JPH0626966A - Manufacture of semiconductor thin film - Google Patents

Manufacture of semiconductor thin film

Info

Publication number
JPH0626966A
JPH0626966A JP18112292A JP18112292A JPH0626966A JP H0626966 A JPH0626966 A JP H0626966A JP 18112292 A JP18112292 A JP 18112292A JP 18112292 A JP18112292 A JP 18112292A JP H0626966 A JPH0626966 A JP H0626966A
Authority
JP
Japan
Prior art keywords
thin film
gas
semiconductor thin
crystallization
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18112292A
Other languages
Japanese (ja)
Inventor
Koji Mori
孝二 森
Nobuaki Kondo
信昭 近藤
Masamune Kusunoki
雅統 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP18112292A priority Critical patent/JPH0626966A/en
Publication of JPH0626966A publication Critical patent/JPH0626966A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a specified stable semiconductor thin film controlled in grain size of crystal grain by using a gas having a specified thermal conductivity as an atmospheric gas at crystallization, and conducting crystallization in this gas atmosphere. CONSTITUTION:By using a gas having a high thermal conductivity as an atmospheric gas making contact with a sample surface, crystallization just after laser beam irradiation is generated from both a foundation base 1 and a thin film surface, whereby the dispersion in grain size of crystal grain is minimized, and the part having a larger grain size is present in the middle between the surface and the base 1. By using the gas having a good thermal conductivity as the atmospheric gas, a crystal layer comparatively controlled in grain size can be formed. The thermal conductivity of the atmospheric gas can be conformed to or closer to the thermal conductivity of the base 1 by combination of gas kinds, and as the atmospheric gas at crystallization, a gas having a thermal conductivity (h) satisfying the condition of 0.03 (W/m.K)<k (at 0 deg.C) is used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、液晶ディスプレイ、壁
掛テレビ等に用いられる薄膜トランジスタの製造等に応
用される半導体薄膜の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor thin film applied to the manufacture of thin film transistors used in liquid crystal displays, wall-mounted televisions and the like.

【0002】[0002]

【従来の技術】従来、薄膜トランジスタ(TFT:Thin
Film Transistor)等に用いられる半導体薄膜の製造方
法として、絶縁性基板上に形成したアモルファスシリコ
ン(a−Si)等の非晶質材料を結晶化してなる製造方
法が知られている(特開昭62−36854号、特開平
2−177443号等)。そして、この絶縁性基板上に
形成した非晶質材料を結晶化する方法としては以下の2
つがある。 基板上のa−Si膜をレーザアニールにより結晶化
し、この時の雰囲気は真空中かN2 あるいは大気中で結
晶化している。 ガラス基板上のa−Si膜をエキシマレーザアニール
による結晶化している。
2. Description of the Related Art Conventionally, a thin film transistor (TFT) is used.
As a method for manufacturing a semiconductor thin film used for a film transistor, etc., there is known a manufacturing method in which an amorphous material such as amorphous silicon (a-Si) formed on an insulating substrate is crystallized (Japanese Patent Laid-Open Publication No. Sho. 62-36854, JP-A-2-177443, etc.). The following two methods are available for crystallizing the amorphous material formed on the insulating substrate.
There is one. The a-Si film on the substrate is crystallized by laser annealing, and the atmosphere at this time is crystallized in vacuum, N 2 or the atmosphere. The a-Si film on the glass substrate is crystallized by excimer laser annealing.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、上記
,の結晶化方法には以下の欠点がある。の方法で
a−Siを結晶化する場合、レーザ照射面でa−Siが
結晶化する際、熱の伝導が悪いため、結晶化時の周囲温
度にばらつきが生じ、均一な温度で冷却できず、その結
果、粒径がばらついてしまう。の方法でガラス基板上
に形成したa−Siを結晶化する場合、ガラス基板その
ものがフレキシブルでないため、用途が限られてしま
う。本発明は上記事情に鑑みてなされたものであって、
基板上に形成した非晶質材料からなる薄膜の結晶化時
に、結晶粒の粒径が制御され、特性の安定した半導体薄
膜が得られる半導体薄膜の製造方法を提供することを目
的とする。
However, the above crystallization method has the following drawbacks. When a-Si is crystallized by the method of 1), when a-Si is crystallized on the laser irradiation surface, heat conduction is poor, so that the ambient temperature at the time of crystallization varies and it cannot be cooled at a uniform temperature. As a result, the particle size varies. In the case of crystallizing a-Si formed on the glass substrate by the above method, the use is limited because the glass substrate itself is not flexible. The present invention has been made in view of the above circumstances,
An object of the present invention is to provide a method for manufacturing a semiconductor thin film, in which a grain size of crystal grains is controlled during crystallization of a thin film made of an amorphous material formed on a substrate to obtain a semiconductor thin film having stable characteristics.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明は、絶縁性基板上に形成した非晶質
材料を結晶化してなる半導体薄膜の製造方法において、
結晶化時の雰囲気ガスとして以下の熱伝導率(κ)を有
するガスを用い、このガス雰囲気中で結晶化することを
特徴とする。 0.03(W/m・K)<κ (at.0℃)
In order to achieve the above object, the invention of claim 1 is a method for manufacturing a semiconductor thin film, which is formed by crystallizing an amorphous material formed on an insulating substrate,
A gas having the following thermal conductivity (κ) is used as an atmospheric gas at the time of crystallization, and crystallization is performed in this gas atmosphere. 0.03 (W / mK) <κ (at 0 ° C)

【0005】ここで上記半導体薄膜の製造方法におい
て、雰囲気ガスとしては、Ne,He,H2 のうち少な
くとも1種類が含まれたガスを用い、このガス雰囲気中
で結晶化することを特徴とする(請求項2)。また、上
記半導体薄膜の製造方法において、結晶化時の雰囲気ガ
ス圧(P)は、0.1〜100torrの間であることを特
徴とする(請求項3)。また、上記半導体薄膜の製造方
法において、非晶質材料はアモルファスシリコンを主母
材としたことを特徴とする(請求項4)。また、上記半
導体薄膜の製造方法において、結晶化にはエキシマレー
ザを用いた光プロセスにより行うことを特徴とする(請
求項5)。また、上記半導体薄膜の製造方法において、
絶縁性基板はプラスチックフィルムであることを特徴と
する(請求項6)。
In the method of manufacturing a semiconductor thin film, a gas containing at least one of Ne, He and H 2 is used as an atmosphere gas, and crystallization is performed in this gas atmosphere. (Claim 2). Further, in the method for manufacturing a semiconductor thin film, the atmospheric gas pressure (P) during crystallization is between 0.1 and 100 torr (claim 3). Further, in the method for manufacturing a semiconductor thin film, the amorphous material is mainly composed of amorphous silicon (claim 4). Further, in the method for manufacturing a semiconductor thin film, crystallization is performed by an optical process using an excimer laser (claim 5). In the method for manufacturing a semiconductor thin film,
The insulating substrate is a plastic film (claim 6).

【0006】[0006]

【作用】本発明の半導体薄膜の製造方法においては、フ
レキシブルなプラスチック基板等の絶縁性基板上にa−
Si等の非晶質材料からなる薄膜を形成し、該薄膜を結
晶化するに際して、結晶化時の雰囲気ガスに熱伝導率
(κ)が0.03(W/m・K)以上の熱伝導性の良い
ガスを用いることで、粒径が制御され、特性の安定した
半導体薄膜を得ることができる。
In the method for producing a semiconductor thin film of the present invention, a- is formed on an insulating substrate such as a flexible plastic substrate.
When a thin film made of an amorphous material such as Si is formed and the thin film is crystallized, the thermal conductivity (κ) is 0.03 (W / m · K) or more in the atmosphere gas during crystallization. By using a gas having good properties, it is possible to control the grain size and obtain a semiconductor thin film with stable characteristics.

【0007】[0007]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。絶縁性基板上に非晶質膜を形成し、それを
結晶化するとき、その試料を包む雰囲気ガスに熱伝導率
の大きいガスを選ぶことで、粒径が制御された結晶性薄
膜を得ることが可能となる。従来、非晶質薄膜の結晶化
方法としては、図2(1)〜(4)に示すように、真空
中(あるいは低熱伝導ガス雰囲気)で試料表面にレーザ
光を照射して加熱し溶融状態とした後に冷却して結晶化
する、レーザアニールが多かったが、真空中では、レー
ザアニール直後の試料は、その試料表面と接する雰囲気
の熱伝導率が低いため、図2(3)のように、結晶化は
下地基板側から起こることになり、図2(4)のような
結晶状態になる。これは、試料表面で比較的粒径の大き
い層が形成されるが、冷却に伴う結晶化は、熱伝導性の
比較的良い下地基板側から起きることになり、それが表
面に向かって成長することになる。その結果、試料表面
では粒径の大きい結晶粒ができる反面、表面での粒径の
ばらつきは下地からの距離が増える分大きくなることに
なる。この粒径のばらつきは、素子特性(例えば、薄膜
トランジスタのしきい値電圧Vth、等)のばらつきを生
むことになる。また、粒径のばらつきは、素子の経時変
化のばらつきも大きくなることになり、信頼性上も問題
となる。
Embodiments of the present invention will be described below with reference to the drawings. When an amorphous film is formed on an insulating substrate and crystallized, a crystalline thin film with a controlled grain size can be obtained by selecting a gas with a high thermal conductivity as the atmosphere gas that surrounds the sample. Is possible. Conventionally, as a method of crystallizing an amorphous thin film, as shown in FIGS. 2 (1) to (4), a sample surface is irradiated with laser light in a vacuum (or a low thermal conductive gas atmosphere) to be heated and melted. After laser annealing, there was a lot of laser annealing in which the sample was cooled and crystallized, but in vacuum, the sample immediately after laser annealing had a low thermal conductivity in the atmosphere in contact with the sample surface, so as shown in FIG. The crystallization will occur from the side of the base substrate, resulting in a crystal state as shown in FIG. This is because a layer with a relatively large grain size is formed on the sample surface, but crystallization accompanying cooling occurs from the side of the base substrate with relatively good thermal conductivity, and it grows toward the surface. It will be. As a result, while crystal grains having a large grain size are formed on the surface of the sample, the variation in grain size on the surface increases as the distance from the base increases. This variation in grain size causes variations in device characteristics (for example, the threshold voltage Vth of the thin film transistor). In addition, the variation in the grain size also causes the variation in the aging of the device to be large, which causes a problem in reliability.

【0008】一方、本発明では、図1(1)〜(4)に
示すように、試料表面に接する雰囲気ガスに熱伝導率の
高いガスを用い、このガス雰囲気でレーザアニールを行
うことにより、レーザ光照射直後の結晶化は、図1
(3)に示すように下地基板1と薄膜表面の両方から起
きることになり、結晶粒の粒径のばらつきが小さくなる
と同時に、粒径の大きい部分は表面と下地基板の中間に
存在することになり、例えばトランジスタの特性を決め
る移動度は、この粒径の大きい層で決められ、表面から
の水分吸着等の外乱の影響が無くなり、安定した特性を
持つ結晶層となる。このように、本発明では、雰囲気ガ
スに熱伝導率の良いガスを用いることで、粒径が比較的
制御された結晶層を作ることが可能となる。また、下地
基板の熱伝導率(κ1)に対して、雰囲気ガスの熱伝導率
(κ)はガス種を組合せることによって、それに合わせ
る、または近づけることが可能であり、任意の設定が可
能である。尚、本発明では、結晶化時の雰囲気ガスとし
て、熱伝導率(κ)が、 0.03(W/m・K)<κ (at.0℃) の条件を満たすガスを用いる。
On the other hand, in the present invention, as shown in FIGS. 1 (1) to 1 (4), a gas having a high thermal conductivity is used as an atmosphere gas in contact with the surface of the sample, and laser annealing is performed in this gas atmosphere. Crystallization immediately after laser light irradiation is shown in Fig. 1.
As shown in (3), this occurs from both the base substrate 1 and the surface of the thin film, and the variation in the grain size of the crystal grains is reduced, and at the same time, the large grain size portion exists between the surface and the base substrate. For example, the mobility that determines the characteristics of the transistor is determined by the layer having a large grain size, the influence of disturbance such as water adsorption from the surface is eliminated, and the crystal layer has stable characteristics. As described above, in the present invention, by using a gas having a high thermal conductivity as the atmospheric gas, it becomes possible to form a crystal layer having a relatively controlled grain size. In addition, the thermal conductivity (κ) of the atmospheric gas can be matched or approximated to the thermal conductivity (κ 1 ) of the base substrate by combining gas species, and can be set arbitrarily. Is. In the present invention, a gas having a thermal conductivity (κ) of 0.03 (W / m · K) <κ (at 0 ° C.) is used as an atmospheric gas during crystallization.

【0009】ここで表1に、下地基板材料及び本発明で
使用したガスの熱伝導率を示す。尚、ガスについては、
雰囲気のガス圧を1〜100torrの間に設定することで
実質的な熱伝導量もコントロールできることがわかって
いる。
Table 1 shows the thermal conductivity of the base substrate material and the gas used in the present invention. Regarding the gas,
It has been found that the amount of heat conduction can be controlled substantially by setting the gas pressure of the atmosphere to be between 1 and 100 torr.

【表1】 [Table 1]

【0010】次に、本発明の具体的な実施例について述
べる。 [実施例1]基板としてプラスチックフィルム(PE
T:ポリエチレンテレフタレート)を用い、このプラス
チックフィルム上にアモルファスシリコン(a−Si)
を形成する。製膜はECR法により、SiH4:10S
CCM,圧力5×10~3torr,マイクロ波パワー40
0W,基板温度室温,膜厚3000Åで行った。さら
に、結晶化時のKrF(λ=248nm)エキシマレー
ザ照射条件は、100mJ/cm2,1〜10shotで行
う。このとき、ガス雰囲気は、Heガス50torrで行っ
た。このようにして形成された半導体薄膜の最大結晶粒
は500Åで、表面から1000Å前後の深さに集中し
て形成されていた。
Next, concrete examples of the present invention will be described. [Example 1] A plastic film (PE
T: polyethylene terephthalate) and amorphous silicon (a-Si) on this plastic film.
To form. The film is formed by ECR method by SiH 4 : 10S
CCM, pressure 5 × 10 ~ 3 torr, microwave power 40
The test was performed at 0 W, a substrate temperature of room temperature, and a film thickness of 3000 liters. Furthermore, the KrF (λ = 248 nm) excimer laser irradiation condition during crystallization is 100 mJ / cm 2 , 1 to 10 shots. At this time, the gas atmosphere was He gas of 50 torr. The maximum crystal grain of the semiconductor thin film thus formed was 500 Å, and it was formed concentrated at a depth of about 1000 Å from the surface.

【0011】[実施例2]PES(ポリエチレンスルフ
ォン)フィルム上にSiO2 をコートした基板フィルム
に、真空蒸着法でa−Si膜を5000Å蒸着した。
尚、蒸着装置としては図3に示すような構成の蒸着装置
を用い、蒸着条件は、到達圧力1×10~7torr,雰囲気
ガス(Ar+H2)10~3torr,H2/Ar+H2=0.
2でSi蒸着を行った。さらに結晶化時には、その膜を
2:Ne=9:1,圧力10torrの雰囲気で、レーザ
照射条件は、XeClレーザ(λ=308nm),50
mJ/cm2,shot数5〜25で結晶化を行った。この
ようにして、結晶粒300Åの半導体層を得ることがで
きた。
[Example 2] An a-Si film of 5000 Å was vapor-deposited on a substrate film obtained by coating a PES (polyethylene sulfone) film with SiO 2 by a vacuum vapor deposition method.
A vapor deposition apparatus having a structure as shown in FIG. 3 was used as the vapor deposition apparatus. The vapor deposition conditions were as follows: ultimate pressure 1 × 10 to 7 torr, atmospheric gas (Ar + H 2 ) 10 to 3 torr, H 2 / Ar + H 2 = 0. .
Si vapor deposition was performed at 2. Further, at the time of crystallization, the film is in an atmosphere of H 2 : Ne = 9: 1 and a pressure of 10 torr, and laser irradiation conditions are XeCl laser (λ = 308 nm), 50
Crystallization was performed at mJ / cm 2 and a shot number of 5 to 25. In this way, a semiconductor layer having a crystal grain of 300 Å could be obtained.

【0012】[0012]

【発明の効果】以上説明したように、請求項1記載の半
導体薄膜の製造方法においては、フレキシブルなプラス
チック基板等の絶縁性基板上にa−Si等の非晶質材料
からなる薄膜を形成し、該薄膜を結晶化するに際して、
結晶化時の雰囲気ガスに熱伝導率(κ)が0.03(W
/m・K)以上の熱伝導性の良いガスを用いることで、
粒径が制御され、特性の安定した半導体薄膜を得ること
ができる。従って、結晶粒の粒径が制御され、特性の安
定した薄膜トランジスタ等を実現できる。
As described above, in the method of manufacturing a semiconductor thin film according to the first aspect, a thin film made of an amorphous material such as a-Si is formed on an insulating substrate such as a flexible plastic substrate. When crystallizing the thin film,
The thermal conductivity (κ) is 0.03 (W
/ M · K) or higher gas with good thermal conductivity,
It is possible to obtain a semiconductor thin film whose particle size is controlled and whose characteristics are stable. Therefore, the grain size of crystal grains is controlled, and a thin film transistor or the like having stable characteristics can be realized.

【0013】請求項2記載の半導体薄膜の製造方法にお
いては、熱伝導率の高い、あるいは下地基板の熱伝導率
にマッチングしたガス雰囲気中でアニールすることによ
り、結晶粒の揃った半導体層を実現できる。
In the method of manufacturing a semiconductor thin film according to the present invention, a semiconductor layer having uniform crystal grains is realized by annealing in a gas atmosphere having a high thermal conductivity or matching the thermal conductivity of the underlying substrate. it can.

【0014】請求項3記載の半導体薄膜の製造方法にお
いては、雰囲気ガスの圧力を制御することで熱の伝導量
を制御でき、結晶化時の粒径をコントロールすることが
容易となり、制御性の良い半導体薄膜が実現できる。
In the method of manufacturing a semiconductor thin film according to the third aspect of the present invention, the amount of heat conduction can be controlled by controlling the pressure of the atmospheric gas, and it becomes easy to control the grain size during crystallization. A good semiconductor thin film can be realized.

【0015】請求項4記載の半導体薄膜の製造方法にお
いては、アモルファスシリコンを結晶化することで、最
も良質な、かつ安定した薄膜トランジスタが実現でき
る。
In the method of manufacturing a semiconductor thin film according to the fourth aspect, by crystallizing amorphous silicon, the thin film transistor of the highest quality and stable can be realized.

【0016】請求項5記載の半導体薄膜の製造方法にお
いては、結晶化に際して、エキシマレーザを照射するこ
とで、下地ダメージの比較的少ない結晶層が実現でき
る。
In the method of manufacturing a semiconductor thin film according to the fifth aspect, by irradiating an excimer laser at the time of crystallization, a crystal layer with a relatively small amount of base damage can be realized.

【0017】請求項6記載の半導体薄膜の製造方法にお
いては、プラスチックフィルムを用いたトランジスタを
実現でき、今まで用いられなかった分野での用途が広が
る。具体的には、フレキシブルで軽量な液晶ディスプレ
イ(LCD)等のデバイスが実現できる。
In the method of manufacturing a semiconductor thin film according to the sixth aspect, a transistor using a plastic film can be realized, and the application is expanded in fields that have not been used until now. Specifically, a flexible and lightweight device such as a liquid crystal display (LCD) can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による半導体薄膜の製造方法の説明図で
ある。
FIG. 1 is an explanatory view of a method for manufacturing a semiconductor thin film according to the present invention.

【図2】従来の半導体薄膜の製造方法の説明図である。FIG. 2 is an explanatory diagram of a conventional method for manufacturing a semiconductor thin film.

【図3】半導体薄膜の製膜等に用いられる装置の一例を
示す図であって、蒸着装置の概略構成図である。
FIG. 3 is a diagram showing an example of an apparatus used for forming a semiconductor thin film and is a schematic configuration diagram of a vapor deposition apparatus.

【符号の説明】[Explanation of symbols]

1・・・基板 2・・・非晶質材料層(半導体薄膜) 1 ... Substrate 2 ... Amorphous material layer (semiconductor thin film)

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】絶縁性基板上に形成した非晶質材料を結晶
化してなる半導体薄膜の製造方法において、結晶化時の
雰囲気ガスとして以下の熱伝導率(κ)を有するガスを
用い、このガス雰囲気中で結晶化することを特徴とする
半導体薄膜の製造方法。 0.03(W/m・K)<κ (at.0℃)
1. A method for producing a semiconductor thin film, which comprises crystallizing an amorphous material formed on an insulating substrate, wherein a gas having the following thermal conductivity (κ) is used as an atmospheric gas at the time of crystallization. A method for producing a semiconductor thin film, which comprises crystallization in a gas atmosphere. 0.03 (W / mK) <κ (at 0 ° C)
【請求項2】請求項1記載の半導体薄膜の製造方法にお
いて、雰囲気ガスとしては、Ne,He,H2 のうち少
なくとも1種類が含まれたガスを用い、このガス雰囲気
中で結晶化することを特徴とする半導体薄膜の製造方
法。
2. The method for producing a semiconductor thin film according to claim 1, wherein a gas containing at least one of Ne, He and H 2 is used as an atmosphere gas, and crystallization is performed in this gas atmosphere. A method for manufacturing a semiconductor thin film, comprising:
【請求項3】請求項1あるいは請求項2記載の半導体薄
膜の製造方法において、結晶化時の雰囲気ガス圧(P)
は、0.1〜100torrの間であることを特徴とする半
導体薄膜の製造方法。
3. The method for producing a semiconductor thin film according to claim 1 or 2, wherein the atmospheric gas pressure (P) during crystallization.
Is between 0.1 and 100 torr, the method for producing a semiconductor thin film.
【請求項4】請求項1,2,3記載の半導体薄膜の製造
方法において、非晶質材料はアモルファスシリコンを主
母材としたことを特徴とする半導体薄膜の製造方法。
4. The method of manufacturing a semiconductor thin film according to claim 1, 2, or 3, wherein the amorphous material is amorphous silicon as a main base material.
【請求項5】請求項1,2,3,4記載の半導体薄膜の
製造方法において、結晶化にはエキシマレーザを用いた
光プロセスにより行うことを特徴とする半導体薄膜の製
造方法。
5. The method of manufacturing a semiconductor thin film according to claim 1, 2, 3, or 4, wherein crystallization is performed by an optical process using an excimer laser.
【請求項6】請求項1,2,3,4,5記載の半導体薄
膜の製造方法において、絶縁性基板はプラスチックフィ
ルムであることを特徴とする半導体薄膜の製造方法。
6. The method for producing a semiconductor thin film according to claim 1, 2, 3, 4, or 5, wherein the insulating substrate is a plastic film.
JP18112292A 1992-07-08 1992-07-08 Manufacture of semiconductor thin film Pending JPH0626966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18112292A JPH0626966A (en) 1992-07-08 1992-07-08 Manufacture of semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18112292A JPH0626966A (en) 1992-07-08 1992-07-08 Manufacture of semiconductor thin film

Publications (1)

Publication Number Publication Date
JPH0626966A true JPH0626966A (en) 1994-02-04

Family

ID=16095246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18112292A Pending JPH0626966A (en) 1992-07-08 1992-07-08 Manufacture of semiconductor thin film

Country Status (1)

Country Link
JP (1) JPH0626966A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064842A (en) * 1996-02-15 1998-03-06 Semiconductor Energy Lab Co Ltd Method and apparatus for laser irradiation
CN100397556C (en) * 2001-06-01 2008-06-25 株式会社半导体能源研究所 Semiconducting film, semiconductor device and method for manufacturing semiconducting film or semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1064842A (en) * 1996-02-15 1998-03-06 Semiconductor Energy Lab Co Ltd Method and apparatus for laser irradiation
CN100397556C (en) * 2001-06-01 2008-06-25 株式会社半导体能源研究所 Semiconducting film, semiconductor device and method for manufacturing semiconducting film or semiconductor device

Similar Documents

Publication Publication Date Title
US5275851A (en) Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
JP4164360B2 (en) Manufacturing method of semiconductor device
JP4103447B2 (en) Manufacturing method of large area single crystal silicon substrate
JP4323724B2 (en) Manufacturing method of semiconductor device
Kuriyama et al. High mobility poly-Si TFT by a new excimer laser annealing method for large area electronics
JPH08298329A (en) Manufacture of polycrystalline silicon-germanium thin film transistor
US20070155067A1 (en) Method of fabricating polycrystalline silicon film and method of fabricating thin film transistor using the same
US6486495B2 (en) Method for manufacturing a semiconductor device
JP2700277B2 (en) Method for manufacturing thin film transistor
JP4290349B2 (en) Manufacturing method of semiconductor device
US7767558B2 (en) Method of crystallizing amorphous silicon and device fabricated using the same
JP3359670B2 (en) Method for manufacturing semiconductor device
JPS60189922A (en) Method of producing single crystal layer
JPH06283422A (en) Polycrystalline semiconductor film, thin film using thereof, manufacturing method thereof
JPH0626966A (en) Manufacture of semiconductor thin film
JPH10189449A (en) Manufacture of crystallize semiconductor film and manufacture of thin-film transistor
JPH05315361A (en) Manufacture of semiconductor thin film and semiconductor element
JP3221129B2 (en) Semiconductor device manufacturing method
JP4701467B2 (en) Polycrystalline film manufacturing method and semiconductor device manufacturing method
JPS603148A (en) Substrate for single crystal silicon semiconductor device and manufacture thereof
JPH11251241A (en) Manufacture of crystalline silicon layer, manufacture of solar battery, and manufacture of thin-film transistor
JP2000286211A (en) Method for manufacturing thin-film semiconductor device
JP2003151904A (en) Crystallizing method of semiconductor thin film, the semiconductor thin film, and thin-film semiconductor device
US20050263856A1 (en) Semiconductor device and method of fabricating the same
JP2592984B2 (en) Manufacturing method of silicon thin film