JPH06272005A - Production of particle-dispersed ti alloy - Google Patents

Production of particle-dispersed ti alloy

Info

Publication number
JPH06272005A
JPH06272005A JP6061093A JP6061093A JPH06272005A JP H06272005 A JPH06272005 A JP H06272005A JP 6061093 A JP6061093 A JP 6061093A JP 6061093 A JP6061093 A JP 6061093A JP H06272005 A JPH06272005 A JP H06272005A
Authority
JP
Japan
Prior art keywords
alloy
dispersed
ductility
cutting
soft particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6061093A
Other languages
Japanese (ja)
Inventor
Tatsuo Nagata
辰夫 永田
Wataru Takahashi
渉 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP6061093A priority Critical patent/JPH06272005A/en
Publication of JPH06272005A publication Critical patent/JPH06272005A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To produce a particle-dispersed Ti alloy excellent in ductility, furthermore small in the anisotropy of ductility and brittleness and excellent in machinability as well. CONSTITUTION:A Ti alloy piece in which soft grains are dispersed is subjected to rough rolling, is subjected to primary working at <=500 deg.C and 1 to 20% reduction of area and is subjected to secondary working at >=700 deg.C and >=10% reduction of area. By the primary working, the soft grains are parted, and, by the secondary working, voids are solved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、軟質粒子がマトリック
スに分散したTi合金である粒子分散Ti合金の製造方法に
関する。さらに具体的には、本発明は、希土類金属元素
(La、Ce、Nd、Y、Sc等を意味し、本明細書においては
「REM 」と記載する) と、P、S、As、Sb、Bi、Seおよ
びTeからなる群から選ばれた1種または2種以上との化
合物である軟質粒子を分散させて切削性を改善した粒子
分散Ti合金の延性を向上するとともに延性および脆性そ
れぞれの異方性をともに抑制できる粒子分散Ti合金の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a particle-dispersed Ti alloy in which soft particles are Ti alloy dispersed in a matrix. More specifically, the present invention relates to a rare earth metal element.
(Meaning La, Ce, Nd, Y, Sc, etc., and described as “REM” in the present specification) and P, S, As, Sb, Bi, Se and Te. Method for producing a particle-dispersed Ti alloy capable of improving the ductility of a particle-dispersed Ti alloy having improved machinability by dispersing soft particles, which are one kind or a compound of two or more kinds, and suppressing both anisotropy of ductility and brittleness Regarding

【0002】[0002]

【従来の技術】TiまたはTi合金は、軽量であって高強度
であるため、従来より、航空機あるいは自動車といった
輸送機器の構造部材またはその機関部の高速運動部材等
に使用されている。しかし、周知のようにTiまたはTi合
金の切削性は良好ではないため、これらの部材の切削加
工による製造では、切削工具の寿命が短くなったり、切
削速度を上昇することができないために生産性が低下す
るといった問題が生じる。このように、切削加工を施さ
れて製造される部材にTiまたはTi合金を用いると、その
切削加工工程において著しくコストおよび工数を要する
ため、TiまたはTi合金は、量産による低コスト化を目的
として大量生産により製造される部材には用いることは
できなかった。
2. Description of the Related Art Since Ti or Ti alloy is lightweight and has high strength, it has been conventionally used as a structural member of transportation equipment such as an aircraft or an automobile or a high-speed moving member of its engine section. However, as is well known, since the machinability of Ti or Ti alloy is not good, the manufacturing of these members by cutting process shortens the service life of the cutting tool and cannot increase the cutting speed, so the productivity is low. The problem arises that In this way, if Ti or Ti alloy is used for the member manufactured by cutting, it requires a significant cost and man-hours in the cutting process, so Ti or Ti alloy is used for the purpose of cost reduction by mass production. It could not be used for members manufactured by mass production.

【0003】そこで、TiまたはTi合金の切削性を改善し
て量産への適応性を向上するため、従来より様々な提案
が行われている。特開昭49−61010 号公報には、Tiまた
はTi合金に1種または2種以上のPb、Bi、S、Sb、Se、
Te、As、Ca、Zn、Mgを0.01〜5% (以下、本明細書にお
いては特にことわりがない限り「%」は「重量%」を意
味するものとする) 含有することにより、TiまたはTi合
金の機械的性質や耐食性等を損なうことなく切削性を向
上させた快削性Ti合金が、一方特開昭60−251239号公報
には、S:0.001 〜10%、Se:0.001 〜10%およびTe:
0.001 〜10%の1種または2種以上を、2種以上の場合
は合計で10%以下含有し、REM :0.005 〜10%およびC
a:0.001 〜10%の1種または2種を含有し、残部Tiお
よび不可避的不純物であって、Ti−S(Se,Te)化合物、C
a−S(Se,Te) 化合物、REM −S(Se,Te) 化合物および
これら成分の複化合物である快削性介在物の1種または
2種以上を含有する快削性Ti合金が、それぞれ提案され
ている。
Therefore, in order to improve the machinability of Ti or Ti alloy and improve the adaptability to mass production, various proposals have been made in the past. Japanese Unexamined Patent Publication No. 49-61010 discloses one or more kinds of Pb, Bi, S, Sb, Se in Ti or a Ti alloy.
By adding 0.01 to 5% of Te, As, Ca, Zn, and Mg (hereinafter, “%” means “% by weight” unless otherwise specified in the present specification), Ti or Ti A free-cutting Ti alloy having improved machinability without deteriorating the mechanical properties and corrosion resistance of the alloy is disclosed in JP-A-60-251239, where S: 0.001-10% and Se: 0.001-10%. And Te:
0.001 to 10% of 1 type or 2 or more types, if 2 or more types, total 10% or less, REM: 0.005 to 10% and C
a: 0.001 to 10% of one or two kinds, the balance Ti and inevitable impurities, Ti-S (Se, Te) compound, C
An a-S (Se, Te) compound, a REM-S (Se, Te) compound, and a free-cutting Ti alloy containing one or more free-cutting inclusions which are compound compounds of these components are respectively Proposed.

【0004】これらの提案にかかる快削性Ti合金は、い
ずれも軟質粒子をマトリックスに分散させることにより
切削性の改善・向上を図るものである。
The free-cutting Ti alloys according to these proposals are intended to improve and improve the cutting property by dispersing soft particles in a matrix.

【0005】[0005]

【発明が解決しようとする課題】また、本発明者等も先
に特願平3−246123号により、以下に列記する群ない
し群、すなわちP:0.01〜1.0 %およびS:0.01〜
1.0 %、P:0.01〜1.0 %およびNi:0.01〜2.0 %、
P:0.01〜1.0 %、S:0.01〜1.0 %およびNi:0.01
〜2.0 %、P:0.01〜1.0 %、S:0.01〜1.0 %、N
i:0.01〜2.0 %およびREM :0.01〜5.0 %のいずれか
の快削成分、および残部TiまたはTi合金からなる快削性
Ti合金を提案した。
The inventors of the present invention have also previously disclosed, in Japanese Patent Application No. 3-246123, the groups or groups listed below, that is, P: 0.01 to 1.0% and S: 0.01 to.
1.0%, P: 0.01 to 1.0% and Ni: 0.01 to 2.0%,
P: 0.01-1.0%, S: 0.01-1.0% and Ni: 0.01
~ 2.0%, P: 0.01 ~ 1.0%, S: 0.01 ~ 1.0%, N
i: 0.01-2.0% and REM: 0.01-5.0% of any free-cutting component, and the free-cutting property consisting of the balance Ti or Ti alloy
Proposed Ti alloy.

【0006】この提案にかかる快削性Ti合金は、マトリ
ックスにPを主体とする軟質粒子を分散させることによ
りTi合金の切削性を改善するものである。つまり、Pの
一部がTi合金を固溶脆化させるとともにTi合金中に形成
されるPを含む軟質粒子により切り屑破砕性が向上する
ことの相乗的効果によって切削性を改善するのであり、
前述の軟質粒子とは炭化チタンやホウ化チタンのような
硬質粒子とは異なり、外部からの力により容易に変形・
分断させ得る粒子である。
The free-cutting Ti alloy according to this proposal improves the machinability of the Ti alloy by dispersing soft particles mainly containing P in the matrix. That is, part of P makes the Ti alloy solid-solution embrittlement and improves the machinability by the synergistic effect of improving the chip crushability by the soft particles containing P formed in the Ti alloy.
Unlike hard particles such as titanium carbide and titanium boride, the soft particles described above can easily be deformed or deformed by external force.
It is a particle that can be divided.

【0007】しかし、本発明者らはさらに研究を重ねた
結果、特願平3−246123号により提案した快削性Ti合金
の延性は、従来のTi合金の延性よりも劣化するともに、
その製造条件により、延性および靱性それぞれの異方性
が大きくなってしまうことに気付いた。
However, as a result of further studies by the present inventors, the ductility of the free-cutting Ti alloy proposed by Japanese Patent Application No. 3-246123 is deteriorated as compared with that of the conventional Ti alloy.
It has been found that the anisotropy of ductility and toughness increase depending on the manufacturing conditions.

【0008】すなわち、本発明者等は、REM と、P、
S、As、Sb、Bi、SeおよびTeからなる群から選ばれた1
種または2種以上との化合物である軟質粒子が分散した
快削性Ti合金についての研究過程で、以下に列記する問
題(a) および(b) があることが分かった。
That is, the present inventors have found that REM, P,
1 selected from the group consisting of S, As, Sb, Bi, Se and Te
In the course of research on free-cutting Ti alloys in which soft particles, which are one kind or a compound of two or more kinds, are dispersed, it was found that there are problems (a) and (b) listed below.

【0009】(a) 軟質粒子を分散させた快削性Ti合金の
延性は、軟質粒子を分散させていないTi合金の延性より
も劣っており、REM 、P等の切削成分の添加量を増加す
ればするほど延性が低下する。したがって、Ti合金の延
性を確保するためには切削成分の添加量を抑制しなけれ
ばならない。
(A) The ductility of the free-machining Ti alloy in which the soft particles are dispersed is inferior to that of the Ti alloy in which the soft particles are not dispersed, and the addition amount of cutting components such as REM and P is increased. The more it does, the lower the ductility. Therefore, in order to secure the ductility of the Ti alloy, it is necessary to suppress the addition amount of the cutting component.

【0010】(b) 軟質粒子を分散させた快削性Ti合金の
製造過程において、700 ℃以上の温度域での熱間加工、
特に一方向のみへの熱間加工を行うと、粒状の軟質粒子
が棒状に延伸されてアスペクト比が高い形状に変形して
しまう。このため、前述の快削性Ti合金の機械的性質、
特に延性や靱性に大きな異方性が生じてしまう。
(B) In the manufacturing process of a free-cutting Ti alloy in which soft particles are dispersed, hot working in a temperature range of 700 ° C. or higher,
Particularly, when hot working is performed in only one direction, the granular soft particles are stretched into a rod shape and deformed into a shape having a high aspect ratio. Therefore, the mechanical properties of the above-mentioned free-cutting Ti alloy,
In particular, large anisotropy occurs in ductility and toughness.

【0011】このように、現在の技術では、延性に優れ
るとともに延性や靱性の異方性が小さく、例えば航空機
あるいは自動車といった輸送機器の構造部材またはその
機関部の高速運動部材のように、軽量性、強度さらには
切削加工性がともに要求される部品に適用するのに好適
なTiまたはTi合金を提供することはできなかったのであ
る。
As described above, according to the present technology, the ductility is excellent and the anisotropy of the ductility and the toughness is small, and the weight is light, such as the structural member of transportation equipment such as an aircraft or an automobile or the high speed moving member of the engine section. However, it has not been possible to provide a Ti or Ti alloy suitable for application to parts that require both strength and machinability.

【0012】ここに、本発明の目的は、従来の技術が有
する上記の問題を解決することが可能な、延性に優れる
とともに延性や靱性の異方性が小さく、さらには切削加
工性に優れた粒子分散Ti合金の製造方法を提供すること
にある。
The object of the present invention is to solve the above problems of the prior art. It has excellent ductility and small anisotropy in ductility and toughness, and also has excellent machinability. It is to provide a method for producing a particle-dispersed Ti alloy.

【0013】[0013]

【課題を解決するための手段】本発明者らの検討によれ
ば、前述の軟質粒子が分散した粒子分散Ti合金における
延性、さらには延性および靱性それぞれの異方性には、
マトリックスに分散した軟質粒子の寸法と形状とが大き
く影響する。すなわち、延性、さらには延性および靱性
それぞれの異方性は、Ti合金中の軟質粒子が熱間加工に
より延伸されて棒状に変形することに影響される。
According to the study by the present inventors, the ductility in the above-mentioned particle-dispersed Ti alloy in which the soft particles are dispersed, and further the anisotropy of ductility and toughness,
The size and shape of the soft particles dispersed in the matrix have a great influence. That is, the ductility, and further the anisotropy of ductility and toughness, are affected by the soft particles in the Ti alloy being stretched by hot working and deformed into a rod shape.

【0014】したがって、従来の快削性Ti合金において
も切削成分の添加量が少なく軟質粒子が少ない場合に
は、通常のTi合金と同等の製造方法であっても異方性が
問題になることはないが、切削性の向上を目的として快
削成分の添加量を合計で5%程度まで増加する場合に
は、何らかの対策が必要となる。
Therefore, even in the conventional free-cutting Ti alloy, if the addition amount of the cutting component is small and the amount of soft particles is small, the anisotropy becomes a problem even if the production method is the same as the ordinary Ti alloy. However, if the total addition amount of the free-cutting component is increased to about 5% for the purpose of improving the machinability, some measure is required.

【0015】そこで、本発明者等は、軟質粒子を分散さ
せた快削性Ti合金の延性を向上するとともに、延性およ
び靱性それぞれの異方性を小さくするために鋭意研究を
行った結果、下記に列記する知見(i) ないし(viii)を得
て、本発明を完成した。
Therefore, the inventors of the present invention have conducted extensive studies to improve the ductility of a free-cutting Ti alloy in which soft particles are dispersed and reduce the anisotropy of ductility and toughness. The present invention has been completed based on the findings (i) to (viii) listed in.

【0016】(i) 快削性Ti合金中のPを主体とする軟質
粒子 (切削成分の種類によりS、Ni、REM 等も同時に含
む) は、その快削成分の添加量が多いほど大型に成り易
く、通常のインゴットの場合には、粒径が数μm 〜数十
μm のほぼ粒状の介在物となる。
(I) The soft particles mainly composed of P in the free-cutting Ti alloy (including S, Ni, REM, etc. at the same time depending on the type of cutting component) become larger as the amount of the free-cutting component added increases. It is easy to form, and in the case of a normal ingot, it becomes a substantially granular inclusion having a particle size of several μm to several tens μm.

【0017】(ii)快削性Ti合金中の軟質粒子は、溶解後
のインゴットの段階では前述のように粒状であっても、
700 ℃以上の温度域での熱間加工により、加工方向に延
伸されて棒状へと変形していく。特に一方向のみに熱間
加工を行うとこの変形が顕著となり、介在物のアスペク
ト比 (長さおよび幅の比) が10以上となってしまうこと
もある。
(Ii) Even if the soft particles in the free-cutting Ti alloy are granular as described above at the stage of ingot after melting,
By hot working in the temperature range of 700 ℃ or more, it is stretched in the working direction and transformed into a rod shape. Especially when hot working is performed only in one direction, this deformation becomes remarkable, and the aspect ratio (ratio of length and width) of inclusions may become 10 or more.

【0018】(iii) 快削性Ti合金中の軟質粒子は、500
℃以下の温度域では殆ど延性を呈さないため、500 ℃以
下の温度域で例えば鍛造や圧延といった加工を行うと、
軟質粒子が容易に割れて分断される。この温度域では、
軟質粒子を割るために必要な加工度は極めて小さく、断
面減少率が1〜2%程度の加工であっても十分であっ
た。
(Iii) The soft particles in the free-cutting Ti alloy are 500
Since it exhibits almost no ductility in the temperature range of ℃ or less, if processing such as forging or rolling is performed in the temperature range of 500 ℃ or less,
Soft particles are easily broken and fragmented. In this temperature range,
The workability required for breaking the soft particles was extremely small, and work with a cross-section reduction rate of about 1 to 2% was sufficient.

【0019】(iv)快削性Ti合金に500 ℃以下の温度域で
加工を行った際に軟質粒子が割れると、この割れの発生
部はボイドとなる。このボイドは700 ℃以上の温度域で
断面減少率が10%以上の熱間加工を行うことにより消滅
することができるとともに、熱間加工の際に分断された
介在物の間隔がさらに拡がって介在物が微細かつ均一に
分散する。
(Iv) When the soft particles crack when the free-cutting Ti alloy is processed in a temperature range of 500 ° C. or less, the cracked portion becomes a void. These voids can be eliminated by performing hot working with a cross-sectional reduction rate of 10% or more in the temperature range of 700 ° C or higher, and the intervals of inclusions that are divided during hot working further increase. Objects are finely and uniformly dispersed.

【0020】(v) このように、軟質粒子を有する快削性
Ti合金に、500 ℃以下の温度域で断面減少率が1%以上
の加工 (一次加工) を行った後、さらに700 ℃以上の温
度域で断面減少率が10%以上の加工 (二次加工) を行う
と、一次加工を行わずに二次加工を行う場合に比較し
て、延性が改善される。したがって、快削性Ti合金にお
ける快削成分の添加による延性低下を解消できるため、
延性を大きく低下させずに切削成分の添加量をさらに増
加して切削性を改善することが可能となる。
(V) As described above, free-cutting property having soft particles
After processing the Ti alloy with a cross-section reduction rate of 1% or more in the temperature range of 500 ° C or less (primary processing), further processing with a cross-section reduction rate of 10% or more in the temperature range of 700 ° C or more (secondary processing ), The ductility is improved as compared with the case where the secondary processing is performed without performing the primary processing. Therefore, it is possible to eliminate the decrease in ductility due to the addition of the free-cutting component in the free-cutting Ti alloy,
It becomes possible to improve the machinability by further increasing the addition amount of the cutting component without significantly reducing the ductility.

【0021】(vi)快削性Ti合金のインゴットを、特に一
方向のみについて従来の条件 (加工温度:700 ℃以上)
で加工して軟質粒子を棒状に延伸すると、その鍛伸方向
(L方向) に対して垂直な方向 (T方向) の絞り値が著
しく低下する。また、亀裂進行方向をL方向と一致させ
たシャルピー衝撃試験を行ったところ、L方向のシャル
ピー衝撃値もT方向に対して大きく低下した。絞り値
(延性) やシャルピー衝撃値 (靱性) それぞれの異方性
の拡大原因は、アスペクト比の高い棒状の介在物が加工
により形成されたためである。
(Vi) A free-cutting Ti alloy ingot, particularly in only one direction, was subjected to conventional conditions (processing temperature: 700 ° C. or higher).
When the soft particles are processed into a rod shape and processed in
The aperture value in the direction (T direction) perpendicular to the (L direction) is significantly reduced. Further, when a Charpy impact test was conducted in which the crack propagation direction was made to coincide with the L direction, the Charpy impact value in the L direction was also greatly reduced with respect to the T direction. Aperture value
(Ductility) and Charpy impact value (toughness) The cause of expansion of anisotropy is that rod-shaped inclusions with a high aspect ratio were formed by processing.

【0022】(vii) 快削性Ti合金に、500 ℃以下の温度
域で一次加工を行った後、さらに700℃以上の温度域で
二次加工を行ってから、T方向の絞り値とL方向のシャ
ルピー衝撃値をそれぞれ測定したところ、上記(vi)項の
場合に発生した異方性が顕著に抑制される。
(Vii) The free-cutting Ti alloy is subjected to primary working in a temperature range of 500 ° C. or lower, and then to secondary working in a temperature range of 700 ° C. or higher, and then a reduction value in the T direction and L When the Charpy impact value in each direction was measured, the anisotropy generated in the case of the above (vi) was significantly suppressed.

【0023】(viii)S、As、Sb、Bi、SeおよびTeからな
る群から選ばれた1種または2種以上を含む化合物から
なる軟質粒子が分散した粒子分散Ti合金においても、上
記(i)項ないし(vii) 項に記載した現象と同様の現象が
認められた。
(Viii) Even in a particle-dispersed Ti alloy in which soft particles composed of a compound containing one or more selected from the group consisting of S, As, Sb, Bi, Se and Te are dispersed, The same phenomenon as that described in the paragraphs) to (vii) was observed.

【0024】ここに、本発明の要旨とするところは、Ti
またはTi合金中に、望ましくは5%以上のREM と、望ま
しくは1%以下のP、S、As、Sb、Bi、SeおよびTeから
なる群から選ばれた1種または2種以上との化合物であ
る軟質粒子が分散したTi合金に、粗圧下を行ってから、
500 ℃以下で1〜20%の断面減少率の一次加工を行い、
さらに700 ℃以上で10%以上の断面減少率の二次加工を
行うことを特徴とする粒子分散Ti合金の製造方法であ
る。本発明におけるTiとは、いわゆる工業用純Tiを意味
し、JIS H 4600に規定される1種ないし3種に含まれ
る。
Here, the gist of the present invention is that Ti
Alternatively, a compound of 5% or more of REM and preferably 1% or less of one or more selected from the group consisting of P, S, As, Sb, Bi, Se and Te in a Ti alloy. After performing a rough reduction on the Ti alloy in which the soft particles are dispersed,
Primary processing is performed at a cross-section reduction rate of 1 to 20% below 500 ° C.
Further, it is a method for producing a grain-dispersed Ti alloy, which is characterized by performing secondary working at a cross-section reduction rate of 10% or more at 700 ° C or more. The Ti in the present invention means so-called industrial pure Ti and is included in 1 to 3 types specified in JIS H 4600.

【0025】本発明におけるTiまたはTi合金は、α型、
nearα型、α+β型、nearβ型、さらにはβ型に分類さ
れる。α型Tiとしては前述のTiやTi−5Al−2.5Sn 系合
金を、nearα型としてはTi−8Al−1Mo−1V等を、α
+β型としてはTi−6Al−4VやTi−6Al−2Sn−4Zr
−6Mo等を、nearβ型としてはTi−10V−2Fe−3Al等
を、さらにβ型としてはTi−13V−11Cr−3Al、Ti−3
Al−8V−6Cr−4Mo−4Zr、Ti−15V−3Al−3Sn−3
Cr、Ti−8Mo−8V−2Fe−3Al等を例示できる。
Ti or Ti alloy in the present invention is α type,
It is classified into near α type, α + β type, near β type, and further β type. As the α-type Ti, the above-mentioned Ti and Ti-5Al-2.5Sn alloys are used, and as the near α-type, Ti-8Al-1Mo-1V, etc.
+ Β type includes Ti-6Al-4V and Ti-6Al-2Sn-4Zr
-6Mo or the like, near β type Ti-10V-2Fe-3Al or the like, and β type Ti-13V-11Cr-3Al, Ti-3
Al-8V-6Cr-4Mo-4Zr, Ti-15V-3Al-3Sn-3
Examples include Cr and Ti-8Mo-8V-2Fe-3Al.

【0026】本発明における軟質粒子とは、粒径が1〜
100 μm 程度であって、REM と、P、S、As、Sb、Bi、
SeおよびTeからなる群から選ばれた1種または2種以上
との化合物からなる介在物からなる粒子である。
The soft particles in the present invention have a particle size of 1 to
It is about 100 μm, and REM, P, S, As, Sb, Bi,
It is a particle composed of inclusions composed of one or more compounds selected from the group consisting of Se and Te.

【0027】本発明における粗圧下とは、例えばインゴ
ットから圧延素材を製造する程度の圧下をいう。例え
ば、粗圧下により直径が 800〜1000mm程度の寸法のイン
ゴットが 400〜500 mm角の寸法の圧延素材へと圧下され
る。粗圧下は、例えば鍛造により行われる。その圧下の
温度範囲としては、β域、α+β域、α域のような温度
を規定したものではなく、あくまでも最終的な加工に対
しての事前の圧下を言う。
The rough reduction in the present invention means, for example, a reduction for producing a rolled material from an ingot. For example, by rough reduction, an ingot having a diameter of about 800 to 1000 mm is reduced to a rolled material having a size of 400 to 500 mm square. The rough reduction is performed by forging, for example. The temperature range of the reduction is not a temperature range such as β range, α + β range, and α range, but refers to a reduction in advance for final processing.

【0028】[0028]

【作用】以下、本発明を3つに分けて作用効果とともに
詳述する。 (1) TiまたはTi合金中に、望ましくは5%以下のREM
と、望ましくは1%以下のP、S、As、Sb、Bi、Seおよ
びTeからなる群から選ばれた1種または2種以上との化
合物である軟質粒子が分散したTi合金の製造 本発明では、まず、TiまたはTi合金中に、望ましくは5
%以下のREM と、望ましくは1%以下のP、S、As、S
b、Bi、SeおよびTeからなる群から選ばれた1種または
2種以上との化合物である軟質粒子が分散したTi合金を
製造する。かかるTi合金の製造法は、従来のTi合金と同
様に、VAR 法、プラズマ溶解法さらにはアーク溶解法
等、TiまたはTi合金の製造に適用できる溶製方法であれ
ば如何なる方法でもよい。
The present invention will be described in detail below by dividing it into three parts and their effects. (1) Desirably 5% or less REM in Ti or Ti alloy
And preferably 1% or less of P, S, As, Sb, Bi, Se and
And one or more selected from the group consisting of
In the present invention, first, in Ti or Ti alloy, preferably 5
% REM or less, and preferably 1% or less P, S, As, S
A Ti alloy in which soft particles, which are compounds of one kind or two kinds or more selected from the group consisting of b, Bi, Se and Te, are dispersed is manufactured. As with the conventional Ti alloy, the Ti alloy may be produced by any method such as the VAR method, the plasma melting method, and the arc melting method as long as it is a melting method applicable to the production of Ti or Ti alloy.

【0029】REM は、Pと化合し易い元素であり、マト
リックスへのPの固溶量を低下し、マトリックスの延性
低下を軽減して熱間加工性や疲労強度の低下を抑制する
元素である。REM 含有量が5.0 %超ではTiおよびTi合金
に配合・溶解する際にTi溶湯の粘性が上昇し、偏析が生
じ易くなる。そこで、REM 含有量は5.0 %以下と限定す
ることが望ましい。下限については、上限のように限定
する必要性に乏しいが、REM 含有量が0.01%未満ではマ
トリックスの延性低下を軽減する効果が小さく、熱間加
工性や疲労強度の低下抑制には寄与しないことも考えら
れるため、REM含有量は0.01%以上5.0 %以下と
限定することがさらに望ましい。なお、REM の添加は、
La、Ceを主成分とする市販のMm (ミッシュメタル) を用
いれば安価に行える。好ましいREM の添加量は、0.05〜
1.5 %、特に0.20〜1.0 %である。
REM is an element that is easily combined with P, is an element that reduces the solid solution amount of P in the matrix, reduces the deterioration of ductility of the matrix, and suppresses the deterioration of hot workability and fatigue strength. . If the REM content exceeds 5.0%, the viscosity of the Ti melt increases when it is mixed and melted in Ti and Ti alloys, and segregation easily occurs. Therefore, it is desirable to limit the REM content to 5.0% or less. It is not necessary to limit the lower limit like the upper limit, but if the REM content is less than 0.01%, the effect of reducing the deterioration of ductility of the matrix is small, and it does not contribute to the suppression of the deterioration of hot workability and fatigue strength. Therefore, it is more desirable to limit the REM content to 0.01% or more and 5.0% or less. The addition of REM is
This can be done at low cost by using a commercially available Mm (Misch metal) containing La and Ce as main components. The preferable amount of REM added is 0.05 to
It is 1.5%, especially 0.20 to 1.0%.

【0030】Pは、REM とともにTiまたはTi合金中に軟
質粒子を形成するが、S、As、Sb、Bi、SeまたはTeも、
Pと同様に軟質粒子をTiまたはTi合金中に形成する。通
常はTiとの化合物として主として結晶粒界に存在する
が、REM の存在下ではREM との化合物として結晶粒内お
よび/または結晶粒界に分散し、延性の低下を生じるこ
となく切削性を改善する。これらの元素が2種以上加え
られると複合介在物を形成することもある。そして、こ
れらの化合物も前記のPを主体とする化合物と同様の性
質を有する軟質粒子を形成するが、これらの軟質粒子は
後述する一次加工により、分散および微細化される。た
だし、これらの元素を合計で1%超添加すると極めて粗
大な軟質粒子が形成され、軟質粒子の分断のために行う
本発明における一次加工の際にTiまたはTi合金が割れる
おそれがある。そこで、本発明では、P、S、As、Sb、
Bi、SeおよびTeからなる群から選ばれた1種または2種
以上は合計で1%以下と限定することが望ましい。
P forms soft particles in Ti or Ti alloy with REM, but S, As, Sb, Bi, Se or Te also
Similar to P, soft particles are formed in Ti or Ti alloy. Normally, it exists mainly at the grain boundaries as a compound with Ti, but in the presence of REM, it is dispersed as a compound with REM within and / or at the grain boundaries, improving the machinability without reducing ductility. To do. When two or more of these elements are added, a complex inclusion may be formed. Then, these compounds also form soft particles having the same properties as those of the compound containing P as a main component, but these soft particles are dispersed and finely divided by the primary processing described later. However, if these elements are added in a total amount of more than 1%, extremely coarse soft particles are formed, and Ti or Ti alloy may be cracked during the primary processing in the present invention for dividing the soft particles. Therefore, in the present invention, P, S, As, Sb,
It is desirable that the total of one or more selected from the group consisting of Bi, Se and Te is limited to 1% or less.

【0031】(2) 粗圧下、および500 ℃以下で1〜20%
の断面減少率の一次加工 溶製したTiまたはTi合金に、通常は 900〜1200℃程度の
高温のβ域で粗圧下を施すが、粗圧下は一般的に一方向
のみへの鍛伸であるため、TiまたはTi合金中の軟質粒子
はこの段階から棒状に延伸し始める。そこで、本発明で
は、まず一次加工を行って延伸した軟質粒子の分断を図
るが、その際に問題になるのは軟質粒子の変形能であ
る。すなわち、快削性Ti合金中の軟質粒子は室温での切
削性改善に寄与することからも理解できるように、室温
での変形能は殆ど認められず、変形せずに割れて切り屑
破砕性を向上させる。一方、700 ℃以上の温度域では、
割れは発生せずに棒状の介在物へ延伸して変形すること
から分かるように、変形能は高く、熱間加工を行っても
割れずに変形する。
(2 ) 1 to 20% under rough pressure and below 500 ° C
The primary reduction of the cross-section reduction rate is usually performed on the melted Ti or Ti alloy in the β region at a high temperature of 900 to 1200 ° C, but the rough reduction is generally forging in only one direction. Therefore, the soft particles in Ti or the Ti alloy start to expand into a rod shape at this stage. Therefore, in the present invention, first, the soft particles stretched by primary processing are divided, and the problem in this case is the deformability of the soft particles. That is, as can be understood from the fact that the soft particles in the free-cutting Ti alloy contribute to the improvement of the machinability at room temperature, almost no deformability at room temperature is observed, and the chip breaks without deformation and chip crushability. Improve. On the other hand, in the temperature range above 700 ° C,
As can be seen from the fact that the material is stretched and deformed into a rod-shaped inclusion without cracking, the deformability is high and the material deforms without cracking even when hot working.

【0032】本発明者らの知見によれば、500 ℃以下、
特に300 ℃以下の加工温度で一次加工を行うと軟質粒子
が分断される。したがって、快削性Ti合金の軟質粒子を
分断するにはまず500 ℃以下で一次加工を行う。500 ℃
以下、特に300 ℃以下の加工温度では軟質粒子は殆ど変
形しないため、加工度として1%以上の断面減少率の加
工を行えば軟質粒子を分断することはできる。
According to the knowledge of the present inventors,
Especially when the primary processing is performed at a processing temperature of 300 ° C or less, the soft particles are fragmented. Therefore, in order to divide the soft particles of the free-cutting Ti alloy, firstly perform primary processing at 500 ° C or lower. 500 ° C
In the following, the soft particles are hardly deformed particularly at a processing temperature of 300 ° C. or less, so that the soft particles can be divided by performing the processing with a cross-section reduction rate of 1% or more.

【0033】なお、断面減少率が1%以上3%以下で
は、分断された軟質粒子同士の間隔が狭く、このままで
は機械的性質の改善効果が小さいため、後述する二次加
工の加工度を高めることが好ましい。
When the cross-section reduction rate is 1% or more and 3% or less, the interval between the soft particles that have been cut is small, and the effect of improving the mechanical properties is small as it is, so the workability of the secondary processing described later is increased. It is preferable.

【0034】一次加工の加工温度が300 ℃以上500 ℃以
下では、快削性Ti合金の加工度を断面減少率で10%以上
20%以下とすることも可能となるため、軟質粒子の分断
効果は大きくなる。ただし、20%超の断面減少率の一次
加工を行うと、軟質粒子を起点とした割れが生じること
があるため、軟質粒子の分断のための断面減少率は20%
以下とする。なお、母相となるTiまたは合金の加工性を
確保しておくためには、一次加工を行う前にTiまたはTi
合金に焼鈍を行っておくことが望ましい。
When the working temperature of the primary working is 300 ° C. or higher and 500 ° C. or lower, the working ratio of the free-cutting Ti alloy is 10% or more in terms of area reduction rate.
Since it is possible to set it to 20% or less, the effect of dividing the soft particles becomes large. However, if the primary processing of the cross-section reduction rate of more than 20% is performed, cracks may occur starting from the soft particles, so the cross-section reduction rate for the soft particle division is 20%.
Below. In order to secure the workability of Ti or the alloy that is the parent phase, Ti or Ti before the primary processing is performed.
It is desirable to anneal the alloy.

【0035】(3) 700 ℃以上で10%以上の断面減少率の
二次加工 次に、500 ℃以下の加工温度で一次加工を行ったTiまた
はTi合金中には、軟質粒子の分断により分断位置の近傍
にボイドが多数形成される。ボイドが残存したままでは
延性の劣化が著しいため、かかるボイドを解消する必要
がある。そこで、一次加工後にボイドの解消を目的とし
て二次加工を行う。
(3) Area reduction rate of 10% or more at 700 ° C or higher
Secondary processing Next, in the Ti or Ti alloy that has been primary processed at a processing temperature of 500 ° C or less, a large number of voids are formed in the vicinity of the cutting position due to the cutting of the soft particles. If the voids remain, the ductility deteriorates significantly, so it is necessary to eliminate such voids. Therefore, secondary processing is performed after the primary processing for the purpose of eliminating voids.

【0036】かかる二次加工は軟質粒子が割れずに変形
する温度域で行わなければ、逆にボイドを増加させてし
まう。そのため、二次加工の加工温度は700 ℃以上と限
定する。なお、二次加工の加工温度が1150℃超ではTiま
たはTi合金の酸化量が著しく増加してしまうため、加工
温度は1150℃以下とすることが望ましい。
If the secondary working is not carried out in a temperature range where the soft particles are deformed without cracking, the voids will be increased. Therefore, the processing temperature for secondary processing is limited to 700 ° C or higher. If the working temperature of the secondary working exceeds 1150 ° C, the oxidation amount of Ti or Ti alloy will remarkably increase, so the working temperature is preferably set to 1150 ° C or less.

【0037】また、二次加工の加工度は断面減少率が10
%以上であればボイドをつぶすことができる。熱間加工
の加工度が高いと、分断された介在物の中に再び長く延
伸した形状の介在物が現われるが、そのサイズは分断前
のサイズよりも小さいために特に問題とはならない。な
お、二次加工を行った後は、粒子分散Ti合金の延性を確
保するために、焼鈍処理を行うことが望ましい。
In addition, the degree of cross-section reduction of the secondary processing is 10
If it is at least%, the void can be crushed. When the workability of hot working is high, the inclusions having a shape elongated again appear in the separated inclusions, but since the size is smaller than the size before the separation, there is no particular problem. After the secondary working, it is desirable to perform an annealing treatment in order to secure the ductility of the particle-dispersed Ti alloy.

【0038】このようにして、本発明により、Ti合金の
切削性を改善するため、REM と、P、S、As、Sb、Bi、
SeおよびTeからなる群から選ばれた1種または2種以上
との化合物である軟質粒子を分散させた、延性に優れる
とともに延性や靱性の異方性が小さく、さらには切削性
に優れた粒子分散Ti合金が提供される。
Thus, according to the present invention, in order to improve the machinability of the Ti alloy, REM, P, S, As, Sb, Bi,
Particles in which soft particles, which are one or more compounds selected from the group consisting of Se and Te, are dispersed, and which have excellent ductility and low anisotropy in ductility and toughness, and also excellent machinability. A dispersed Ti alloy is provided.

【0039】本発明により製造される粒子分散Ti合金
は、例えば航空機あるいは自動車といった輸送機器の構
造部材またはその機関部の高速運動部材のように、軽量
性、強度さらには切削加工性がともに要求される部材に
適用するのに好適である。さらに、本発明を実施例を参
照しながら詳述するが、これは本発明の例示でありこれ
により本発明が限定されるものではない。
The particle-dispersed Ti alloy produced according to the present invention is required to have both lightness, strength, and machinability like a structural member of transportation equipment such as an aircraft or an automobile or a high-speed moving member of its engine. It is suitable to be applied to a member. Further, the present invention will be described in detail with reference to examples, but this is an example of the present invention and the present invention is not limited thereto.

【0040】[0040]

【実施例1】表1に示す化学組成を有する合金種Aない
しNからなる快削性Ti合金のインゴット (直径120mm 、
長さ240mm)をプラズマ溶解により、合金種Bについては
3水準、それ以外の合金種についてはそれぞれ1水準製
造した。これらのインゴットのミクロ金属組織を顕微鏡
により観察した結果、2〜80μm の粒径の軟質粒子がい
ずれのインゴットについても形成されていることが確認
された。
Example 1 An ingot of a free-cutting Ti alloy consisting of alloy types A to N having the chemical composition shown in Table 1 (diameter 120 mm,
A length of 240 mm was produced by plasma melting to produce 3 levels for alloy type B and 1 level for other alloy types. As a result of microscopic observation of the micrometal structure of these ingots, it was confirmed that soft particles having a particle size of 2 to 80 μm were formed in each of the ingots.

【0041】これらのインゴットに、図1(a) および図
1(b) に示すように、1050℃×8hr保持および空冷を行
う均質化処理を行った後、1150℃まで加熱・昇温してか
ら幅80mm、厚さ30mmおよび長さ1100mmまで粗鍛造を行
い、長さ方向について、240mmの3片のブロック材に分
割した。
As shown in FIGS. 1 (a) and 1 (b), these ingots were homogenized by holding them at 1050 ° C. for 8 hours and air-cooling, and then heated and heated to 1150 ° C. To 80 mm in width, 30 mm in thickness, and 1100 mm in length were roughly forged, and were divided into three blocks of 240 mm in the length direction.

【0042】本発明例として、これらのブロック材に、
図1(a) に示すように、700 ℃×1.5 時間保持および空
冷を行う焼鈍1を行った後、外削および機械加工を行っ
て幅75mm、厚さ26mmのブロック材とし、図2に示す要領
で各種試験片を切出して、表2に示す条件で一次加工お
よび二次加工を行い、さらに700 ℃×1.5 時間保持およ
び空冷を行う焼鈍2を行って、試料No.1ないし試料No.1
8 を製造した。
As an example of the present invention, these block materials are
As shown in Fig. 1 (a), after annealing 1 at 700 ° C for 1.5 hours and cooling with air, external cutting and machining were performed to obtain a block material with a width of 75 mm and a thickness of 26 mm, which is shown in Fig. 2. Various test pieces were cut out in the manner described above, subjected to primary processing and secondary processing under the conditions shown in Table 2, and further annealed 2 by holding at 700 ° C x 1.5 hours and air cooling to perform sample No. 1 to sample No. 1
8 manufactured.

【0043】また、比較例として、前述のブロック材
に、図1(b) に示すように、外削および機械加工を行っ
て幅75mm、厚さ26mmのブロック材とし、700 ℃×1.5 時
間保持および空冷を行う焼鈍2を行って、試料No.19 な
いし試料No.39 を製造した。これらの試料について、耐
力(N/mm2) 、引張強さ(N/mm2) 、L方向の絞り (%) お
よび切削性をそれぞれ測定した。以下に切削性の測定要
領を記す。
As a comparative example, the above block material was subjected to external cutting and machining to form a block material having a width of 75 mm and a thickness of 26 mm as shown in FIG. 1 (b), and held at 700 ° C. for 1.5 hours. Then, Annealing 2 with air cooling was performed to manufacture Sample No. 19 to Sample No. 39. With respect to these samples, proof stress (N / mm 2 ), tensile strength (N / mm 2 ), L-direction drawing (%) and machinability were measured. The procedure for measuring machinability is described below.

【0044】(切削性)ドリル穿孔試験を行って評価し、
以下にその条件を列記する。 工具材質 : 超硬合金 (K20 相当) ドリル径 : 6 mm 送り量 : 0.1 mm/rev. 回転数 : 980 rpm 潤滑剤 : 水溶性潤滑剤、4 l/min. 穴の深さ : 15mm この条件で100 個の穴あけ試験を行ってから、ドリル刃
先の摩耗量を測定し、試料No.27 の材質を基準として下
記式で算出される値により切削性を評価した。
(Machinability) A drill piercing test was conducted to evaluate,
The conditions are listed below. Tool material: Cemented carbide (K20 equivalent) Drill diameter: 6 mm Feed rate: 0.1 mm / rev. Rotation speed: 980 rpm Lubricant: Water-soluble lubricant, 4 l / min. Hole depth: 15 mm Under these conditions After performing a drilling test of 100 pieces, the wear amount of the drill cutting edge was measured, and the machinability was evaluated by the value calculated by the following formula with reference to the material of Sample No. 27.

【0045】[0045]

【数1】 [Equation 1]

【0046】結果を表2にまとめて示す。試料No.1ない
し試料No.18 は本発明の条件を満足した条件で製造され
ているため、切削性を維持したまま延性が改善されたこ
とがわかる。試料No.19 ないし試料No.26 は、いずれ
も、本発明の比較例であって一次加工および二次加工を
行ってはいるもののその条件が本発明の範囲外であるた
め、延性が改善されていないことがわかる。
The results are summarized in Table 2. Since Sample No. 1 to Sample No. 18 were manufactured under the conditions satisfying the conditions of the present invention, it is understood that the ductility was improved while maintaining the machinability. Samples No. 19 to No. 26 are all comparative examples of the present invention, and although primary processing and secondary processing were performed, the conditions were outside the scope of the present invention, so the ductility was improved. You can see that not.

【0047】試料No.27 ないし試料No.39 は、いずれ
も、本発明の従来例であって焼鈍1、一次加工および二
次加工を行っていないため、延性が改善されていないこ
とがわかる。
Samples No. 27 to No. 39 are all conventional examples of the present invention, and since annealing 1, primary working and secondary working were not performed, it is understood that the ductility was not improved.

【0048】[0048]

【実施例2】実施例1と同一材料より、引張試験片およ
びシャルピー試験片をそれぞれ切り出し、快削性Ti合金
の延性および靱性それぞれの異方性を調査した。表3に
試験結果をまとめて示す。
Example 2 Tensile test pieces and Charpy test pieces were cut out from the same material as in Example 1, and the anisotropy of ductility and toughness of the free-cutting Ti alloy were investigated. The test results are summarized in Table 3.

【0049】表3から、本発明により製造した試料は、
L方向引張絞りについてはいずれも45%以上、T方向引
張絞りについてはいずれも30%以上となった。また、T
−L方向シャルピー衝撃値はいずれもL−T衝撃値の1/
2 以上になることが明らかになった。
From Table 3, the samples produced according to the invention are:
The L-direction tensile drawing was 45% or more, and the T-direction tensile drawing was 30% or more. Also, T
-The L-direction Charpy impact value is 1 / L of the L-T impact value
It became clear that it will be 2 or more.

【0050】試料No.19 ないし試料No.39 と、本発明例
である試料No.1ないし試料No.18 とを比較することによ
り、本発明により、粒子分散Ti合金の延性および脆性そ
れぞれの異方性をともに抑制できたことがわかる。
By comparing sample No. 19 to sample No. 39 with sample No. 1 to sample No. 18 which is an example of the present invention, according to the present invention, the ductility and brittleness of the particle-dispersed Ti alloy are different. It can be seen that both directions were suppressed.

【0051】[0051]

【表1】 [Table 1]

【0052】[0052]

【表2】 [Table 2]

【0053】[0053]

【表3】 [Table 3]

【0054】[0054]

【発明の効果】以上詳述したように、本発明により、粒
子分散Ti合金の延性を向上するとともに延性および脆性
それぞれの異方性をともに抑制できた。したがって、例
えば航空機あるいは自動車といった輸送機器の構造部材
またはその機関部の高速運動部材のように、軽量性、強
度さらには切削加工性がともに要求される部品に適用す
るのに好適なTiまたはTi合金を提供できることとなり、
軟質粒子を分散させた快削性Ti合金の使用範囲をより広
範に拡大することが可能となった。
As described above in detail, according to the present invention, it is possible to improve the ductility of the grain-dispersed Ti alloy and to suppress both anisotropy of ductility and brittleness. Therefore, Ti or Ti alloy suitable for application to parts that are required to have both lightness, strength, and machinability, such as structural members of transportation equipment such as aircraft or automobiles or high-speed moving members of engine parts thereof. Will be provided,
It has become possible to broaden the range of use of free-machining Ti alloy in which soft particles are dispersed.

【図面の簡単な説明】[Brief description of drawings]

【図1】粒子分散Ti合金の製造工程を示す説明図であ
り、図1(a) は本発明例を、図1(b) は従来例をそれぞ
れ示す。
FIG. 1 is an explanatory view showing a production process of a particle-dispersed Ti alloy, FIG. 1 (a) shows an example of the present invention, and FIG. 1 (b) shows a conventional example.

【図2】実施例2における試験片の切断要領を示す説明
図である。
FIG. 2 is an explanatory view showing a procedure for cutting a test piece in Example 2.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 TiまたはTi合金中に、REM と、P、S、
As、Sb、Bi、SeおよびTeからなる群から選ばれた1種ま
たは2種以上との化合物である軟質粒子が分散したTi合
金に、粗圧下を行ってから、500 ℃以下で1〜20%の断
面減少率の一次加工を行い、さらに700 ℃以上で10%以
上の断面減少率の二次加工を行うことを特徴とする粒子
分散Ti合金の製造方法。
1. In a Ti or Ti alloy, REM, P, S,
A Ti alloy in which soft particles, which are one or more compounds selected from the group consisting of As, Sb, Bi, Se and Te, are dispersed is subjected to rough reduction and then 1 to 20 at 500 ° C or less. % Of the cross-sectional reduction rate is first processed, and further, the secondary processing of the cross-sectional reduction rate of 10% or more is performed at 700 ° C. or higher, and a method for producing a grain-dispersed Ti alloy.
JP6061093A 1993-03-19 1993-03-19 Production of particle-dispersed ti alloy Withdrawn JPH06272005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6061093A JPH06272005A (en) 1993-03-19 1993-03-19 Production of particle-dispersed ti alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6061093A JPH06272005A (en) 1993-03-19 1993-03-19 Production of particle-dispersed ti alloy

Publications (1)

Publication Number Publication Date
JPH06272005A true JPH06272005A (en) 1994-09-27

Family

ID=13147208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6061093A Withdrawn JPH06272005A (en) 1993-03-19 1993-03-19 Production of particle-dispersed ti alloy

Country Status (1)

Country Link
JP (1) JPH06272005A (en)

Similar Documents

Publication Publication Date Title
US20190169712A1 (en) Titanium alloy with improved properties
US8454768B2 (en) Near-beta titanium alloy for high strength applications and methods for manufacturing the same
EP0408313A1 (en) Titanium base alloy and method of superplastic forming thereof
EP3822376A1 (en) ?+? type titanium alloy wire and method for producing ?+? type titanium alloy wire
KR20150008422A (en) Improved free-machining wrought aluminium alloy product and manufacturing process thereof
RU2695852C2 (en) α-β TITANIUM ALLOY
US20220136087A1 (en) Bar
EP1325965B1 (en) Ni-based alloy improved in oxidation-resistance, high temperature strength and hot workability
US11708630B2 (en) Titanium alloy with moderate strength and high ductility
JP2000219936A (en) Free-cutting steel
JPH06272005A (en) Production of particle-dispersed ti alloy
JP2002256368A (en) Al-Mg-Si BASED ALUMINUM ALLOY EXTRUSION MATERIAL HAVING EXCELLENT PRESS WORKABILITY
WO2016152663A1 (en) α-β TITANIUM ALLOY
JP2626344B2 (en) Method for improving free-cutting ability of Ti alloy and free-cutting Ti alloy
JP2004269937A (en) ABRASION RESISTANT Al-Si ALLOY SUPERIOR IN MACHINABILITY, AND CASTING METHOD THEREFOR
JP3761180B2 (en) High-strength aluminum alloy forged material and forged products using the same
JP3295910B2 (en) Method for manufacturing Ti alloy member
TW202138583A (en) Free-cutting steel and method for manufacturing same
JPH10219389A (en) High strength non-heat treated steel for hot forging, easy of breaking and separation

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000530