JPH06269938A - Method for controlling welding condition by recognizing joint shape - Google Patents

Method for controlling welding condition by recognizing joint shape

Info

Publication number
JPH06269938A
JPH06269938A JP5060084A JP6008493A JPH06269938A JP H06269938 A JPH06269938 A JP H06269938A JP 5060084 A JP5060084 A JP 5060084A JP 6008493 A JP6008493 A JP 6008493A JP H06269938 A JPH06269938 A JP H06269938A
Authority
JP
Japan
Prior art keywords
welding
sectional area
shape
joint
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5060084A
Other languages
Japanese (ja)
Inventor
Hiroyuki Sumitomo
博之 住友
Tatsuo Yamazaki
起男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP5060084A priority Critical patent/JPH06269938A/en
Publication of JPH06269938A publication Critical patent/JPH06269938A/en
Pending legal-status Critical Current

Links

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)

Abstract

PURPOSE:To form a constantly excellent weld bead even when the sectional area of the joint is changed by obtaining the sectional area of the joint shape from the joint shape recognizing data obtained by a shape recognizing sensor, and changing the welding current or the welding speed according to the change in the sectional area. CONSTITUTION:The shape of the groove and the position are recognized by a shape recognizing sensor 10 in order to form the uniform weld bead over the whole circumference and to obtain the excellent weld by producing the same shape of the upper and lower beads, and the control is realized to set a welding electrode 6 to the prescribed position. The sectional area of the groove is obtained from the data obtained by the shape recognizing sensor 10, and the welding condition is changed thereby. For example, when the sectional area is increased, the amount of the filler metal necessary to fill the section is increased. When the speed to supply the filler metal of an automatic welding machine to be used is constant, the amount of the filler metal to be supplied per unit sectional area of the groove is increased if the welding speed is reduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、形状認識センサーを
用いて溶接線を追跡する溶接方法において、継手形状認
識データに基づいて溶接条件を制御する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a welding method for tracking a welding line using a shape recognition sensor, and relates to a method for controlling welding conditions based on joint shape recognition data.

【0002】[0002]

【従来の技術】図8(a)(b)に例示したプレート式
熱交換器の単位伝熱エレメントはプレス等により成形さ
れた2枚の薄い板(1、2)から構成され、従来、内部
を流れる流体の漏洩を防ぐため周囲にガスケットを介在
させるのが一般的である。板(1、2)の板厚は例を挙
げるならば0.6mm程度である。なお、流体の出入口
となる孔や伝熱面の波形等は省略してある。
2. Description of the Related Art A unit heat transfer element of a plate heat exchanger illustrated in FIGS. 8A and 8B is composed of two thin plates (1 and 2) formed by a press or the like, and is conventionally formed by an internal structure. In order to prevent the leakage of the fluid flowing through the gasket, it is common to interpose a gasket around it. The plate thickness of the plates (1, 2) is, for example, about 0.6 mm. Incidentally, the holes serving as fluid inlets and outlets, the corrugated surface of the heat transfer surface, etc. are omitted.

【0003】板(1、2)の全周を溶接すればガスケッ
トを省くことができるが、図8(c)に示すようないわ
ゆるへり溶接では、内圧が高くなると2枚の板(1、
2)が矢印方向に剥がれるようにして変形し、溶接部に
応力集中が発生して破損しやすい。
The gasket can be omitted by welding the entire circumference of the plates (1, 2), but in so-called edge welding as shown in FIG. 8 (c), when the internal pressure becomes high, the two plates (1,
2) is deformed so that it peels off in the direction of the arrow, and stress concentration occurs in the welded portion, which easily causes damage.

【0004】ところで、溶接姿勢のうちで最良の姿勢は
下向き溶接である。溶接入熱により溶かされた湯は流動
性があるため重力により落下しようとするが、湯の表面
張力により落下が防がれる。このとき下向き姿勢であれ
ば2つの母材に均等に湯がわたるためであり、またアー
ク力で湯が飛び散るなどの現象が起きにくいためであ
る。
By the way, the best posture among the welding postures is downward welding. The molten metal melted by the heat input from the welding tends to fall due to gravity because it has fluidity, but the surface tension of the molten metal prevents the falling. This is because the molten metal is evenly spread over the two base materials in the downward posture at this time, and the phenomenon in which the molten metal splashes due to the arc force is unlikely to occur.

【0005】しかし、2枚の大型の板を縁溶接する場合
は、被溶接物を回転させることが不可能であることか
ら、全周を同一姿勢で溶接するには横向き溶接となる。
However, in the case of edge welding two large plates, it is impossible to rotate the object to be welded, and therefore horizontal welding is required to weld the entire circumference in the same posture.

【0006】一方、薄板溶接の場合、溶接入熱を大きく
すると母材が溶けすぎて穴が開く「溶け落ち」と呼ばれ
る現象が発生するため、より大きな入熱量を必要とする
溶加棒を用いる溶接方法は採用しがたい。横向き溶接で
は溶加棒が溶けた湯が重力で落下するためなおのことで
ある。しかし、溶加棒を使用しなければ湯が不足して母
材厚以上の厚さが得られないため、いわゆる「アンダー
カット」と同様の溶接欠陥となる。
On the other hand, in the case of thin plate welding, when the welding heat input is increased, a phenomenon called "melting through" occurs in which the base metal melts too much and holes are opened. Therefore, a welding rod that requires a larger heat input is used. Welding methods are difficult to adopt. This is especially true in horizontal welding because the molten metal from the filler rod falls due to gravity. However, unless a filler rod is used, the amount of hot water is insufficient and a thickness equal to or greater than the base metal thickness cannot be obtained, resulting in a welding defect similar to so-called "undercut".

【0007】そこで、本出願人は、同日付けで、開先形
状を工夫することで縁部の母材に溶加棒の代わりをさ
せ、溶加棒を加えたときと同じ湯量を確保する技術を開
示している。
Therefore, the applicant of the present invention, on the same date, has a technique for ensuring the same amount of molten metal as when the filler rod is added by substituting the filler rod for the base material of the edge by devising the groove shape. Is disclosed.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、プレス
金型の精度等によって縁部の幅寸法に不同が生じると、
縁部が溶けてできる湯の量が一定とならないため溶接ビ
ードが不均一となる。
However, when the width dimension of the edge portion is not uniform due to the precision of the press die, etc.,
The weld bead becomes non-uniform because the amount of hot water produced by melting the edges is not constant.

【0009】この発明の目的は、したがって、形状認識
センサーによる開先倣い制御において最良の溶接ビード
を形成させることにある。
Therefore, an object of the present invention is to form the best weld bead in the groove tracking control by the shape recognition sensor.

【0010】[0010]

【課題を解決するための手段】この発明は、形状認識セ
ンサーにより得られた継手形状認識データから継手形状
断面積を求め、断面積の変化に応じて溶接電流または溶
接速度を変化させるようにした。
According to the present invention, the joint shape cross-sectional area is obtained from the joint shape recognition data obtained by the shape recognition sensor, and the welding current or welding speed is changed according to the change in the cross-sectional area. .

【0011】[0011]

【作用】板厚の不同等で継手形状断面積が変化しても、
継手形状断面積に応じて溶接電流または溶接速度を変化
させることによって常に良好な溶接ビードが形成され
る。
[Operation] Even if the joint shape cross-sectional area changes due to unequal plate thickness,
A good welding bead is always formed by changing the welding current or the welding speed according to the joint shape cross-sectional area.

【0012】[0012]

【実施例】図8(a)(b)に示すような、プレス等に
より成形された2枚の薄い大型の板(1、2)を縁溶接
する場合について説明する。図1(a)は溶接前の状態
を示し、図1(b)は溶接後の状態を示している。図1
(a)に示されるように、各板(1、2)の周囲には中
央部(1c、2c)に対して段違いになった縁部(1
a、2a)があり、中央部(1c、2c)と縁部(1
a、2a)は傾斜部(1b、2b)を介して連続してい
る。板(1)と板(2)を向かい合わせにすると縁部
(1a、2a)どうしが接触する。このように互いに当
接した状態の縁部(1a、2a)を溶加棒を用いずに溶
接すると、溶接入熱により縁部(1a、2a)の母材が
溶けて幅寸法(B)に応じた量の湯を提供する。板
(1、2)の縁部(1a、2a)に図示するような開先
加工を施し、縁部(1a、2a)の幅寸法(B)を、縁
部(1a、2a)の母材が、溶接入熱により溶けて所望
のビード(3)を形成すべき湯量に相当する体積を有す
るように設定する。たとえば、各板(1、2)の板厚が
0.6mmの場合、縁部(1a、2a)の幅寸法(B)
は0.5mm程度が適当である。
EXAMPLE A case of edge-welding two thin and large plates (1, 2) formed by pressing or the like as shown in FIGS. 8A and 8B will be described. FIG. 1A shows a state before welding, and FIG. 1B shows a state after welding. Figure 1
As shown in (a), the periphery of each plate (1, 2) has a stepped edge (1
a, 2a), and the central portion (1c, 2c) and the edge portion (1
a, 2a) are continuous via the inclined portions (1b, 2b). When the plate (1) and the plate (2) face each other, the edge portions (1a, 2a) come into contact with each other. When the edge portions (1a, 2a) in such a state of being in contact with each other are welded without using a filler rod, the base material of the edge portions (1a, 2a) is melted by the heat input of welding and the width dimension (B) is changed. Providing the appropriate amount of hot water. The edges (1a, 2a) of the plates (1, 2) are groove-processed as shown, and the width dimension (B) of the edges (1a, 2a) is changed to the base material of the edges (1a, 2a). Is set so as to have a volume corresponding to the amount of molten metal that should be melted by welding heat input to form a desired bead (3). For example, when the plate thickness of each plate (1, 2) is 0.6 mm, the width dimension (B) of the edge portion (1a, 2a)
Is about 0.5 mm.

【0013】図1(b)に示されるように、溶接部の形
状は突き合わせ溶接継手のようなビード形状となり、高
い内圧に対しても、図8(c)に関連して既述したよう
な応力集中が発生しにくい。
As shown in FIG. 1 (b), the shape of the welded portion is a bead shape like a butt welded joint, and even with a high internal pressure, it is as described above with reference to FIG. 8 (c). Stress concentration is unlikely to occur.

【0014】なお、この発明を実施するために採用し得
る具体的な溶接方法は、TIG(タングステン・イナー
ト・ガス)溶接、レーザービーム溶接等の溶加棒を使用
せずに溶接が可能な溶接方法である。
A specific welding method that can be adopted to carry out the present invention is welding that can be performed without using a filler rod, such as TIG (tungsten inert gas) welding and laser beam welding. Is the way.

【0015】上述の縁溶接をするに際しては、図2に示
すように、被溶接物たる板(1、2)を向かい合わせに
重ね合わせてクランプ(4)とクランプベッド(5)の
間に水平に固定し、溶接電極(6)を被溶接物の溶接線
に沿って移動させる。移動軸は長軸(7)と短軸(8)
と回転軸(9)とからなる。溶接電極(6)は回転軸
(9)に取り付けられ、図3に示すように、形状認識セ
ンサー(10)、垂直倣い軸(11)、水平倣い軸(12)に
よって倣い制御が行なわれる。
When performing the above-mentioned edge welding, as shown in FIG. 2, the plates (1, 2) as the objects to be welded are placed face-to-face with each other and horizontally placed between the clamp (4) and the clamp bed (5). Then, the welding electrode (6) is moved along the welding line of the object to be welded. Movement axis is long axis (7) and short axis (8)
And a rotary shaft (9). The welding electrode (6) is attached to the rotating shaft (9), and as shown in FIG. 3, scanning control is performed by the shape recognition sensor (10), the vertical scanning shaft (11), and the horizontal scanning shaft (12).

【0016】全周にわたり均一な溶接ビードを形成させ
るとともに上下のビード形状を等しくして良好な溶接を
得るために、形状認識センサー(10)で開先形状とその
位置を認識し、溶接電極(6)を所定位置に合わせるよ
うに制御する。溶接電極(6)の所定位置とは、水平方
向(アーク長)は溶接電源の仕様によって任意に決定さ
れ、これを一定に保つことが溶接入熱を一定にすること
であり、全周にわたり均一なビードを形成させることに
なる。また、垂直方向は開先中央よりやや上に電極を合
わせることで重力による湯の流れが等しくなり、上下の
ビード形状を等しくすることができる。
In order to form a uniform weld bead over the entire circumference and to obtain good welding by equalizing the upper and lower bead shapes, the shape recognition sensor (10) recognizes the groove shape and its position, and the welding electrode ( 6) is controlled so as to match the predetermined position. The predetermined position of the welding electrode (6) is arbitrarily determined by the specifications of the welding power source in the horizontal direction (arc length), and keeping it constant means that the welding heat input is constant, and it is uniform over the entire circumference. Will be formed. Further, by vertically aligning the electrodes slightly above the groove center, the flow of hot water due to gravity becomes equal, and the upper and lower bead shapes can be made equal.

【0017】形状認識センサー(10)としては、たとえ
ばレーザービームを用いるタイプを採用することができ
る。形状認識センサーは、三角測量と同じ考え方で、図
4(a)に示すように、三角形の2角とその挟辺から仮
想三角形ABCを決定し、計測物の位置を知る方法であ
る。形状認識センサーではA点が発光部、C点が受光部
となり、A点の発光角度θ1とAC間の距離Lが既知で
受光角度θ2を知ることで被計測点Bの位置が求められ
る。図4(a)のθ1 を連続して変化させることで図4
(b)のように、被計測物の外形点B1、B2、B3 が連
続して求まり、それぞれを結べば被計測物の形状が分か
る。A点、C点の構成要素としては図4(c)に示すよ
うに、光源(13)からの光を反射する鏡(14)が発光部
であり、θ 1=180゜−2×θ3 によって発光角度が与え
られる。一方、受光部は凸レンズ(15)で、その焦点距
離にフォトダイオード、CCD等の素子(16)が配列さ
れ、受光量の最も多い位置Dがそれらの素子によって特
定される。焦点距離WとD点位置Xから直角三角形CD
Eが求められ、θ2=90°±θ4によって受光角度が分か
る。
As the shape recognition sensor (10),
If you use a laser beam type
It The shape recognition sensor has the same concept as triangulation.
As shown in Fig. 4 (a), the two corners of the triangle and their
This is a method of deciding the idea triangle ABC and knowing the position of the measured object.
It In the shape recognition sensor, point A is the light emitting part and point C is the light receiving part.
And the emission angle θ at point A1And the distance L between AC is known
Light receiving angle θ2The position of the measured point B can be obtained by knowing
It Θ in FIG. 4 (a)1 By continuously changing
As shown in (b), the outline point B of the measured object1, B2, B3 Are
You can find the shape of the object to be measured by connecting them.
It The components of points A and C are shown in Fig. 4 (c).
The mirror (14) that reflects the light from the light source (13)
And θ 1= 180 ° -2 × θ3 Gives the emission angle by
To be On the other hand, the light receiving part is a convex lens (15),
Elements (16) such as photodiodes and CCDs are arranged in a distance.
The position D, which receives the largest amount of light, is detected by these elements.
Is determined. Right-angled triangle CD from focal point W and D point position X
E is calculated, θ2= 90 ° ± θFourDepending on the light receiving angle
It

【0018】図5(a)に示すようなプレート縁継手を
レーザービームを用いた形状認識センサー(10)で認識
すると、図5(b)のようになる。プレート縁継手の端
面データはBからCまでであるが、開先中心位置はB、
C間データの算術平均値とする。または、B、C2点の
算術平均値とする。B点、C点の求め方は、形状の最端
データA、Dと各データを結んだ直線の傾きの絶対値を
比較し、A点から結んだもののうち最も小さいものをB
とし、D点から結んだもののうち最も小さいものをCと
する。ただし、レーザー光の照射方向によってはD点が
計測されない場合もあり、その場合はC点をD点、E点
をB点と誤認してしまうので、B−C間の傾きの絶対値
がA−B間の傾きのそれより大きいという確認を行い、
もし小さい場合にはD点をC点と置き換える。
When the plate edge joint as shown in FIG. 5 (a) is recognized by the shape recognition sensor (10) using a laser beam, it becomes as shown in FIG. 5 (b). The end face data of the plate edge joint is from B to C, but the groove center position is B,
The arithmetic mean of the data between C is used. Alternatively, the arithmetic mean value of B and C points is used. The points B and C are obtained by comparing the absolute values of the slopes of the straight lines connecting the end data A and D of the shape with the respective data, and selecting the smallest one from the points A to B.
And the smallest one connected from the point D is C. However, the D point may not be measured depending on the irradiation direction of the laser light, and in that case, the C point is mistakenly recognized as the D point and the E point is the B point. Therefore, the absolute value of the inclination between B and C is A. Confirm that the slope between −B is larger than that,
If it is smaller, point D is replaced with point C.

【0019】図1(a)のプレート縁継手の場合、縁部
(1a、2a)の幅寸法(B)が溶加棒の径と同じ意味
を持つので、溶加棒が太くなれば溶接電流値を大きくし
なければ良好な溶け込みが得られないのと同じく、縁部
の幅寸法(B)が長くなれば溶接電流を大きくする必要
がある。これを形状認識センサー(10)のデータから読
み取り、たとえば、計算式I=C×Bから溶接電流値を
決定する。ここに、Iは溶接電流(A)、Cは比例定数
(A/mm)、Bは縁部の幅寸法(mm)である。
In the case of the plate edge joint of FIG. 1 (a), the width dimension (B) of the edge portions (1a, 2a) has the same meaning as the diameter of the filler rod. Just as a good value cannot be obtained unless the value is increased, it is necessary to increase the welding current if the width dimension (B) of the edge portion is increased. This is read from the data of the shape recognition sensor (10) and, for example, the welding current value is determined from the calculation formula I = C × B. Here, I is the welding current (A), C is the proportional constant (A / mm), and B is the width dimension (mm) of the edge portion.

【0020】この発明は、図6および図7に示すような
突き合わせ溶接にも適用することができる。図6および
図7はV形開先(片側突き合わせ溶接)とX形開先(両
側突き合わせ溶接)とについて、それぞれ溶接前と溶接
後を示している。図6(a)に示すV形開先の場合、溶
接後は図6(b)の斜線部ようなビード形状となる。図
7(a)に示すX形開先の場合、溶接後は図7(b)に
斜線部のようなビード形状となる。これらの場合も形状
認識センサー(10)で得られるデータから開先断面積を
求め、それにより溶接条件を変更する。たとえば、断面
積が大きくなるとその断面を埋めるのに必要な溶加棒の
量は多くなる。使用する自動溶接機の溶加棒供給速度が
一定の場合、溶接速度を遅くすれば開先単位断面当たり
の溶加棒供給量は多くなる。この場合、溶接速度はU=
K÷Aで表される。ここに、Uは溶接速度(mm/mi
n)、Kは比例定数(mm3/min)、Aは開先断面積(m
m2)である。このほか溶加棒供給量を多くして溶接電流
を高くする方法も考えられる。
The present invention can also be applied to butt welding as shown in FIGS. 6 and 7. 6 and 7 show the V-shaped groove (one-side butt welding) and the X-shaped groove (both-side butt welding) before and after welding, respectively. In the case of the V-shaped groove shown in FIG. 6A, after welding, the bead shape is as shown by the hatched portion in FIG. 6B. In the case of the X-shaped groove shown in FIG. 7A, after welding, the bead shape is as shown by the hatched portion in FIG. 7B. In these cases as well, the groove cross-sectional area is obtained from the data obtained by the shape recognition sensor (10), and the welding conditions are changed accordingly. For example, the larger the cross-sectional area, the greater the amount of filler rod needed to fill the cross-section. If the welding rod supply speed of the automatic welding machine used is constant, the welding rod supply amount per unit cross section of the groove increases if the welding speed is slowed down. In this case, the welding speed is U =
It is represented by K ÷ A. Where U is the welding speed (mm / mi
n), K are proportional constants (mm 3 / min), A is the groove cross-sectional area (m
m 2 ). In addition to this, a method of increasing the welding rod supply amount to increase the welding current can be considered.

【0021】[0021]

【発明の効果】以上説明したように、この発明は、形状
認識センサーにより得られた継手形状認識データから継
手形状断面積を求め、断面積の変化に応じて溶接電流ま
たは溶接速度を変化させるようにしたものであるから、
板厚の不同等で継手形状断面積が変化しても、常に良好
な溶接ビードが形成される。
As described above, according to the present invention, the joint shape sectional area is obtained from the joint shape recognition data obtained by the shape recognition sensor, and the welding current or welding speed is changed according to the change of the sectional area. Because it was
Even if the joint shape cross-sectional area changes due to unequal plate thickness, a good weld bead is always formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例を説明するための溶接前の断面図(a)
および溶接後の断面図(b)
FIG. 1 is a sectional view before welding for explaining an embodiment (a).
And sectional view after welding (b)

【図2】溶接装置の側面図FIG. 2 is a side view of the welding device.

【図3】溶接装置の斜視図FIG. 3 is a perspective view of a welding device.

【図4】形状認識センサーの原理を説明するための略図FIG. 4 is a schematic diagram for explaining the principle of the shape recognition sensor.

【図5】プレート縁継手の断面図(a)および形状認識
センサーで得られたデータの線図(b)
FIG. 5 is a sectional view of the plate edge joint (a) and a diagram of data obtained by the shape recognition sensor (b).

【図6】V形開先の溶接前(a)および溶接後(b)の
断面図
FIG. 6 is a sectional view of a V-shaped groove before welding (a) and after welding (b).

【図7】X形開先の溶接前(a)および溶接後(b)の
断面図
FIG. 7 is a cross-sectional view of an X-shaped groove before welding (a) and after welding (b).

【図8】従来の技術を説明するための伝熱エレメントの
正面図(a)、一部破断平面図(b)および拡大断面図
(c)
FIG. 8 is a front view (a), a partially cutaway plan view (b) and an enlarged sectional view (c) of a heat transfer element for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1、2 板 1a、2a 縁部 1b、2b 傾斜部 1c、2c 中央部 3 ビード B 縁部の幅寸法 4 クランプ 5 クランプベッド 6 溶接電極 7 移動軸(長軸) 8 移動軸(短軸) 9 移動軸(回転軸) 10 形状認識センサー 11 垂直倣い軸 12 水平倣い軸 1, 2 Plates 1a, 2a Edges 1b, 2b Slopes 1c, 2c Center 3 Beads B Edge width 4 Clamp 5 Clamp bed 6 Welding electrode 7 Moving axis (long axis) 8 Moving axis (minor axis) 9 Moving axis (rotating axis) 10 Shape recognition sensor 11 Vertical scanning axis 12 Horizontal scanning axis

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 形状認識センサーにより得られた継手形
状認識データから継手形状断面積を求め、断面積の変化
に応じて溶接電流または溶接速度を変化させることを特
徴とする継手形状認識による溶接条件制御方法。
1. A welding condition by joint shape recognition, characterized in that a joint shape sectional area is obtained from joint shape recognition data obtained by a shape recognition sensor, and a welding current or a welding speed is changed according to a change in the sectional area. Control method.
JP5060084A 1993-03-19 1993-03-19 Method for controlling welding condition by recognizing joint shape Pending JPH06269938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5060084A JPH06269938A (en) 1993-03-19 1993-03-19 Method for controlling welding condition by recognizing joint shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5060084A JPH06269938A (en) 1993-03-19 1993-03-19 Method for controlling welding condition by recognizing joint shape

Publications (1)

Publication Number Publication Date
JPH06269938A true JPH06269938A (en) 1994-09-27

Family

ID=13131871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5060084A Pending JPH06269938A (en) 1993-03-19 1993-03-19 Method for controlling welding condition by recognizing joint shape

Country Status (1)

Country Link
JP (1) JPH06269938A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313484B1 (en) * 1999-06-18 2001-11-15 김형벽ㅂ Optimum fill area control method according to variation of groove area by using constant voltage characteristic
CN108838611A (en) * 2018-09-05 2018-11-20 南京天河汽车零部件股份有限公司 A kind of light sensation automatic lifting rotary machine device people's welding bench

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100313484B1 (en) * 1999-06-18 2001-11-15 김형벽ㅂ Optimum fill area control method according to variation of groove area by using constant voltage characteristic
CN108838611A (en) * 2018-09-05 2018-11-20 南京天河汽车零部件股份有限公司 A kind of light sensation automatic lifting rotary machine device people's welding bench

Similar Documents

Publication Publication Date Title
CN109175689B (en) Self-adaptive fillet welding system based on visual detection and working method
JPH04336304A (en) Method and apparatus for manufacturing metal product
JP2008119750A (en) Laser brazing method
US20020153363A1 (en) Welding method and welded joint structure
WO2014020420A2 (en) Method and system of hot wire joint design for out-of-position welding
CN105171234B (en) Robotic laser welds defocusing amount automatic regulating apparatus and its automatic adjusting method
AU4865000A (en) Method and system for welding railroad rails
CN1962155A (en) CO2 laser welding apparatus
US5883354A (en) Method of fastening a strip of thin sheet metal on a conical separation disc of thin sheet metal, and a separation disc provided in this manner with a strip of thin sheet metal
JP2007237187A (en) Method and apparatus for temporary soldering of friction stir welding
JP2791400B2 (en) Consumable electrode type arc welding method and arc welding apparatus
JPH06269938A (en) Method for controlling welding condition by recognizing joint shape
JPH06269943A (en) Method for recognizing center of groove of plate edge joint
KR20210039300A (en) Sliding copper backing plate for welding and welding method
EP0471738A1 (en) Joining method
JPH06269942A (en) Method for controlling groove copying in welding of thin plate edge
CN114192983A (en) Laser self-fluxing welding method
JPH06640A (en) Horizontal multilayer welding method
JP4117526B2 (en) Multi-layer prime welding method for X groove joint
EP0049037A1 (en) Method and apparatus for the narrow gap welding of thick tubes
JP4237963B2 (en) Welding position automatic scanning control device
JP3532067B2 (en) Arc sensor copying control method
JPS6117364A (en) Double electrode type narrow groove welding
JP2003053540A (en) Welding method and welding equipment using this welding method
KR102591186B1 (en) Welding robot that can perform precise welding by correcting distance from welding line according to difference in gradient of joint of pair of steel pipes by performing weaving operation at appropriate hertz to prevent thermal deformation while forming correct welding bead

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020226