JPH062688A - Refrigerant compressor - Google Patents

Refrigerant compressor

Info

Publication number
JPH062688A
JPH062688A JP4160673A JP16067392A JPH062688A JP H062688 A JPH062688 A JP H062688A JP 4160673 A JP4160673 A JP 4160673A JP 16067392 A JP16067392 A JP 16067392A JP H062688 A JPH062688 A JP H062688A
Authority
JP
Japan
Prior art keywords
pipe
compressor
gas
refrigerant
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4160673A
Other languages
Japanese (ja)
Inventor
Masao Mangyo
政男 萬行
Keizo Iida
慶三 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP4160673A priority Critical patent/JPH062688A/en
Publication of JPH062688A publication Critical patent/JPH062688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)
  • Pipe Accessories (AREA)

Abstract

PURPOSE:To eliminate vibration of a by-pass pipe, and prevent breakage of the by-pass pipe by arranging a metallic bellows between a pipe connected to a refrigerant compressor and an outlet of the by-pass pipe to return liquid refrigerant condensed by means of a condenser to the high pressure side of an annular cylinder chamber. CONSTITUTION:In a technology to lower temperature according to a change of refrigerant to cope with chlorofluorocarbon gas while a rotary compressor is operated, in order to introduce liquid refrigerant to an injection port 31 from a refrigerant source condensed by means of a condenser in a refrigerating cycle, a pipe 51 is provided to be connected to a bottom plate 10 of the compressor 1 by means of a connecting pipe 35 arranged so as to coincide with the injection port 31 by running upward in an oil reservoir 24 after entering an outer casing 2. This pipe 51 and a by-pass pipe 50 communicated with the outlet side of the condenser are connected to each other through a flexible metallic bellows 52. Thereby, vibration transmitted to the pipe 51 from the compressor 1 is made to be absorbed in the metallic bellows 52 so as not to be transmitted to the by-pass pipe 50, so that the occurrence of breakage of the by-pass pipe 50 caused by the vibration can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はロータリ圧縮機の圧縮中
のガスを冷却するために圧縮室に凝縮した液体冷媒を供
給することに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the supply of condensed liquid refrigerant to a compression chamber to cool the gas being compressed in a rotary compressor.

【0002】[0002]

【従来の技術】最近、ロータリ圧縮機(以下圧縮機とい
う)は、フロンガス対応による冷媒の変更に伴い、従来
同等の寿命をもたせるためには、圧縮機の運転中の温度
を低減させる技術が重要となっている。
2. Description of the Related Art Recently, a rotary compressor (hereinafter referred to as "compressor") is required to have a technique for reducing the temperature during operation of the compressor in order to have a life equivalent to that of a conventional compressor due to the change of refrigerant due to the use of CFC gas. Has become.

【0003】以下、図面を参照しながら従来の圧縮機温
度を低減させる技術について説明する。図2〜6は、特
公昭39−24260号公報に示されている圧縮機であ
る。図において、図2は気密外匣2を有する気密圧縮機
1を示し、外匣2内にはシリンダー即ち外匣5内に作っ
た環状の室即ち圧縮室4を有する冷媒圧縮機3を設け
る。室4内には電動機9から下方へ延びる駆動軸8と一
体に構成した偏心部7で駆動する回転子6を回転し得る
如く設ける。支持主枠12と共動して、シリンダーの環
状圧縮室4の上方端壁を構成する軸受11で偏心部7の
上方で軸8を支持し電動機で回転するようにする。
A conventional technique for reducing the compressor temperature will be described below with reference to the drawings. 2 to 6 show a compressor disclosed in Japanese Patent Publication No. 39-24260. In FIG. 2, FIG. 2 shows an airtight compressor 1 having an airtight outer casing 2, in which a refrigerant compressor 3 having an annular chamber or compression chamber 4 formed in a cylinder or outer casing 5 is provided. In the chamber 4, a rotor 6 driven by an eccentric portion 7 formed integrally with a drive shaft 8 extending downward from the electric motor 9 is provided so as to be rotatable. A shaft 11 is supported above the eccentric portion 7 by a bearing 11 which constitutes the upper end wall of the annular compression chamber 4 of the cylinder in cooperation with the support main frame 12 so that the shaft 8 is rotated by an electric motor.

【0004】主枠12は又圧縮機3を外匣内に支持す
る。室3の反対側即ち下方の端壁は同様に軸8の下端を
軸受10a内に支持する軸受板10で構成する。
The main frame 12 also supports the compressor 3 in an outer casing. The opposite or lower end wall of the chamber 3 likewise comprises a bearing plate 10 which supports the lower end of the shaft 8 in a bearing 10a.

【0005】図3に示すように、シリンダー5には半径
方向の溝13を設け、その中に翼板14を摺動自在に設
けて、これを回転子6の周面6aに圧接し、室4を低圧
側4aと高圧側4bとに分割する。図示の実施例では翼
板14の端部は、半径方向の溝13の後部を形成する拡
大した開口13a内に設けたバネ16で回転子の周面に
圧接する。運転中回転子6は、偏心部7によって、室内
を偏心的に回転せしめられるから回転子の周面6aは環
状室の次々の部分と、逐次密封関係に動き、かくして周
知の如く回転方向において、それより前方にあるガスを
押すからガスは室の端部、回転子の周面6aおよび回転
子の高圧側で囲まれる漸次減少する空所内で圧縮され
る。
As shown in FIG. 3, the cylinder 5 is provided with a radial groove 13 in which a vane 14 is slidably provided, which is pressed against the peripheral surface 6a of the rotor 6 to form a chamber. 4 is divided into a low pressure side 4a and a high pressure side 4b. In the illustrated embodiment, the ends of the vanes 14 are pressed against the peripheral surface of the rotor by a spring 16 provided in an enlarged opening 13a forming the rear of the radial groove 13. During operation, the rotator 6 is eccentrically rotated in the chamber by the eccentric portion 7, so that the peripheral surface 6a of the rotor moves in successive sealing relation with the successive portions of the annular chamber, thus, as is well known, in the rotational direction. Since the gas in front of it is pushed, the gas is compressed in a gradually decreasing cavity surrounded by the end of the chamber, the peripheral surface 6a of the rotor and the high pressure side of the rotor.

【0006】図4に示す如く、密封圧縮機1は、吸込管
20を通じて、蒸発器15から吸込ガスを受けるように
冷凍方式内に接続するものである。吸込ガスを吸込管2
0から環状室4の低圧側4aへ供給する装置を設ける。
即ち、図3に示す如くこの装置はシリンダー5に設けら
れ、環状室4と連通する吸込口17を含んでいる。吸込
口17は低圧ガスを圧縮室4の低圧側4aへ供給し、そ
こでガスは回転子6が室内で回転する際回転子6の周面
と、環状室の両側面と翼板14の高圧側14aとの間で
圧縮される。
As shown in FIG. 4, the hermetic compressor 1 is connected to the inside of the refrigeration system so as to receive the suction gas from the evaporator 15 through the suction pipe 20. Suction gas suction pipe 2
A device for supplying 0 to the low pressure side 4a of the annular chamber 4 is provided.
That is, as shown in FIG. 3, this device is provided in the cylinder 5 and includes a suction port 17 communicating with the annular chamber 4. The suction port 17 supplies the low-pressure gas to the low-pressure side 4a of the compression chamber 4, where the gas is in contact with the peripheral surface of the rotor 6 when the rotor 6 rotates in the chamber, both side surfaces of the annular chamber and the high-pressure side of the vane 14. 14a and compressed.

【0007】高圧ガスを環状室4の高圧側から気密外匣
2内へ導くために吐出口18と吐出室19とからなる装
置を設ける。吐出室19内には吐出口18から出るガス
を適当に圧縮しかつ圧縮室4へのガスの逆流を防止する
適当な弁21を設ける。図2に示す如く、高圧ガス吐出
室19から圧縮機の上方端壁を構成する主枠12内の通
路25を経て気密外匣2内へ流入する。高圧ガスは電動
機9の周りを上方へ流れた後、外匣上端の図示しない適
当な吐出装置を経て、気密外匣2外へ出、吐出管21
(図4に示す)を経て、凝縮器22内へ流入し、冷凍方
式の他の部分で冷媒が吸収した熱を放出する。凝縮器2
2内のガスは冷却すると凝縮するから凝縮器の後段内の
冷媒は大部分液状である。冷凍方式の作動中に液体冷媒
を凝縮器圧力から蒸発器圧力へ膨脹させるために凝縮器
および蒸発器間に適当な膨脹装置を設ける。図示した実
施例では膨脹装置は凝縮器と蒸発器との間に設けた毛細
管23である。
A device including a discharge port 18 and a discharge chamber 19 is provided to guide the high-pressure gas from the high-pressure side of the annular chamber 4 into the airtight casing 2. Provided in the discharge chamber 19 is a suitable valve 21 for appropriately compressing the gas discharged from the discharge port 18 and preventing backflow of the gas into the compression chamber 4. As shown in FIG. 2, it flows from the high-pressure gas discharge chamber 19 into the airtight outer casing 2 through the passage 25 in the main frame 12 which constitutes the upper end wall of the compressor. After the high-pressure gas flows upward around the electric motor 9, it goes out of the airtight outer casing 2 through an appropriate discharge device (not shown) at the upper end of the outer casing, and the discharge pipe 21
After passing through (as shown in FIG. 4), the heat flows into the condenser 22 and releases the heat absorbed by the refrigerant in the other part of the refrigeration system. Condenser 2
Since the gas in 2 is condensed when cooled, the refrigerant in the latter stage of the condenser is mostly liquid. A suitable expansion device is provided between the condenser and the evaporator to expand the liquid refrigerant from the condenser pressure to the evaporator pressure during operation of the refrigeration system. In the illustrated embodiment, the expansion device is a capillary tube 23 located between the condenser and the evaporator.

【0008】図2は潤滑油を装置の種々の軸受表面およ
び他の運動部分に供給する配置を示す。即ち、密封外匣
の下部には潤滑剤24の溜がある。油の量は軸8の下端
および圧縮機の下方端壁10の一部が油内にほぼ漬かる
ような量にする。潤滑剤を圧縮機の種々の運動物分へ送
る装置を設ける。即ち、軸8内には比較的大きな軸方向
の通路を設け、これを溜24と連通させてあるから軸が
回転すると、軸方向の通路26に入る潤滑剤は直ちに軸
8と同一回転速度になる。しかる時速は遠心力により潤
滑剤を軸方向通路26の内面に向かって外方へ流し、次
いで通路26に沿って上方へ流す、軸の周辺に設けた油
の吐出口から油を圧縮機の種々の軸受へ供給する。夫々
底板10および主枠12に設けた油戻し通路27,28
は過剰の油を外匣下部の油溜24へ戻す。外匣内の油は
圧縮機および電動機上を絶えず流れているから、溜24
内の油は比較的高温である。
FIG. 2 shows an arrangement for supplying lubricating oil to various bearing surfaces and other moving parts of the device. That is, there is a reservoir of the lubricant 24 in the lower part of the sealed case. The amount of oil is such that the lower end of the shaft 8 and part of the lower end wall 10 of the compressor are substantially submerged in the oil. A device is provided for delivering the lubricant to the various moving parts of the compressor. That is, since a relatively large axial passage is provided in the shaft 8 and communicates with the reservoir 24, when the shaft rotates, the lubricant entering the axial passage 26 immediately reaches the same rotational speed as the shaft 8. Become. At a certain speed, centrifugal force causes the lubricant to flow outward toward the inner surface of the axial passage 26 and then upward along the passage 26. The oil is discharged from the compressor through various oil discharge ports provided in the periphery of the shaft. Supply to bearings. Oil return passages 27 and 28 provided in the bottom plate 10 and the main frame 12, respectively
Returns excess oil to the oil sump 24 in the lower part of the outer casing. Since the oil in the outer casing is constantly flowing over the compressor and electric motor,
The oil inside is relatively hot.

【0009】前述の型の圧縮機を約21℃の空気を蒸発
器15に吹きつけ、そして、28℃の空気を凝縮器22
に吹きつける冷凍方式内で試験すると、密封外匣内の冷
凍ガスの圧力は約21kg/cm2であった。そして、環状
室の高圧側4b内の圧力は約23kg/cm2で最高値に達
した。かかる冷凍方式の吸込圧力は約15.75kg/cm
2であって吐出圧力より約5.25kg/cm2丈け少なく吸
込ガスの温度は約15.5〜21℃である。もちろん、
前記圧縮機の種々の用途および冷凍方式の特定の設計特
徴が外匣内のガスの圧力に影響を及ぼす。併し乍ら、前
述の代表的数字から解るように密封外匣2内の圧力は吸
込圧力より相当高い。吸込ガスを室4内で約5.25kg
/cm2から約23kg/cm2に圧縮するときはこのガスの温
度は圧縮中に相当増加する。例えば、前述の冷凍方式で
はガスの温度は約24℃から120℃に増加する。この
温度は大抵の作動条件下で電動機の作動温度を適当に保
つように計算した割合で、電動機から熱を取り去るには
高すぎる。従って、ガスをこの高温で吐出するときは電
動機9の冷却が不充分となり、電動機の絶縁又は巻線を
損傷することがしばしばある。
A compressor of the type described above blows air at about 21 ° C. into the evaporator 15 and 28 ° C. air at the condenser 22.
The pressure of the frozen gas in the sealed outer casing was about 21 kg / cm 2 when tested in a refrigerating method in which it was sprayed on the. The pressure inside the high pressure side 4b of the annular chamber reached a maximum value of about 23 kg / cm 2 . The suction pressure of this refrigeration system is about 15.75 kg / cm
2 , which is about 5.25 kg / cm 2 less than the discharge pressure, and the temperature of the suction gas is about 15.5 to 21 ° C. of course,
The various uses of the compressor and the particular design features of the refrigeration system influence the pressure of the gas in the casing. However, as can be seen from the above-mentioned typical numbers, the pressure inside the sealed casing 2 is considerably higher than the suction pressure. About 5.25kg of suction gas in chamber 4
When compressing from / cm 2 to about 23 kg / cm 2 , the temperature of this gas increases considerably during compression. For example, in the refrigeration system described above, the temperature of the gas increases from about 24 ° C to 120 ° C. This temperature is too high to remove heat from the motor at a rate calculated to keep the motor operating temperature adequate under most operating conditions. Therefore, when the gas is discharged at this high temperature, the electric motor 9 is insufficiently cooled, and the insulation or winding of the electric motor is often damaged.

【0010】ガスが電動機上を通る際、電動機を適当に
冷却するように吐出ガスの温度を充分低い温度に保つた
めに本発明によれば、回転子の各圧縮サイクル中に少量
の液体冷媒を圧縮室4内に注入して吐出ガスの最終温度
を減少する装置を設ける。即ち、圧縮室4の高圧側4b
に注入口31を設ける。本発明の好ましい実施例では圧
縮室4の高圧側4bのガス圧が吐出圧力の50〜95%
である各サイクルの短い時間中は吐出口31は開き、そ
の他の時間中は回転子6の端部32が吐出口31を完全
に覆うように、吐出口31を圧縮室4の高圧側4bに設
ける。
According to the present invention, a small amount of liquid refrigerant is added during each compression cycle of the rotor in order to keep the temperature of the discharge gas sufficiently low to adequately cool the motor as it passes over the motor. A device for injecting into the compression chamber 4 to reduce the final temperature of the discharge gas is provided. That is, the high pressure side 4b of the compression chamber 4
An injection port 31 is provided in. In the preferred embodiment of the present invention, the gas pressure on the high pressure side 4b of the compression chamber 4 is 50 to 95% of the discharge pressure.
The discharge port 31 is opened during the short time of each cycle, and the discharge port 31 is opened to the high pressure side 4b of the compression chamber 4 so that the end portion 32 of the rotor 6 completely covers the discharge port 31 during the other time. Set up.

【0011】図2および図4に示すように、冷凍方式の
凝縮した冷媒源から液体冷媒を注入口31へ供給する装
置を設ける。即ち、方式中の凝縮器22の後段と接続し
て凝縮器から液即ち凝縮した冷媒を注入口31へ導く液
体冷媒供給通路を設ける。図2に示す如く、この通路は
管33と太い管34とからなり、この管34は外匣2内
に入って油溜24内を上方へ至り、そこで注入口31と
一致して設けた連結短管35により底板10に接続す
る。細い毛細管36を連結短管35の中心を通し管34
内の液体冷媒中に常に浸漬して注入口31へ至る液体冷
媒供給通路を形成する。管33と36との間の開口は液
体冷媒が大きい管34内へ流入することを可能にする。
この配置は管36の端部を覆う。液体冷媒溜を作り大き
い管36内に冷媒ガスのトラップ即ち膨脹室36aを作
る。後で詳細に説明するように、膨脹室36aは回転子
の回転中、注入口31の間歇的開閉に基いて発生される
振動即ち液体の衝撃を緩和する。
As shown in FIGS. 2 and 4, a device for supplying a liquid refrigerant to the inlet 31 from a condensed refrigerant source of a refrigeration system is provided. That is, a liquid refrigerant supply passage is provided which is connected to the subsequent stage of the condenser 22 in the system and guides the liquid, that is, the condensed refrigerant from the condenser to the inlet 31. As shown in FIG. 2, this passage is composed of a pipe 33 and a thick pipe 34. The pipe 34 enters the outer casing 2 and reaches the inside of the oil reservoir 24 upward, where it is provided so as to coincide with the inlet 31. It is connected to the bottom plate 10 by a short pipe 35. A thin capillary tube 36 is inserted through the center of the connecting short tube 35
It is constantly immersed in the liquid refrigerant inside to form a liquid refrigerant supply passage leading to the inlet 31. The opening between tubes 33 and 36 allows liquid refrigerant to flow into large tube 34.
This arrangement covers the end of tube 36. A liquid refrigerant reservoir is created to create a refrigerant gas trap or expansion chamber 36a in a large tube 36. As will be described later in detail, the expansion chamber 36a absorbs vibrations, that is, liquid shocks, which are generated due to the intermittent opening and closing of the inlet 31 during the rotation of the rotor.

【0012】図4の線図で示す如く、注入口31は回転
子の接触即ち周面6aが環状室の点Aから点Cまで動く
期間以外の回転子6のサイクル中のすべての時間中閉じ
られている。図5から解るように図示した圧縮機の注入
口31の位置は室の中心を通過し、そして、翼板14の
中心線に対して約12度の角度を有する直線上で翼板1
4の高圧側14aに隣接している。点Aでは回転子の端
部32は液体注入口31をちょうど開き始め、そして点
Cでは再び注入口を閉じる。
As shown in the diagram of FIG. 4, the inlet 31 is closed for all the time during the cycle of the rotor 6 except during the rotor contact or the circumferential surface 6a moving from point A to point C of the annular chamber. Has been. As can be seen in FIG. 5, the position of the inlet 31 of the compressor shown passes through the center of the chamber and on a straight line having an angle of about 12 degrees with the centerline of the vane 14.
4 is adjacent to the high pressure side 14a. At point A the end 32 of the rotor just begins to open the liquid inlet 31 and at point C closes the inlet again.

【0013】図示した実施例では点Aの位置は圧縮衝程
の終了より約245度進んでいる。即ち、翼板14の中
心線より前方にある。図面に示した寸法を有する試験し
た圧縮機では回転子表面6aが点Aにあるときの室4の
高圧側4b内のガスは約11.2kg/cm2即ち、外匣内
のガス圧の約50%である。点Cは圧縮衝程の終了より
約140度前方にあり、即ち、翼板14の中心線より前
方にある。試験した圧縮機の回転子が点Cで示す位置に
あるときは室の高圧側4b内の圧力は約20.3kg/cm
2であって、これは外匣2内の圧力の約93%である。
ガス注入口31を経て、逆流するのを防ぐには室内の圧
力が外匣内の圧力を超過するとき、又は外匣内の圧力よ
りわずか低い凝縮器内の圧力を超過するとき回転子6の
端部32によって完全に塞がれる位置に注入口を設けな
ければならない。液体注入口31が開かれるサイクルの
部分では試験した圧縮機の室4の高圧側4bの平均ガス
圧力は約15.75kg/cm2である。これは吐出圧力よ
り平均して5.25kg/cm2丈け低く膨脹室内へ注入さ
れる液体冷媒を若干膨脹して室内で圧縮されるガスを冷
却するが、圧縮機の能率に著しい影響を与えない。図3
および図5から解るように冷媒が圧縮機中へ注入される
間吸込口17は閉じている。即ち、環状室4と接触する
周面6aは吸込口17の縁17aを通過し、注入口31
が開かれる前に吸入口を完全に塞ぐ。このようにして室
の高圧側4b内に閉じ込められている吸込ガスは全部液
体冷媒を冷却のために前記室内に注入するときに室内に
ある。
In the illustrated embodiment, the position of point A is about 245 degrees ahead of the end of the compression stroke. That is, it is in front of the center line of the blade 14. In the tested compressor having the dimensions shown in the drawing, the gas in the high pressure side 4b of the chamber 4 when the rotor surface 6a is at point A is about 11.2 kg / cm 2, that is, about the gas pressure in the outer casing. 50%. Point C is approximately 140 degrees forward of the end of the compression stroke, ie, forward of the vane 14 centerline. When the rotor of the tested compressor is in the position indicated by point C, the pressure in the high pressure side 4b of the chamber is about 20.3 kg / cm.
2 , which is about 93% of the pressure in the outer casing 2.
In order to prevent reverse flow through the gas inlet 31, when the pressure in the chamber exceeds the pressure in the outer casing, or when the pressure in the condenser slightly lower than the pressure in the outer casing exceeds the pressure in the rotor 6, The inlet must be located where it is completely blocked by the end 32. In the part of the cycle in which the liquid inlet 31 is opened, the average gas pressure on the high-pressure side 4b of the compressor chamber 4 tested is about 15.75 kg / cm 2 . This is lower than the discharge pressure by 5.25 kg / cm 2 on average and slightly expands the liquid refrigerant injected into the expansion chamber to cool the gas compressed in the chamber, but it has a significant effect on the efficiency of the compressor. Absent. Figure 3
And as can be seen from FIG. 5, the suction port 17 is closed while the refrigerant is injected into the compressor. That is, the peripheral surface 6a that contacts the annular chamber 4 passes through the edge 17a of the suction port 17 and
Fully block inlet before opening. The suction gas thus confined in the high pressure side 4b of the chamber is all inside the chamber when the liquid refrigerant is injected into it for cooling.

【0014】各圧縮サイクル中室4内に注入される冷い
液体冷媒が、室4b内の比較的熱い半ば圧縮したガスと
遭遇するとき蒸発してガス状になる。液体冷媒が蒸発し
てガス状になるとき半ば圧縮したガスから奪われる熱は
室4b内のガスの温度を著しく低下するから吐出口18
および通路25から出るガスは注入された液体を加えな
い場合よりも一様な低温になる。
During each compression cycle, the cold liquid refrigerant injected into chamber 4 evaporates into a gas when it encounters the relatively hot, semi-compressed gas in chamber 4b. When the liquid refrigerant evaporates into a gas state, the heat removed from the partially compressed gas significantly lowers the temperature of the gas in the chamber 4b, so the discharge port 18
And the gas exiting passage 25 will be at a substantially lower temperature than if no injected liquid was added.

【0015】本発明の試験した実施例ではガスの温度は
約82℃に低下したが、室内に液体冷媒を注入しないと
きの吐出温度は110℃である。82℃のこの大きい密
度のガスは充分な冷却能力を有し、電動機の周りを通す
ときその熱を全部除去し電動機を安全な作動温度に保
つ。さらに、圧縮室4内のガスの温度が減少するためガ
スは一層容易に圧縮され圧縮機の能率を著しく阻害する
ことがない。
In the tested examples of the present invention, the temperature of the gas dropped to about 82 ° C., but the discharge temperature when the liquid refrigerant was not injected into the chamber was 110 ° C. This high density gas at 82 ° C has sufficient cooling capacity to remove all of its heat when passing around the motor, keeping it at a safe operating temperature. Furthermore, since the temperature of the gas in the compression chamber 4 is reduced, the gas is more easily compressed and does not significantly impair the efficiency of the compressor.

【0016】前に述べたように回転子6の端部32にす
る注入口31の連続開閉作動は適当に緩衝しない限り噪
音の原因となる脈動又は振動を生ずる。この脈動が冷凍
方式の他の部分へ伝わることを防止するために図示した
実施例では液体冷媒を注入口31へ導く通路内に膨脹室
を設ける。前述の如く管34は管33から液体冷媒を供
給される膨脹室36aを構成する。膨脹室即ち、溜36
aは外匣の底部内の熱い潤滑油を貫通して外匣の上部へ
突出する。比較的熱い潤滑油が管34を包囲して膨脹室
36a内の液体冷媒を温めるから膨脹室内で少量の冷媒
が膨脹してガスになる。もちろんガスは管状膨脹室36
aの上部へ昇り、注入口31から管36を経て伝わる脈
動を緩衝する緩衝帯、即ち、ガスポケットを作る。換言
すれば膨脹室36aの上部にあるガス状冷媒のポケット
は室内である程度圧縮されて、管36から伝えられる脈
動を吸収し、それが方式の他の部分へ伝わることを防
ぐ。管36の下端は外匣2外で管34の一部分の中に延
入し、熱い潤滑剤24と接触していないから常時液体冷
媒は管36の端部へ供給される。
As described above, the continuous opening and closing operation of the injection port 31 which is the end portion 32 of the rotor 6 causes pulsation or vibration which causes noises unless properly buffered. In order to prevent this pulsation from being transmitted to other parts of the refrigeration system, an expansion chamber is provided in the passage for guiding the liquid refrigerant to the inlet 31 in the illustrated embodiment. As described above, the pipe 34 constitutes the expansion chamber 36a to which the liquid refrigerant is supplied from the pipe 33. Expansion chamber or reservoir 36
The a penetrates the hot lubricating oil in the bottom of the outer casing and projects to the upper portion of the outer casing. The relatively hot lubricating oil surrounds the tube 34 and warms the liquid refrigerant in the expansion chamber 36a so that a small amount of the refrigerant expands into gas in the expansion chamber. Of course, the gas is tubular expansion chamber 36
A buffer zone, that is, a gas pocket, which rises to the upper part of a and buffers the pulsation transmitted from the inlet 31 through the pipe 36, is formed. In other words, the pocket of gaseous refrigerant at the top of expansion chamber 36a is compressed to some extent in the chamber to absorb the pulsations transmitted from tube 36 and prevent it from being transmitted to other parts of the system. The lower end of the tube 36 extends into the part of the tube 34 outside the casing 2 and is not in contact with the hot lubricant 24 so that the liquid refrigerant is always supplied to the end of the tube 36.

【0017】本発明の好ましい実施例では、液体冷媒供
給通路を流れる冷媒の量を制限するために、該通路内に
毛細管37を設ける。これはこの装置の蒸発器の短絡を
防止し、凝縮器22内の冷媒が液化するに充分冷却され
ないとき該通路を通して、ガスが流れることを有効に防
止する。注入される液体冷媒は吐出ガスとともに室から
出る前に圧縮されるガスと有効に混合するように吐出口
18から遠ざかる方向に向けることが望ましい。このよ
うにして液体冷媒は半ば圧縮されたガスが、翼板の高圧
側14aに向かって室を巡るように押される際、該半ば
圧縮したガス中に注入される。即ち、図5の変形では注
入口31の中心線40は室の端壁10の表面10bに対
して鋭角をなしている。この鋭角の開放端は翼板14か
ら遠ざかる方向に向いているから液体冷媒は翼板に向か
って環状室の周りを押される乱流ガスの方へ、即ち、回
転子の回転方向と反対方向へ吐出される。各圧縮サイク
ル中冷い液体冷媒は室4b内に入ってくる比較的熱い半
ば圧縮されたガス内に吐出されると、蒸発してガス状と
なり、圧縮されたガスと混合する。液体冷媒が蒸発する
際半ば圧縮されたガスから熱を奪うため、室4b内のガ
スの温度を著しく減少するから吐出口18および通路2
5から出るガスは、液体冷媒を加えない場合よりもはる
かに一様な低温度となる。
In the preferred embodiment of the present invention, a capillary tube 37 is provided in the liquid coolant supply passage to limit the amount of coolant flowing therein. This prevents short circuiting of the evaporator of the device and effectively prevents gas from flowing through the passage when the refrigerant in the condenser 22 is not cooled sufficiently to liquefy. It is desirable to direct the injected liquid refrigerant away from the discharge port 18 so as to effectively mix with the discharge gas and the gas that is compressed before it exits the chamber. Thus, the liquid refrigerant is injected into the semi-compressed gas as the semi-compressed gas is pushed around the chamber towards the high pressure side 14a of the vane. That is, in the modification of FIG. 5, the center line 40 of the inlet 31 forms an acute angle with the surface 10b of the end wall 10 of the chamber. Since the open end of this acute angle is directed away from the vane 14, the liquid refrigerant is directed toward the turbulent gas that is pushed around the annular chamber toward the vane, that is, in the direction opposite to the direction of rotation of the rotor. Is ejected. During each compression cycle, the cold liquid refrigerant is evaporated into a gaseous state as it is discharged into the relatively hot, semi-compressed gas entering chamber 4b and mixes with the compressed gas. When the liquid refrigerant evaporates, heat is taken from the semi-compressed gas, which significantly reduces the temperature of the gas in the chamber 4b.
The gas exiting 5 is at a much more uniform low temperature than if no liquid refrigerant was added.

【0018】図示の実施例では中心線40の角度は室の
端壁の表面10bに対して45度である。注入口31か
ら吐出される液体冷媒を室の端壁10に対して、ある角
度をもたせ、かつ、室内で圧縮されるガスに向かって、
回転子即ち、軸8の回転方向と反対方向に向けることに
より、吐出されるガスは吐出口18から遠ざかる方向に
向けられ、注入される液体を室から吐出される前に半ば
圧縮されたガスと完全に混合させる。液体冷媒は室の端
壁10bと直角に注入されるとき吐出ガスを冷却する
が、試験した圧縮機では液体冷媒を半ば圧縮されたガス
中に、それが室の周りに回転子で圧縮される際吐出する
ことにより温度が約5℃又は以上下がることを認めた。
この追加の冷却はガスがなお室内にある際に、液体冷媒
が半ば圧縮されたガスと一層完全に混合されるために起
こるものと思われる。吐出口18から押し出される混合
しない液体冷媒は最後には蒸発してガスの温度を低下す
るが、室4内で液体冷媒を充分に混合するとき一層一様
な冷却が行われるものと信ぜられる。
In the illustrated embodiment, the angle of the centerline 40 is 45 degrees with respect to the surface 10b of the chamber end wall. The liquid refrigerant discharged from the inlet 31 is inclined at an angle with respect to the end wall 10 of the chamber, and toward the gas compressed in the chamber,
By directing the rotor, that is, the direction opposite to the direction of rotation of the shaft 8, the discharged gas is directed in a direction away from the discharge port 18, and the injected liquid is partially compressed before being discharged from the chamber. Mix thoroughly. The liquid refrigerant cools the discharge gas when injected perpendicularly to the chamber end wall 10b, but in the compressor tested the liquid refrigerant is compressed in the semi-compressed gas by the rotor around the chamber. It was confirmed that the temperature was lowered by about 5 ° C. or more by discharging at the time.
This additional cooling is believed to occur because the liquid refrigerant is more thoroughly mixed with the semi-compressed gas while the gas is still in the chamber. The unmixed liquid refrigerant extruded from the discharge port 18 finally evaporates to lower the temperature of the gas, but it is believed that more uniform cooling is performed when the liquid refrigerant is sufficiently mixed in the chamber 4.

【0019】圧縮機の端壁10の表面10bに対して4
5度の角度が望ましいが、注入口31の中心線40が環
状圧縮室4の端壁10の表面10bとなす鋭角が60度
に増加しても、端壁10bに対して直角に吐出する場合
よりも冷却効果が増大することを認めた。中心線37と
直角な圧縮機の断面を示す図6に示すように注入口31
は翼板14と約12度の角度をもって配置した中心線3
7を直角に通過する平面内に設けられている。従って、
注入口31は室の中心および注入口の出口を通過する中
心線37と直角な平面内に作られている。この平面は回
転子が注入口31を完全に開くとき即ち、回転子の周面
が図5の文字Dで示す位置にあるとき、回転子の周面6
aに対してほぼ切線をなしている。
4 for the surface 10b of the end wall 10 of the compressor
Although an angle of 5 degrees is desirable, when the center line 40 of the injection port 31 forms an acute angle with the surface 10b of the end wall 10 of the annular compression chamber 4 to 60 degrees, the discharge is perpendicular to the end wall 10b. It was found that the cooling effect is increased more than that. As shown in FIG. 6, which shows a cross section of the compressor perpendicular to the center line 37, the inlet 31
Is the center line 3 arranged at an angle of about 12 degrees with the vanes 14.
It is provided in a plane passing through 7 at a right angle. Therefore,
The inlet 31 is made in a plane perpendicular to the centerline 37 passing through the center of the chamber and the outlet of the inlet. When the rotor completely opens the inlet 31, that is, when the peripheral surface of the rotor is at the position indicated by the letter D in FIG.
It is almost cut with respect to a.

【0020】本発明の試験した実施例では液体が上流部
分に注入される圧縮室から吐出されるガスの温度は約7
1℃であり、これに対し液体を注入しない圧縮機の吐出
温度は100〜110℃である。この71℃の高い密度
のガスは充分な冷却能力を有し、電動機の周りを通過す
るときそれから充分の熱を奪って電動機を実用的な運転
温度に保つ。さらに、圧縮室4b内の半ば圧縮されたガ
スの温度が減少するためガスを一層容易に圧縮すること
ができ、圧縮機の能率にほとんど影響を与えない。
In the tested embodiment of the invention, the temperature of the gas discharged from the compression chamber in which the liquid is injected in the upstream portion is about 7
The discharge temperature of the compressor which does not inject the liquid is 100 to 110 ° C. This high density gas of 71 ° C. has sufficient cooling capacity to remove sufficient heat from it as it passes around it, keeping it at a practical operating temperature. Furthermore, since the temperature of the partially compressed gas in the compression chamber 4b decreases, the gas can be compressed more easily, and the efficiency of the compressor is hardly affected.

【0021】[0021]

【発明が解決しようとする課題】しかしながら上記のよ
うな構成では、バイパス管出口付近(図2のE付近)が
折れて冷凍機不良となるトラブルが多かった。これは圧
縮機が振動の伝わりやすいロータリ型で圧縮機の振動が
伝わり、比較的細いチューブであり太いチューブとの接
ぎ部分であるバイパス管出口付近に振動による応力が集
中して折れるものである。本発明は上記課題に鑑みバイ
パス管の折れを防止してトラブルを起こさない圧縮機の
バイパス管接続装置を提供するものである。
However, in the above structure, there are many problems that the vicinity of the bypass pipe outlet (near E in FIG. 2) is broken and the refrigerator is defective. This is because the compressor is a rotary type in which vibration is easily transmitted, and the vibration of the compressor is transmitted, and the stress due to the vibration is concentrated near the outlet of the bypass pipe, which is a relatively thin tube and a connecting portion with the thick tube, and breaks. In view of the above problems, the present invention provides a bypass pipe connecting device for a compressor, which prevents breakage of the bypass pipe and causes no trouble.

【0022】[0022]

【課題を解決するための手段】以上のような課題を解決
するために本発明の冷媒圧縮機のバイパス管接続装置
は、凝縮器と、凝縮した液体冷媒をシリンダーの環状室
の高圧側に前記凝縮器に連結して直接注入するバイパス
管と、前記バイパス管の出口と冷媒圧縮機に設けられた
管との間に可撓性の金属ジャバラを配設し、バイパス管
出口部をキャビネット部材に固着した、金属ジャバラの
端面を前記の管と銀ろう又ははんだのろう付けによって
接続したという構成を備えたものである。
In order to solve the above problems, a bypass connecting device for a refrigerant compressor according to the present invention comprises a condenser and a condensed liquid refrigerant on the high pressure side of an annular chamber of a cylinder. A bypass pipe connected to the condenser and directly injected, and a flexible metal bellows is arranged between the outlet of the bypass pipe and the pipe provided in the refrigerant compressor, and the bypass pipe outlet is used as a cabinet member. The end face of the metal bellows, which is fixed, is connected to the above-mentioned tube by silver brazing or solder brazing.

【0023】[0023]

【作用】本発明は上記した構成のバイパス管出口付近に
振動による応力が発生しないように、可撓性の金属ジャ
バラを配設することにり、バイパス管に振動による応力
が発生しないからバイパス管の折れはなくなる。
According to the present invention, a flexible metal bellows is provided so that the stress due to vibration is not generated near the outlet of the bypass pipe having the above-mentioned structure, and the stress due to vibration is not generated in the bypass pipe. No breakage

【0024】[0024]

【実施例】以下、本発明の一実施例の冷媒圧縮機のバイ
パス管接続装置について、図面を参照しながら説明す
る。なお、従来例と同一部品は同一符号を用いて説明
し、構成,動作の同じところは省略する。図1におい
て、50はバイパス管で図4の33と同機能である。5
1は冷媒圧縮機に連結された管で一端は図3の注入口3
1に繋がっている。52はバイパス管50と管51との
可撓性の特性をもって入っている金属ジャバラで、図の
如く凹凸があり自由に伸びちぢみする蛇腹状で管51か
ら伝わる振動を蛇腹が吸収してバイパス管50にはほと
んど振動が伝わらない。54はキャビネット部材で、バ
イパス管50を弾性帯56とクランプ57を介してネジ
58でキャビネット部材54に固定している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A bypass connecting device for a refrigerant compressor according to an embodiment of the present invention will be described below with reference to the drawings. The same parts as those of the conventional example will be described using the same reference numerals, and the same parts of the configuration and the operation will be omitted. In FIG. 1, a bypass pipe 50 has the same function as 33 in FIG. 5
Reference numeral 1 denotes a pipe connected to the refrigerant compressor, and one end thereof has an injection port 3 shown in FIG.
It is connected to 1. Reference numeral 52 is a metal bellows having the flexibility characteristics of the bypass pipe 50 and the pipe 51. The bellows absorbs the vibration transmitted from the pipe 51 in a bellows shape having irregularities and extending freely as shown in the figure. Almost no vibration is transmitted to 50. Reference numeral 54 is a cabinet member, and the bypass pipe 50 is fixed to the cabinet member 54 with a screw 58 via an elastic band 56 and a clamp 57.

【0025】55は金属ジャバラ52の外周52aと管
51の端部拡管部51aの両面を気密的に接合している
ろう付けで、管51とバイパス管50の材質が銅又は鋼
であり、金属ジャバラの材質が銅又はしんちゅうである
ことから、ろう付けはすゞと鉛系合金ではんだ付け、又
は硬ろう付と呼ばれる銀ろう溶接されている。以上のよ
うに構成された部分がバイパス管接続装置53である。
Reference numeral 55 is a brazing for airtightly joining both surfaces of the outer periphery 52a of the metal bellows 52 and the end expanded portion 51a of the pipe 51. The material of the pipe 51 and the bypass pipe 50 is copper or steel. Since the material of the bellows is copper or brass, the brazing is performed by soldering with a lead-based alloy such as isuzu or silver brazing, which is called hard brazing. The portion configured as described above is the bypass pipe connecting device 53.

【0026】以上のような構成において、ロータリ型の
圧縮機1が運転すると、その振動は管51を伝わって金
属ジャバラを振動させるがほとんどの振動は蛇腹で吸収
される。バイパス管50をキャビネット部材54に固着
することにより前記の振動はすべて蛇腹で吸収されてし
まってバイパス管50には振動しなくなり、振動による
応力が発生しないからバイパス管の折れは確実に防止で
きる。なお、図1は縦型となっているが、横型ロータリ
の冷媒圧縮機にも適用できるものである。
When the rotary type compressor 1 is operated in the above-mentioned structure, its vibration is transmitted through the pipe 51 and vibrates the metal bellows, but most of the vibration is absorbed by the bellows. By fixing the bypass pipe 50 to the cabinet member 54, all the above-mentioned vibrations are absorbed by the bellows so that the bypass pipe 50 does not vibrate, and the stress due to the vibration is not generated, so that the bypass pipe can be surely prevented from being broken. Although FIG. 1 is a vertical type, it is also applicable to a horizontal rotary refrigerant compressor.

【0027】[0027]

【発明の効果】以上のように本発明は、凝縮器と、凝縮
した液体冷媒をシリンダーの環状室の高圧側に前記凝縮
器に連結して直接注入するバイパス管と、前記バイパス
管の出口と冷媒圧縮機に設けられた管との間に可撓性の
金属ジャバラを配設し、バイパス管出口部をキャビネッ
ト部材に固着した金属ジャバラの端面を前記の管と銀ろ
う又は、はんだのろう付けによって接続したという構成
を備えたものであり、圧縮機から管を伝わった振動は金
属ジャバラの蛇腹で吸収されてしまうので、バイパス管
には振動による応力が発生しない。従って、バイパス管
の折れは確実に防止でき、管やチューブの折れによる冷
凍機不良を撲滅することができる。又、金属ジャバラ5
2は圧縮機の回転中、注入口(図3の31)の間歇的開
閉に基いて発生される振動即ち液体の衝撃を蛇腹の伸縮
によって緩和することができる。
As described above, according to the present invention, the condenser, the bypass pipe for directly injecting the condensed liquid refrigerant into the high pressure side of the annular chamber of the cylinder by connecting to the condenser, and the outlet of the bypass pipe are provided. A flexible metal bellows is arranged between the pipe provided in the refrigerant compressor and the end face of the metal bellows, in which the outlet of the bypass pipe is fixed to the cabinet member, is brazed to the pipe by silver brazing or soldering. Since the vibration transmitted from the compressor through the pipe is absorbed by the bellows of the metal bellows, no stress is generated in the bypass pipe due to the vibration. Therefore, breakage of the bypass pipe can be surely prevented, and failure of the refrigerator due to breakage of the pipe or tube can be eliminated. Also, metal bellows 5
When the compressor 2 is rotating, the vibration, that is, the liquid shock generated by the intermittent opening and closing of the inlet (31 in FIG. 3) while the compressor is rotating can be alleviated by the expansion and contraction of the bellows.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における冷媒圧縮機のバイパ
ス管接続装置の断面図
FIG. 1 is a sectional view of a bypass pipe connecting device for a refrigerant compressor according to an embodiment of the present invention.

【図2】従来の冷媒圧縮機の一部の縦断面図FIG. 2 is a vertical sectional view of a part of a conventional refrigerant compressor.

【図3】図2の2−2線に沿う一部の平面図FIG. 3 is a partial plan view taken along line 2-2 of FIG.

【図4】図2の冷媒圧縮機を使用する冷凍方式の線図4 is a diagram of a refrigeration system using the refrigerant compressor of FIG.

【図5】図2の冷媒圧縮機の液体冷媒注入口を回転子端
部で開閉するときの回転子の角位置を示す線図
5 is a diagram showing the angular position of the rotor when the liquid refrigerant inlet of the refrigerant compressor of FIG. 2 is opened and closed at the rotor end.

【図6】図2の他の実施例の一部の断面図6 is a partial cross-sectional view of another embodiment of FIG.

【符号の説明】[Explanation of symbols]

50 バイパス管 51 冷媒圧縮機に凍結された管 52 金属ジャバラ 53 バイパス管接続装置 54 キャビネット部材 55 ろう付け 50 Bypass Pipe 51 Pipe Frozen in Refrigerant Compressor 52 Metal Bellows 53 Bypass Pipe Connection Device 54 Cabinet Member 55 Brazing

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 凝縮器と、凝縮した液体冷媒をシリンダ
ーの環状室の高圧側にもどすバイパス管と、前記バイパ
ス管の出口と冷媒圧縮機に連結された管との間に可撓性
の金属ジャバラとからなる冷媒圧縮機。
1. A flexible metal between a condenser, a bypass pipe for returning condensed liquid refrigerant to a high pressure side of an annular chamber of a cylinder, and an outlet of the bypass pipe and a pipe connected to a refrigerant compressor. Refrigerant compressor consisting of bellows.
【請求項2】 凝縮器と、凝縮した液体冷媒をシリンダ
ーの環状室の高圧側に前記凝縮器に連結して直接注入す
るバイパス管と、前記バイパス管の出口と冷媒圧縮機に
設けられた管との間に可撓性の金属ジャバラとを配設
し、バイパス管出口部をキャビネットに固着したことを
特徴とする冷媒圧縮機。
2. A condenser, a bypass pipe for injecting condensed liquid refrigerant directly into the high pressure side of an annular chamber of a cylinder by connecting to the condenser, an outlet of the bypass pipe and a pipe provided in the refrigerant compressor. A flexible metal bellows is provided between the compressor and the bypass pipe, and the bypass pipe outlet is fixed to the cabinet.
【請求項3】 凝縮器と、凝縮した液体冷媒をシリンダ
ーの環状室の高圧側に前記凝縮器に連結した直接注入す
るバイパス管と、前記バイパス管の出口と冷媒圧縮器に
設けられた管との間に可撓性の金属ジャバラとを配設
し、前記金属ジャバラの端面を前記の管と、ろう付けに
よって接続したことを特徴とする冷媒圧縮機。
3. A condenser, a bypass pipe for directly injecting condensed liquid refrigerant into a high pressure side of an annular chamber of a cylinder, the bypass pipe being connected to the condenser, an outlet of the bypass pipe, and a pipe provided in the refrigerant compressor. A refrigerant compressor, wherein a flexible metal bellows is arranged between the pipes, and an end surface of the metal bellows is connected to the pipe by brazing.
JP4160673A 1992-06-19 1992-06-19 Refrigerant compressor Pending JPH062688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4160673A JPH062688A (en) 1992-06-19 1992-06-19 Refrigerant compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4160673A JPH062688A (en) 1992-06-19 1992-06-19 Refrigerant compressor

Publications (1)

Publication Number Publication Date
JPH062688A true JPH062688A (en) 1994-01-11

Family

ID=15720009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4160673A Pending JPH062688A (en) 1992-06-19 1992-06-19 Refrigerant compressor

Country Status (1)

Country Link
JP (1) JPH062688A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123171A1 (en) * 2007-03-28 2008-10-16 Daikin Industries, Ltd. Mechanism for controlling and operating compressor capacity and air conditioner having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008123171A1 (en) * 2007-03-28 2008-10-16 Daikin Industries, Ltd. Mechanism for controlling and operating compressor capacity and air conditioner having the same
AU2008236150B2 (en) * 2007-03-28 2011-04-28 Daikin Industries, Ltd. Compressor capacity control operation mechanism and air conditioner provided with same

Similar Documents

Publication Publication Date Title
US7674099B2 (en) Compressor with oil bypass
KR940011714B1 (en) Scroll compressor and scroll type refrigerator
US3109297A (en) Rotary compressor injection cooling arrangement
AU669830B2 (en) Enclosed type rotary compressor
US20100212352A1 (en) Compressor and refrigerating apparatus having the same
WO2009059488A1 (en) A rotary compressor with low pressure in its shell and methods for controlling its cold media and oil and application thereof
KR910002405B1 (en) Scroll compressor
US5511389A (en) Rotary compressor with liquid injection
CN101326413A (en) Lubrication system for acute stopping bearing of magnetic bearing compressor
JPS61217662A (en) Economizer in cooling system and compressor housing as motorcooler
KR900003796B1 (en) Liquid injection cooling arrangement for a rotary compressor
JPH062688A (en) Refrigerant compressor
AU2005314950B2 (en) Rotary compressor with reduced refrigeration gas leak during compression while preventing seizure
JP2009074485A (en) Scroll compressor
JP7194877B2 (en) refrigeration cycle equipment
CN209743160U (en) Rotary compressor and refrigeration cycle device
KR100287726B1 (en) Insulation structure of injection refrigerant
JP3754213B2 (en) Rotary compressor
JP2000274363A (en) Hermetic compressor
CN209743161U (en) High back pressure type compressor and refrigeration cycle system with same
KR200382915Y1 (en) Accumulator connection structure of rotary compressor
JP2893984B2 (en) Horizontal hermetic scroll compressor
KR100282726B1 (en) Compressor Vacuum Preventer
JPH06300368A (en) Freezing device
KR20220039298A (en) Oil separator, compressor and refrigeration cycle device including the same