比較例は液晶組成物層の比
抵抗が5×109Ωcm と低いこと以外は実施例1と同一
である。この場合、第1の画素電極1に並列に容量素子
12を有していても、液晶層の抵抗が小さいため、第1
の画素電極1に蓄積された電荷が漏れていく時定数を十
分大きくとることが不可能になる。このため、第1の画
素電極1の電圧変動を十分小さく抑えることが不可能で
あり、表示むらが発生した。
Comparative Example 4 This comparative example is the same as Example 1 except that the specific resistance of the liquid crystal composition layer is as low as 5 × 10 9 Ωcm. In this case, even if the capacitor 12 is provided in parallel with the first pixel electrode 1, since the resistance of the liquid crystal layer is small,
It becomes impossible to take a sufficiently large time constant for the charges accumulated in the pixel electrode 1 to leak. Therefore, it is impossible to suppress the voltage fluctuation of the first pixel electrode 1 to a sufficiently small value, and display unevenness occurs.

【0035】[実施例2]本実施例の構成は下記の要件
を除けば実施例1と同一である。
[Embodiment 2] The configuration of this embodiment is the same as that of Embodiment 1 except for the following requirements.

【0036】図6(a)は本実施例におけるアクティブ
マトリクス型液晶表示装置の平面図の一部である。図6
(b)は図6(a)のA−A′における断面図、図6
(c)は図6(a)のB−B′における断面図である。
実施例1において画素電極1と走査配線10で窒化シリ
コンからなるゲート絶縁膜13を挟む構造であった容量
素子12を、図6(c)に示すように、第1の画素電極
1と第2の画素電極2で液晶組成物層50を挟む構造に
変えた。本実施例では、容量素子12の静電容量を第1
の画素電極1と第2の画素電極2の間の静電容量と完全
に並列接続することが可能になるため、信号配線10の
電圧変動の影響は第1の画素電極1に及ばなくなる。こ
のため、第1の画素電極1の電圧変動をさらに抑えるこ
とができ、表示むらは発生しなかった。
FIG. 6A is a part of a plan view of the active matrix type liquid crystal display device in this embodiment. Figure 6
6B is a sectional view taken along the line AA ′ in FIG.
6C is a sectional view taken along line BB ′ of FIG.
As shown in FIG. 6C, the capacitive element 12 having the structure in which the gate insulating film 13 made of silicon nitride is sandwiched between the pixel electrode 1 and the scanning wiring 10 in the first embodiment is The liquid crystal composition layer 50 is sandwiched between the pixel electrodes 2 of FIG. In this embodiment, the capacitance of the capacitive element 12 is set to the first value.
Since the electrostatic capacitance between the pixel electrode 1 and the second pixel electrode 2 can be completely connected in parallel, the influence of the voltage fluctuation of the signal line 10 does not reach the first pixel electrode 1. Therefore, the voltage fluctuation of the first pixel electrode 1 can be further suppressed, and the display unevenness does not occur.

【0037】本実施例におけるアクティブマトリクス型
液晶表示装置でも画質劣化は発生せず、実施例1と同様
の効果が得られた。
Even in the active matrix type liquid crystal display device of this embodiment, the image quality is not deteriorated and the same effect as that of the embodiment 1 is obtained.

【0038】[実施例3]本実施例の構成は下記の要件
を除けば実施例1と同一である。
[Third Embodiment] The configuration of this embodiment is the same as that of the first embodiment except for the following requirements.

【0039】一対の基板両方にそれぞれ配置していた電
極群をすべて一方の基板上に形成した。図7(a)は本
実施例におけるアクティブマトリクス型液晶表示装置の
平面図の一部である。図7(b)は図7(a)のA−
A′における断面図、図7(c)は図7(a)のB−B′
における断面図である。アクティブ素子を形成した基板
31上に第2の画素電極2を形成した。一般にホトマス
クのアライメント精度は相対向する2枚の基板間のアラ
イメント精度に比べて著しく高い。本実施例では4種の
電極群のいずれをも一方の基板31上に形成することか
ら、第1の画素電極1と第2の画素電極2の間のアライ
メントがホトマスクのみで行われるため、実施例1,2
の場合に比べて両電極間のアライメントずれが小さく抑
制される。これにより本実施例では、1枚のアクティブ
マトリクス型液晶表示装置内における第1の画素電極1
と第2の画素電極2の間の静電容量のバラツキを抑える
ことができ、表示むらは全く発生しなかったまた、対向
する基板32上には一切導電性部材は設けていない。し
たがって、本実施例の構成においては仮にアクティブマ
トリクス型液晶表示装置の製造工程中に導電性の異物が
混入したとしても一方の基板上の電極と他方の基板上の
電極の間の短絡の可能性がなく、これによる不良が発生
しなかった。
The electrode groups respectively arranged on both of the pair of substrates were formed on one of the substrates. FIG. 7A is a part of a plan view of the active matrix type liquid crystal display device in this embodiment. FIG. 7B is A- of FIG.
FIG. 7C is a sectional view taken along the line A ', and FIG.
FIG. The second pixel electrode 2 was formed on the substrate 31 on which the active element was formed. Generally, the alignment accuracy of a photomask is significantly higher than the alignment accuracy between two substrates facing each other. In this embodiment, since all of the four kinds of electrode groups are formed on the one substrate 31, the alignment between the first pixel electrode 1 and the second pixel electrode 2 is performed only by the photomask. Examples 1 and 2
The misalignment between the two electrodes is suppressed to be smaller than that in the above case. Thus, in this embodiment, the first pixel electrode 1 in one active matrix type liquid crystal display device is
The variation in electrostatic capacitance between the second pixel electrode 2 and the second pixel electrode 2 can be suppressed, display unevenness does not occur at all, and no conductive member is provided on the opposing substrate 32. Therefore, in the structure of this embodiment, even if a conductive foreign substance is mixed in during the manufacturing process of the active matrix type liquid crystal display device, there is a possibility of short circuit between the electrode on one substrate and the electrode on the other substrate. And there was no defect due to this.

【0040】本実施例においても画質劣化は発生せず、
実施例1と同様の効果が得られた。 [実施例4]本実施例の構成は下記の要件を除けば実施
例3と同一である。
Also in this embodiment, image quality deterioration does not occur,
The same effect as in Example 1 was obtained. [Embodiment 4] The configuration of this embodiment is the same as that of the embodiment 3 except for the following requirements.

【0041】図8(a)は本実施例におけるアクティブ
マトリクス型液晶表示装置の平面図の一部である。図8
(b)は図8(a)のA−A′における断面図、図8
(c)は図8(a)のB−B′における断面図である。
実施例3における第2の画素電極に、アモルファスシリ
コンからなるチャネル層16および共通配線22を設け
てアクティブ素子を形成して接続し、第1の画素電極1
と第2の画素電極2との間で電界7が印加される構成と
した。すなわち、本実施例においては従来のアクティブ
マトリクス型液晶表示装置における共通電極に相当する
電極は設けていない。対をなす画素電極1,2はそれぞ
れアクティブ素子に接続しているが、共通の走査配線1
0によって駆動されるため、第1の画素電極1と信号配
線11間および第2の画素電極2と共通配線22間はそ
れぞれ同じにオン−オフのスイチング動作をする。した
がって、実質的に第1の画素電極1と第2の画素電極
2,信号配線11と共通配線22はそれぞれ等価であ
り、画像信号は信号配線11を通しても、共通配線22
を通しても、あるいは信号配線11と共通配線22に振
り分けても供給することができる。
FIG. 8A is a part of a plan view of the active matrix type liquid crystal display device in this embodiment. Figure 8
8B is a sectional view taken along line AA ′ in FIG.
8C is a sectional view taken along line BB ′ of FIG.
The channel layer 16 made of amorphous silicon and the common wiring 22 are provided on the second pixel electrode in the third embodiment to form and connect the active element, and the first pixel electrode 1
The electric field 7 is applied between the first pixel electrode 2 and the second pixel electrode 2. That is, in this embodiment, no electrode corresponding to the common electrode in the conventional active matrix type liquid crystal display device is provided. The pair of pixel electrodes 1 and 2 are connected to the active elements, respectively, but the common scanning wiring 1
Since the first pixel electrode 1 and the signal line 11 and between the second pixel electrode 2 and the common line 22 are driven by 0, the same on / off switching operation is performed. Therefore, the first pixel electrode 1, the second pixel electrode 2, the signal wiring 11 and the common wiring 22 are substantially equivalent to each other, and the image signal passes through the signal wiring 11 and the common wiring 22.
It can be supplied through the signal line 11 or the common line 22.

【0042】本実施例では、液晶組成物層から見て第1
の画素電極1と第2の画素電極2は全く等価であるた
め、図8(c)に示すように、第2の画素電極2につい
ても走査配線10でゲート絶縁膜13を挟む構造として
容量素子12を並列接続になるように形成した。このた
め容量素子12のサイズは実施例1,3に比べて1/2
にすることができた。したがって、光の利用効率は5
5.1% と実施例3に比べてさらに向上することがで
き、本実施例によるアクティブマトリクス型液晶表示装
置の透過率は9.2% になった。
In this embodiment, the first liquid crystal composition layer
Since the pixel electrode 1 and the second pixel electrode 2 are completely equivalent to each other, as shown in FIG. 8C, the second pixel electrode 2 also has a structure in which the gate insulating film 13 is sandwiched between the scanning lines 10. 12 were formed in parallel. Therefore, the size of the capacitive element 12 is 1/2 that of the first and third embodiments.
I was able to Therefore, the light utilization efficiency is 5
This is 5.1%, which is an improvement over that of the third embodiment, and the transmittance of the active matrix type liquid crystal display device according to the present embodiment is 9.2%.

【0043】本実施例においても画質劣化は発生せず、
実施例3と同様の効果が得られた。
In this embodiment also, the image quality is not deteriorated,
The same effect as in Example 3 was obtained.

【0044】[0044]

【発明の効果】以上説明したように、本発明によれば、
従来よりも液晶組成物の比抵抗が低くてもよいため、液
晶組成物や配向膜材料の選択の自由度が広がる。よっ
て、画素電極に蓄積された電荷を保持するのに十分な比
抵抗を有していれば、低い光学しきい値電圧や適切な大
きさの複屈折等を有し、かつ不純物によって汚染されに
くい液晶組成物が使用可能になる。また、液晶組成物層
の比抵抗を低下させやすい配向膜材料でも、適切なプレ
チルト角を発現し、かつ直流電荷の残留しにくい配向膜
が使用可能になる。このため、表示むらや残像などの画
質劣化を防止することができる。
As described above, according to the present invention,
Since the specific resistance of the liquid crystal composition may be lower than before, the degree of freedom in selecting the liquid crystal composition and the alignment film material is expanded. Therefore, as long as it has a specific resistance sufficient to hold the charges accumulated in the pixel electrode, it has a low optical threshold voltage, birefringence of an appropriate size, etc., and is not easily contaminated by impurities. The liquid crystal composition becomes usable. Further, even with an alignment film material that easily lowers the specific resistance of the liquid crystal composition layer, it is possible to use an alignment film that exhibits an appropriate pretilt angle and is hard to retain a DC charge. Therefore, it is possible to prevent image quality deterioration such as display unevenness and afterimage.

【0045】また、電極間の距離が大きい短冊状の画素
電極は櫛歯状電極対に比べて単純な形状であるため、光
の利用効率を向上することが可能になる。このため、液
晶表示装置の明るさを向上することができる。
Further, since the strip-shaped pixel electrode having a large distance between the electrodes has a simpler shape than the comb-teeth-shaped electrode pair, the light utilization efficiency can be improved. Therefore, the brightness of the liquid crystal display device can be improved.

【0046】さらに、液晶組成物層に横電界を効率良く
印加できるため、画素電極近傍において発生する基板界
面に垂直な方向の電界成分を横電界成分に比べて小さく
抑えることが可能になる。このため、この部分での液晶
分子の立上りによる光漏れが減少し、斜め方向から見た
コントラスト比を向上することができる。
Further, since the lateral electric field can be efficiently applied to the liquid crystal composition layer, the electric field component generated in the vicinity of the pixel electrode in the direction perpendicular to the substrate interface can be suppressed smaller than the lateral electric field component. For this reason, light leakage due to rising of the liquid crystal molecules in this portion is reduced, and the contrast ratio seen from an oblique direction can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1のアクティブマトリクス型液
晶表示装置の説明図。
FIG. 1 is an explanatory diagram of an active matrix type liquid crystal display device according to a first embodiment of the present invention.

【図2】横電界方式の液晶表示装置における液晶分子の
動作を示す図。
FIG. 2 is a diagram showing an operation of liquid crystal molecules in a horizontal electric field type liquid crystal display device.

【図3】横電界方式の液晶表示装置における電気光学特
性を示す図。
FIG. 3 is a diagram showing electro-optical characteristics in a horizontal electric field type liquid crystal display device.

【図4】比較例1のアクティブマトリクス型液晶表示装
置の説明図。
FIG. 4 is an explanatory diagram of an active matrix type liquid crystal display device of Comparative Example 1.

【図5】比較例2のアクティブマトリクス型液晶表示装
置の説明図。
5 is an explanatory diagram of an active matrix liquid crystal display device of Comparative Example 2. FIG.

【図6】本発明の実施例2のアクティブマトリクス型液
晶表示装置の説明図。
FIG. 6 is an explanatory diagram of an active matrix type liquid crystal display device according to a second embodiment of the present invention.

【図7】本発明の実施例3のアクティブマトリクス型液
晶表示装置の説明図。
FIG. 7 is an explanatory diagram of an active matrix liquid crystal display device according to a third embodiment of the present invention.

【図8】本発明の実施例4のアクティブマトリクス型液
晶表示装置の説明図。
FIG. 8 is an explanatory diagram of an active matrix type liquid crystal display device according to a fourth embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1…第1の画素電極、2…第2の画素電極、2′…共通
電極、3…基板、4…配向膜、5…液晶分子、6…偏光
板、7…印加電界の方向、8…界面上の液晶分子長軸配
向方向(ラビング方向)、10…走査配線、11…信号
配線、12…容量素子、13…ゲート絶縁膜、14,1
5…保護膜となる有機ポリマ、16…チャネル層、17
…カラーフィルタ、18…遮光層、22…共通配線、3
1,32…基板、50…液晶組成物層。
DESCRIPTION OF SYMBOLS 1 ... 1st pixel electrode, 2 ... 2nd pixel electrode, 2 '... Common electrode, 3 ... Substrate, 4 ... Alignment film, 5 ... Liquid crystal molecule, 6 ... Polarizing plate, 7 ... Direction of applied electric field, 8 ... Liquid crystal molecule major axis orientation direction (rubbing direction) on the interface, 10 ... Scan wiring, 11 ... Signal wiring, 12 ... Capacitance element, 13 ... Gate insulating film, 14, 1.
5 ... Organic polymer serving as protective film, 16 ... Channel layer, 17
... color filter, 18 ... light-shielding layer, 22 ... common wiring, 3
1, 32 ... Substrate, 50 ... Liquid crystal composition layer.

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】少なくとも一方が透明な一対の基板と、前
記基板間に挟持された液晶組成物層と、前記基板のいず
れか一方の基板の向き合った表面にマトリクス状に配置
された複数の走査配線および信号配線と、対をなす画素
電極と、前記画素電極および前記走査配線および信号配
線に接続されたアクティブ素子と、前記各走査配線に接
続された走査配線駆動手段と、前記各信号配線に接続さ
れた信号配線駆動手段とを備えた液晶表示装置におい
て、 前記対をなす画素電極が短冊状の形状であり、その一方
の電極の長辺方向が他方の電極の長辺方向とほぼ平行で
あって、 前記対をなす画素電極のうちの少なくとも一方の電極
と、前記走査配線との間に絶縁物を介して容量素子を形
成したことを特徴とするアクティブマトリクス型液晶表
示装置。
1. A pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates, and a plurality of scans arranged in a matrix on facing surfaces of one of the substrates. Wirings and signal wirings, paired pixel electrodes, active elements connected to the pixel electrodes and the scanning wirings and signal wirings, scanning wiring driving means connected to the scanning wirings, and the signal wirings. In a liquid crystal display device including a connected signal line driving unit, the pair of pixel electrodes has a strip shape, and the long side direction of one of the electrodes is substantially parallel to the long side direction of the other electrode. An active matrix type liquid crystal display device, wherein a capacitive element is formed between at least one electrode of the pair of pixel electrodes and the scanning wiring with an insulator interposed therebetween.
【請求項2】少なくとも一方が透明な一対の基板と、前
記基板間に挟持された液晶組成物層と、前記基板のいず
れか一方の基板の向き合った表面にマトリクス状に配置
された複数の走査配線および信号配線と、対をなす画素
電極と、前記画素電極および前記走査配線および信号配
線に接続されたアクティブ素子と、前記各走査配線に接
続された走査配線駆動手段と、前記各信号配線に接続さ
れた信号配線駆動手段とを備えた液晶表示装置におい
て、 前記対をなす画素電極が短冊状の形状であり、その一方
の電極の長辺方向が他方の電極の長辺方向とほぼ平行で
あって、 前記対をなす画素電極のうちの一方の電極を、隣接する
画素における対をなす画素電極のうちの一方の電極と接
続し、前記対をなす画素電極のうちの他方の電極との間
に絶縁物を介して容量素子を形成したことを特徴とする
アクティブマトリクス型液晶表示装置。
2. A pair of substrates, at least one of which is transparent, a liquid crystal composition layer sandwiched between the substrates, and a plurality of scans arranged in a matrix on facing surfaces of one of the substrates. Wirings and signal wirings, paired pixel electrodes, active elements connected to the pixel electrodes and the scanning wirings and signal wirings, scanning wiring driving means connected to the scanning wirings, and the signal wirings. In a liquid crystal display device including a connected signal line driving unit, the pair of pixel electrodes has a strip shape, and the long side direction of one of the electrodes is substantially parallel to the long side direction of the other electrode. And connecting one electrode of the pixel electrodes forming the pair to one electrode of the pixel electrodes forming a pair in an adjacent pixel and connecting the other electrode of the pixel electrodes forming the pair. In between Active matrix liquid crystal display device characterized by the formation of the capacitor element through the object.
【請求項3】前記容量素子を比抵抗が1010Ωcm以上の
絶縁物を介して形成したことを特徴とする請求項1,2
記載のアクティブマトリクス型液晶表示装置。
3. The capacitance element is formed through an insulator having a specific resistance of 10 10 Ωcm or more.
The active matrix liquid crystal display device described.
【請求項4】前記液晶組成物の比抵抗が1010Ωcm以上
であることを特徴とする請求項1,2記載のアクティブ
マトリクス型液晶表示装置。
4. The active matrix liquid crystal display device according to claim 1, wherein the liquid crystal composition has a specific resistance of 10 10 Ωcm or more.
【請求項5】前記容量素子を構成する絶縁物の比抵抗と
誘電率の積が、前記液晶組成物の比抵抗と誘電率の積の
値以上であることを特徴とする請求項1,2記載のアク
ティブマトリクス型液晶表示装置。
5. The product of the specific resistance and the dielectric constant of the insulator forming the capacitive element is equal to or larger than the product of the specific resistance and the dielectric constant of the liquid crystal composition. The active matrix liquid crystal display device described.
【請求項6】前記走査配線駆動手段から出力される駆動
信号における1垂直走査期間を、前記容量素子を構成す
る絶縁物の比抵抗と誘電率の積で表わされる時定数より
も小さく設定したことを特徴とする請求項1,2記載の
アクティブマトリクス型液晶表示装置。
6. A vertical scanning period in a drive signal output from the scanning wiring drive means is set to be smaller than a time constant represented by a product of a specific resistance and a dielectric constant of an insulator forming the capacitive element. The active matrix type liquid crystal display device according to claim 1 or 2.
【請求項7】前記対をなす画素電極の短辺の長さが、前
記対をなす画素電極間の距離より短いことを特徴とする
請求項1,2記載のアクティブマトリクス型液晶表示装
置。
7. The active matrix type liquid crystal display device according to claim 1, wherein the length of the short side of the pair of pixel electrodes is shorter than the distance between the pair of pixel electrodes.
【請求項8】非導電性構成部材を二つ以上有し、かつそ
れらのうちの少なくとも一つの部材の誘電率が前記液晶
組成物の誘電率よりも小さいことを特徴とする請求項
1,2記載のアクティブマトリクス型液晶表示装置。
8. A non-conductive constituent member is provided in two or more, and the dielectric constant of at least one member is smaller than that of the liquid crystal composition. The active matrix liquid crystal display device described.
【請求項9】前記液晶組成物層に接する部材の誘電率が
前記液晶組成物の誘電率よりも小さいことを特徴とする
請求項1,2記載のアクティブマトリクス型液晶表示装
置。
9. The active matrix liquid crystal display device according to claim 1, wherein the dielectric constant of the member in contact with the liquid crystal composition layer is smaller than the dielectric constant of the liquid crystal composition.
JP437894A 1993-01-20 1994-01-20 Active matrix type liquid crystal display Expired - Lifetime JP3296913B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP437894A JP3296913B2 (en) 1993-01-20 1994-01-20 Active matrix type liquid crystal display

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP735593 1993-01-20
JP5-7355 1993-01-20
JP437894A JP3296913B2 (en) 1993-01-20 1994-01-20 Active matrix type liquid crystal display

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002025053A Division JP3915529B2 (en) 1993-01-20 2002-02-01 Active matrix liquid crystal display device

Publications (2)

Publication Number Publication Date
JPH06273803A true JPH06273803A (en) 1994-09-30
JP3296913B2 JP3296913B2 (en) 2002-07-02

Family

ID=26338128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP437894A Expired - Lifetime JP3296913B2 (en) 1993-01-20 1994-01-20 Active matrix type liquid crystal display

Country Status (1)

Country Link
JP (1) JP3296913B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501692A (en) * 1995-03-15 1999-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Electro-optic liquid crystal display
US5969781A (en) * 1997-06-30 1999-10-19 Nec Corporation Homeotropic liquid crystal display with common electrodes parallel and positioned at both sides of pixel electrodes to improve viewing angle
US6052163A (en) * 1996-04-04 2000-04-18 Frontec Incorporated Thin film transistor and liquid crystal display device
US6184961B1 (en) 1997-07-07 2001-02-06 Lg Electronics Inc. In-plane switching mode liquid crystal display device having opposite alignment directions for two adjacent domains
US6259502B1 (en) 1997-07-12 2001-07-10 Lg Electronics Inc. In-plane switching mode liquid crystal display device having a common electrode on the passivation layer
US6271903B1 (en) 1997-01-23 2001-08-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having a light shielding matrix
US6281957B1 (en) 1997-05-19 2001-08-28 Lg Electronics, Inc. In-plane switching mode liquid crystal display device
US6297866B1 (en) 1997-09-08 2001-10-02 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6317183B2 (en) 1996-04-04 2001-11-13 Lg. Philips Lcd Co., Ltd. IPS-LCD having correlation of electrodes and substrates
JP2001350453A (en) * 2000-06-08 2001-12-21 Hitachi Ltd Method and device for displaying picture
US6342937B2 (en) 1996-06-22 2002-01-29 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
JP2002055662A (en) * 2000-08-11 2002-02-20 Nec Corp Liquid crystal display device and its drive method
JP2002162640A (en) * 2000-10-14 2002-06-07 Samsung Electronics Co Ltd Transverse electric field type liquid crystal display device and its manufacturing method
US6433764B1 (en) 1997-01-23 2002-08-13 Lg. Philips Lcd Co., Ltd. Liquid crystal display
US6445435B1 (en) 1998-01-23 2002-09-03 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid cystal display device having common electrode on passivation layer
US6509939B1 (en) 1998-07-07 2003-01-21 Lg. Philips Lcd Co., Ltd Hybrid switching mode liquid crystal display device and method of manufacturing thereof
US6529256B1 (en) 1997-05-19 2003-03-04 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6549258B1 (en) 1997-09-04 2003-04-15 Lg. Philips Lcd Co., Ltd. Hybrid switching mode liquid crystal display device
US6697140B2 (en) 1997-07-29 2004-02-24 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device wherein portions of second gate line overlaps with data electrode
US6791653B2 (en) 1999-12-15 2004-09-14 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display
US6812985B1 (en) 1996-09-23 2004-11-02 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
KR100463043B1 (en) * 1995-07-17 2005-04-06 가부시끼가이샤 히다치 세이사꾸쇼 Active Matrix Liquid Crystal Display
US6900867B2 (en) 1999-12-14 2005-05-31 Lg.Philips Lcd Co., Ltd. Method of manufacturing a color filter substrate for in-plane switching mode liquid crystal display device
JP2005308951A (en) * 2004-04-20 2005-11-04 Hitachi Displays Ltd Liquid crystal display device
US6972818B1 (en) 1997-05-19 2005-12-06 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US7332432B2 (en) 2003-10-02 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
US7362399B2 (en) 1997-08-14 2008-04-22 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
JP2008180886A (en) * 2007-01-24 2008-08-07 Stanley Electric Co Ltd Liquid crystal display element
US7439086B2 (en) 2003-11-14 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
US7965363B2 (en) 1997-06-12 2011-06-21 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US8247965B2 (en) 2003-11-14 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device and method for manufacturing the same
JP2013238644A (en) * 2012-05-11 2013-11-28 Japan Display Inc Liquid crystal display device

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557882A (en) * 1978-10-20 1980-04-30 Fujitsu Ltd Display unit
JPS60218624A (en) * 1984-04-13 1985-11-01 Toyota Motor Corp Color liquid crystal display device
JPS6321907B2 (en) * 1979-12-25 1988-05-10 Citizen Watch Co Ltd
JPS6463928A (en) * 1987-09-04 1989-03-09 Hitachi Ltd Liquid crystal display device
JPH0274925A (en) * 1988-09-12 1990-03-14 Shiojiri Kogyo Kk Optical switching element for multi-electrode type high speed liquid crystal
JPH03194516A (en) * 1989-12-25 1991-08-26 Hosiden Corp Liquid crystal display element
JPH03245126A (en) * 1990-02-23 1991-10-31 Hitachi Ltd Thin-film transistor panel
JPH04133022A (en) * 1990-09-25 1992-05-07 Sanyo Electric Co Ltd Liquid crystal display device
JPH04360583A (en) * 1991-06-07 1992-12-14 Nippon Steel Corp Thin film transistor
JPH0511281A (en) * 1991-07-05 1993-01-19 Matsushita Electric Ind Co Ltd Liquid crystal panel and liquid crystal projection type television using the same
JPH05505247A (en) * 1990-01-09 1993-08-05 メルク パテント ゲーエムベーハー Electro-optical liquid crystal switching element

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5557882A (en) * 1978-10-20 1980-04-30 Fujitsu Ltd Display unit
JPS6321907B2 (en) * 1979-12-25 1988-05-10 Citizen Watch Co Ltd
JPS60218624A (en) * 1984-04-13 1985-11-01 Toyota Motor Corp Color liquid crystal display device
JPS6463928A (en) * 1987-09-04 1989-03-09 Hitachi Ltd Liquid crystal display device
JPH0274925A (en) * 1988-09-12 1990-03-14 Shiojiri Kogyo Kk Optical switching element for multi-electrode type high speed liquid crystal
JPH03194516A (en) * 1989-12-25 1991-08-26 Hosiden Corp Liquid crystal display element
JPH05505247A (en) * 1990-01-09 1993-08-05 メルク パテント ゲーエムベーハー Electro-optical liquid crystal switching element
JPH03245126A (en) * 1990-02-23 1991-10-31 Hitachi Ltd Thin-film transistor panel
JPH04133022A (en) * 1990-09-25 1992-05-07 Sanyo Electric Co Ltd Liquid crystal display device
JPH04360583A (en) * 1991-06-07 1992-12-14 Nippon Steel Corp Thin film transistor
JPH0511281A (en) * 1991-07-05 1993-01-19 Matsushita Electric Ind Co Ltd Liquid crystal panel and liquid crystal projection type television using the same

Cited By (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11501692A (en) * 1995-03-15 1999-02-09 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Electro-optic liquid crystal display
KR100463043B1 (en) * 1995-07-17 2005-04-06 가부시끼가이샤 히다치 세이사꾸쇼 Active Matrix Liquid Crystal Display
US6317183B2 (en) 1996-04-04 2001-11-13 Lg. Philips Lcd Co., Ltd. IPS-LCD having correlation of electrodes and substrates
US7683999B2 (en) 1996-04-04 2010-03-23 Lg Display Co., Ltd. Liquid crystal display
US6052163A (en) * 1996-04-04 2000-04-18 Frontec Incorporated Thin film transistor and liquid crystal display device
US7369203B2 (en) 1996-04-04 2008-05-06 Lg Electronics Inc. Liquid crystal display
US7042543B2 (en) 1996-04-04 2006-05-09 Lg Philips Lcd Co., Ltd Liquid crystal display
US6903792B2 (en) 1996-04-04 2005-06-07 Lg.Philips Lcd Co., Ltd. Liquid crystal display
US6323927B1 (en) 1996-04-04 2001-11-27 Lg Philips Lcd Co., Ltd. IPS—LCD having electrodes′characteristics
US6781660B2 (en) 1996-04-04 2004-08-24 Lg Philips Lcd Co., Ltd. Liquid crystal display
US7193675B2 (en) 1996-06-22 2007-03-20 Lg. Philips Lcd Co., Ltd Liquid crystal display device
US6342937B2 (en) 1996-06-22 2002-01-29 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6778245B2 (en) 1996-06-22 2004-08-17 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6630978B2 (en) 1996-06-22 2003-10-07 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6812985B1 (en) 1996-09-23 2004-11-02 Lg.Philips Lcd Co., Ltd. Liquid crystal display device
US6433764B1 (en) 1997-01-23 2002-08-13 Lg. Philips Lcd Co., Ltd. Liquid crystal display
CN1112600C (en) * 1997-01-23 2003-06-25 Lg菲利普有限公司 Liquid-crystal display
US6271903B1 (en) 1997-01-23 2001-08-07 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having a light shielding matrix
US6587170B2 (en) 1997-01-23 2003-07-01 Lg. Philips Lcd Co., Ltd. Liquid crystal display device having a light shielding matrix
US7551256B1 (en) 1997-05-19 2009-06-23 Lg Display Co., Ltd. In-plane switching mode liquid crystal display device
US6665036B2 (en) 1997-05-19 2003-12-16 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device having particular common electrodes
US6529256B1 (en) 1997-05-19 2003-03-04 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6972818B1 (en) 1997-05-19 2005-12-06 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6281957B1 (en) 1997-05-19 2001-08-28 Lg Electronics, Inc. In-plane switching mode liquid crystal display device
US7965363B2 (en) 1997-06-12 2011-06-21 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
USRE43123E1 (en) 1997-06-12 2012-01-24 Sharp Kabushiki Kaisha Vertically-aligned (VA) liquid crystal display device
US5969781A (en) * 1997-06-30 1999-10-19 Nec Corporation Homeotropic liquid crystal display with common electrodes parallel and positioned at both sides of pixel electrodes to improve viewing angle
US6466291B2 (en) 1997-07-07 2002-10-15 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device having plurality of pixel regions
US6853429B2 (en) 1997-07-07 2005-02-08 Lg Electronics, Inc. In-plane switching mode liquid crystal display device having multiple domains
US6184961B1 (en) 1997-07-07 2001-02-06 Lg Electronics Inc. In-plane switching mode liquid crystal display device having opposite alignment directions for two adjacent domains
US6384888B2 (en) 1997-07-12 2002-05-07 Lg Electronics Inc. In-plane switching mode liquid crystal display device
US6741312B2 (en) 1997-07-12 2004-05-25 Lg Electronics Inc. In-plane switching mode liquid crystal display device
US6259502B1 (en) 1997-07-12 2001-07-10 Lg Electronics Inc. In-plane switching mode liquid crystal display device having a common electrode on the passivation layer
US6697140B2 (en) 1997-07-29 2004-02-24 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device wherein portions of second gate line overlaps with data electrode
US7362399B2 (en) 1997-08-14 2008-04-22 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6549258B1 (en) 1997-09-04 2003-04-15 Lg. Philips Lcd Co., Ltd. Hybrid switching mode liquid crystal display device
US6297866B1 (en) 1997-09-08 2001-10-02 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device
US6445435B1 (en) 1998-01-23 2002-09-03 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid cystal display device having common electrode on passivation layer
US6628362B2 (en) 1998-01-23 2003-09-30 Lg. Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display device having a high aperture ratio
JP4629135B2 (en) * 1998-06-23 2011-02-09 シャープ株式会社 Liquid crystal display device
JP2009025834A (en) * 1998-06-23 2009-02-05 Sharp Corp Liquid crystal display apparatus
US6509939B1 (en) 1998-07-07 2003-01-21 Lg. Philips Lcd Co., Ltd Hybrid switching mode liquid crystal display device and method of manufacturing thereof
US7145627B2 (en) 1998-07-07 2006-12-05 Lg.Philips Lcd. Co., Ltd. Liquid crystal display device and method of manufacturing thereof
US6833881B2 (en) 1998-07-07 2004-12-21 Lg.Philips Lcd Co., Ltd. Liquid crystal display device and method of manufacturing thereof
US6900867B2 (en) 1999-12-14 2005-05-31 Lg.Philips Lcd Co., Ltd. Method of manufacturing a color filter substrate for in-plane switching mode liquid crystal display device
US6791653B2 (en) 1999-12-15 2004-09-14 Lg.Philips Lcd Co., Ltd. In-plane switching mode liquid crystal display
JP2001350453A (en) * 2000-06-08 2001-12-21 Hitachi Ltd Method and device for displaying picture
JP2002055662A (en) * 2000-08-11 2002-02-20 Nec Corp Liquid crystal display device and its drive method
JP2002162640A (en) * 2000-10-14 2002-06-07 Samsung Electronics Co Ltd Transverse electric field type liquid crystal display device and its manufacturing method
US7534724B2 (en) 2003-10-02 2009-05-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
US7919411B2 (en) 2003-10-02 2011-04-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
US7332432B2 (en) 2003-10-02 2008-02-19 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
US8105945B2 (en) 2003-10-02 2012-01-31 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing wiring, thin film transistor, light emitting device and liquid crystal display device, and droplet discharge apparatus for forming the same
US7439086B2 (en) 2003-11-14 2008-10-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing liquid crystal display device
US8247965B2 (en) 2003-11-14 2012-08-21 Semiconductor Energy Laboratory Co., Ltd. Light emitting display device and method for manufacturing the same
JP2005308951A (en) * 2004-04-20 2005-11-04 Hitachi Displays Ltd Liquid crystal display device
JP4584614B2 (en) * 2004-04-20 2010-11-24 株式会社 日立ディスプレイズ Liquid crystal display
JP2008180886A (en) * 2007-01-24 2008-08-07 Stanley Electric Co Ltd Liquid crystal display element
JP2013238644A (en) * 2012-05-11 2013-11-28 Japan Display Inc Liquid crystal display device
US9304343B2 (en) 2012-05-11 2016-04-05 Japan Display Inc. Liquid crystal display device

Also Published As

Publication number Publication date
JP3296913B2 (en) 2002-07-02

Similar Documents

Publication Publication Date Title
JPH06273803A (en) Active matrix liquid crystal display device
EP0916992B1 (en) A liquid crystal display device
KR100360355B1 (en) Active matrix type liquid crystal display system
JP3644653B2 (en) Liquid crystal display
JP3826217B2 (en) Fringe field switching mode liquid crystal display
US6844907B2 (en) Liquid crystal display device
JP2859093B2 (en) Liquid crystal display
JP3234357B2 (en) Liquid crystal display
US20020163604A1 (en) In plane fringe field switching mode LCD realizing high screen quality
US6297867B1 (en) Wide view angle LCD operable in IPS mode which uses a pixel electrode as a shield to prevent disturbances in the electric field of a display pixel portion of the LCD
KR100314697B1 (en) Active matrix liquid-crystal display
JP3039517B2 (en) Active matrix liquid crystal display
KR20040062146A (en) Liquid crystal display panel and fabricating method thereof
KR100593314B1 (en) liquid crystal display device
JP3754179B2 (en) Liquid crystal display
KR100430376B1 (en) Liquid crystal display
JP4087306B2 (en) Liquid crystal display
JPH09281497A (en) Liquid crystal display device
JP3847403B2 (en) Liquid crystal display
JP3915529B2 (en) Active matrix liquid crystal display device
JP3735107B2 (en) Active matrix liquid crystal display device
KR100658060B1 (en) Liquid crystal display device
KR20020044288A (en) Fringe field switching mode lcd
JP2001159761A (en) Active matrix type liquid crystal display device
JPH11326907A (en) Liquid crystal display device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090412

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100412

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313121

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110412

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120412

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130412

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140412

Year of fee payment: 12

EXPY Cancellation because of completion of term