JPH06268207A - Insulated gate type power semiconductor device - Google Patents

Insulated gate type power semiconductor device

Info

Publication number
JPH06268207A
JPH06268207A JP4953393A JP4953393A JPH06268207A JP H06268207 A JPH06268207 A JP H06268207A JP 4953393 A JP4953393 A JP 4953393A JP 4953393 A JP4953393 A JP 4953393A JP H06268207 A JPH06268207 A JP H06268207A
Authority
JP
Japan
Prior art keywords
layer
type
impurity diffusion
conductivity
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4953393A
Other languages
Japanese (ja)
Inventor
Shigeru Hasegawa
滋 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4953393A priority Critical patent/JPH06268207A/en
Publication of JPH06268207A publication Critical patent/JPH06268207A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/70Bipolar devices
    • H01L29/72Transistor-type devices, i.e. able to continuously respond to applied control signals
    • H01L29/739Transistor-type devices, i.e. able to continuously respond to applied control signals controlled by field-effect, e.g. bipolar static induction transistors [BSIT]
    • H01L29/7393Insulated gate bipolar mode transistors, i.e. IGBT; IGT; COMFET
    • H01L29/7395Vertical transistors, e.g. vertical IGBT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thyristors (AREA)

Abstract

PURPOSE:To prevent the latch-up of a parasitic thyristor without increase in ON-resistance by providing a second unit of a first conductivity type semiconductor layer in a second conductivity type semiconductor layer. CONSTITUTION:The semiconductor element is turned ON by applying positive voltage on a gate electrode 7 in the state wherein positive voltage and negative voltage are applied to an anode electrode 9 and a cathode electrode 8 respectively, and an N<+> type emitter layer 4 and the cathode electrode are short-circuited. When trigger voltage is given, electrons are injected into an N-type base layer l from an N<-> type emitter layer 4, a hole is injected into a P-type base layer 2 from a P<+> emitter layer 3, and a thyrmstor is turned ON. On the other hand, the title semiconductor element is turned OFF by stopping the feeding of electrons to the N<+> type emitter layer 4 by applying negative voltage to the gate electrode 7. At this time, the hole accumulated in the element is discharged from the cathode electrode 8 passing through a P type impurity diffusion layer 12 (second-initial conductive type semiconductor layer) after passing through the P<+> type impurity diffusion layer 10 on the lower part of an N<+> type impurity diffusion layer 5 (second conductive type semiconductor layer).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電力用半導体素子に係
り、特に絶縁ゲート型電力用半導体素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power semiconductor device, and more particularly to an insulated gate power semiconductor device.

【0002】[0002]

【従来の技術】近年、コンピュータや通信機器の重要部
分には、多数のトランジスタや抵抗等を電気回路を達成
するようにむすびつけ、1チップ上に集積化して形成し
た集積回路(IC)が多用されている。このようなIC
中で、高耐圧素子を含むものはパワーICと呼ばれてい
る。
2. Description of the Related Art In recent years, an integrated circuit (IC) formed by integrating a large number of transistors, resistors and the like so as to achieve an electric circuit and forming them on one chip has been widely used in important parts of computers and communication equipment. ing. IC like this
Among them, a device including a high breakdown voltage element is called a power IC.

【0003】高耐圧素子の一つとして従来よりEST
(Emitter Switched Tyhristor)と呼ばれる絶縁ゲート
型電力用半導体素子が知られている(B.J.Baliga,Proce
eding.of 1990 Ineternational Symposium on Power Se
miconductor Devices &ICs p.117-121)。図7は、従来
のESTの構造を示す図、同図(a)は平面図を示し、
同図(b)は同図(a)のESTのF−F´断面図を示
している。
Conventionally, EST has been used as one of the high breakdown voltage elements.
An insulated gate type power semiconductor device called (Emitter Switched Tyhristor) is known (BJBaliga, Proce
eding.of 1990 Ineternational Symposium on Power Se
miconductor Devices & ICs p.117-121). FIG. 7 is a diagram showing a structure of a conventional EST, FIG. 7 (a) is a plan view,
FIG. 16B shows a cross-sectional view of the EST shown in FIG.

【0004】このESTは、N型ベース層81と、この
N型ベース層81の一方の表面に形成され、不純物濃度
が高いP+ 型エミッタ層83と、N型ベース層81の他
方の表面に選択的に形成されたP型ベース層82と、こ
のP型ベース層82の表面に選択的に形成され、不純物
濃度が高いN+ 型エミッタ層84とを有している。これ
ら半導体層81,83,82,84によりPNPNサイ
リスタ構造が形成されている。更に、P型ベース層82
の表面には不純物濃度が高いP+ 型不純物拡散層91が
選択され、このP+ 型不純物拡散層91の表面の一部か
らP型ベース層82の表面にかけては不純物濃度が高い
+ 型不純物拡散層85が選択的に形成されている。
The EST is formed on the N-type base layer 81 and one surface of the N-type base layer 81, and has a high impurity concentration P +. -Type emitter layer 83, P-type base layer 82 selectively formed on the other surface of N-type base layer 81, and N + having a high impurity concentration formed selectively on the surface of P-type base layer 82. And a type emitter layer 84. These semiconductor layers 81, 83, 82, 84 form a PNPN thyristor structure. Further, the P-type base layer 82
Surface has a high impurity concentration of P + The type impurity diffusion layer 91 is selected, and the P + From the part of the surface of the type impurity diffusion layer 91 to the surface of the P-type base layer 82, N + having a high impurity concentration is formed. The type impurity diffusion layer 85 is selectively formed.

【0005】また、N+ 型エミッタ層84とN+ 型不純
物拡散層85と間のP型ベース層82上にはゲート絶縁
膜86を介してゲート電極87が配設されている。更
に、P型エミッタ層83の表面にはアノード電極89が
配設され、そして、N+ 型不純物拡散層85およびP+
型不純物拡散層91にコンタクトするカソード電極88
がゲート絶縁膜90を介してゲート電極87と隣接して
配設されている。
In addition, N + Type emitter layer 84 and N + A gate electrode 87 is provided on the P-type base layer 82 between the type impurity diffusion layer 85 and the gate insulating film 86. Further, an anode electrode 89 is provided on the surface of the P-type emitter layer 83, and N + -Type impurity diffusion layer 85 and P +
Type cathode 88 that contacts the impurity diffusion layer 91
Are disposed adjacent to the gate electrode 87 via the gate insulating film 90.

【0006】このように構成されたESTをターンオン
するには、アノード電極89,カソード電極88にそれ
ぞれ正電圧,負電圧を印加した状態で、ゲート電極87
に正電圧を印加する。
In order to turn on the EST thus constructed, the gate electrode 87 is applied with a positive voltage and a negative voltage applied to the anode electrode 89 and the cathode electrode 88, respectively.
Apply a positive voltage to.

【0007】このような電圧が印加されると、ゲート電
極87の下部のP型ベース層82の表面にN型チャネル
が形成され、N+ 型エミッタ層84とカソード電極88
とが短絡される。この状態にて、図示はされていない
が、例えば、p型ベース層82の端部に設けられたオン
用MOSFETによりトリガ電圧を与えると、N+ 型エ
ミッタ層84からN型ベース層81に電子が注入され、
+ 型エミッタ層83からP型ベース層82に正孔が注
入される。このような電子,正孔の流れによって半導体
層81,83,82,84で構成されたサイリスタがタ
ーンオンする。一方、ターンオフにするには、ゲート電
極87に負電圧を印加して上記N型チャネルを消滅さ
せ、N+ 型エミッタ層84への電子の供給を遮断すれば
良い。しかしながら、この種のESTには次のような問
題があった。
When such a voltage is applied, an N-type channel is formed on the surface of the P-type base layer 82 below the gate electrode 87, and N + Type emitter layer 84 and cathode electrode 88
And are short-circuited. In this state, although not shown, for example, when a trigger voltage is applied by an ON MOSFET provided at the end of the p-type base layer 82, N + Electrons are injected into the N type base layer 81 from the type emitter layer 84,
P + Holes are injected from the type emitter layer 83 to the P type base layer 82. The thyristor formed of the semiconductor layers 81, 83, 82 and 84 is turned on by the flow of the electrons and holes. On the other hand, to turn off, a negative voltage is applied to the gate electrode 87 to extinguish the N-type channel, and N + The supply of electrons to the type emitter layer 84 may be cut off. However, this kind of EST has the following problems.

【0008】素子内の正孔は、ターンオフの際に、N+
型不純物拡散層85の下部のP+ 型不純物拡散層91を
通ってカソード電極88から素子外に排出される。この
ような正孔の流れ(ホール電流)によりP+ 型不純物拡
散層91に電圧降下が生じるため、P+ 型不純物拡散層
91の電位がN+ 型不純物拡散層85のそれより高くな
る。このため、メインのサイリスタがオフ状態であって
も、N+ 型不純物拡散層85からN型ベース層81に電
子が注入され、半導体層81,83,85,91で構成
された寄生サイリスタがラッチアップし、アノード・カ
ソード間に電流が流れ続けるという問題があった。
The holes in the device are N + + when turned off.
Lower type impurity diffusion layer 85 of the P + It is discharged from the cathode electrode 88 to the outside of the element through the type impurity diffusion layer 91. Due to such hole flow (hole current), P + Since a voltage drop occurs in the type impurity diffusion layer 91, P + -Type impurity diffusion layer 91 has a potential of N + It is higher than that of the type impurity diffusion layer 85. Therefore, even if the main thyristor is off, N + Electrons are injected into the N-type base layer 81 from the n-type impurity diffusion layer 85, the parasitic thyristor composed of the semiconductor layers 81, 83, 85, 91 latches up, and a current continues to flow between the anode and the cathode. It was

【0009】このような寄生サイリスタのラッチアップ
は、N+ 型不純物拡散層85のチャネル方向の寸法を小
さくすれば、N+ 型不純物拡散層85の下部におけるP
型ベース層82の電圧降下が小さくなるので防止でき
る。しかしながら、この場合、N+ 型不純物拡散層85
とカソード電極88とのコンタクト面積が小さくなるの
で、オン抵抗が大きくなるという問題があった。
The latch-up of such a parasitic thyristor is N + If the dimension of the impurity diffusion layer 85 in the channel direction is reduced, N + At the bottom of the impurity diffusion layer 85
This can be prevented because the voltage drop of the mold base layer 82 becomes small. However, in this case N + Type impurity diffusion layer 85
Since the contact area between the cathode electrode 88 and the cathode electrode 88 is small, there is a problem that the on-resistance increases.

【0010】[0010]

【発明が解決しようとする課題】上述の如く、従来のE
STにあっては、ターンオフの際に、N+ 型不純物拡散
層の下部のp+ 型不純物拡散層に電圧降下が生じる結
果、寄生サイリスタがラッチアップし、オフ駆動ができ
なくなるという問題があった。この問題を解決するため
に、N+ 型不純物拡散層のチャネル方向の寸法を小さく
するという手法が提案されたが、この場合、N+ 型不純
物拡散層とカソード電極88とのコンタクト面積が小さ
くなり、オン抵抗が大きくなるという問題があった。
As described above, the conventional E
In ST, when turning off, N + P + under the impurity diffusion layer As a result of the voltage drop in the type impurity diffusion layer, the parasitic thyristor is latched up, and the OFF drive cannot be performed. To solve this problem, N + A method of reducing the dimension of the impurity diffusion layer in the channel direction has been proposed. In this case, N + There is a problem that the contact area between the type impurity diffusion layer and the cathode electrode 88 is reduced, and the on-resistance is increased.

【0011】本発明は、上記事情を考慮してなされたも
ので、その目的とするところは、オン抵抗の増加を招か
ずに寄生サイリスタのラッチアップを防止できる絶縁ゲ
ート型電力用半導体素子を提供することにある。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide an insulated gate type power semiconductor element capable of preventing latch-up of a parasitic thyristor without increasing the on-resistance. To do.

【0012】[0012]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の絶縁ゲート型電力用半導体素子は、1導
電型エミッタ層に接した第2導電型ベース層と、この第
2導電型ベース層に接した第1導電型ベース層と、この
第1導電型ベース層の表面に選択的に形成された第2導
電型エミッタ層と、この第2導電型エミッタ層とは別に
前記第1導電型ベース層の表面に選択的に形成された第
1の第1導電型半導体層と、この第1の第1導電型半導
体層の表面の一部から、前記第2導電型エミッタ層側の
前記第1導電型ベース層の表面にまたがって形成された
第2導電型半導体層と、この第2導電型半導体層と前記
第2導電型エミッタ層との間の前記第1導電型ベース層
上にゲート絶縁膜を介して設けられたゲート電極と、こ
のゲート電極と電気的に分離され、前記第2導電型半導
体層に設けられた第1の主電極と、前記第1導電型エミ
ッタ層に設けられた第2の主電極とを有する絶縁ゲート
型電力用半導体素子において、前記第2導電型半導体層
内に設けられ、且つ前記第1の第1導電型半導体層およ
び前記第1の主電極に接した第2の第1導電型半導体
層、並びに前記第2導電型エミッタ層内に設けられ、且
つ前記第1導電型ベース層および前記第1の主電極に接
続した第2の第1導電型半導体層の少なくとも一方の前
記第2の第1導電型半導体層を有することを特徴とする
In order to achieve the above object, an insulated gate power semiconductor device of the present invention comprises a second conductivity type base layer in contact with a one conductivity type emitter layer and a second conductivity type base layer. The first conductivity type base layer in contact with the first conductivity type base layer, the second conductivity type emitter layer selectively formed on the surface of the first conductivity type base layer, and the second conductivity type emitter layer separately from the first conductivity type base layer. A first first-conductivity-type semiconductor layer selectively formed on the surface of the first-conductivity-type base layer, and a portion of the surface of the first first-conductivity-type semiconductor layer from the second-conductivity-type emitter layer side. Second conductive type semiconductor layer formed over the surface of the first conductive type base layer, and the first conductive type base layer between the second conductive type semiconductor layer and the second conductive type emitter layer. The gate electrode provided above the gate insulating film and the gate electrode and the electrode. Insulated gate type power semiconductor device having a first main electrode provided in the second conductivity type semiconductor layer and a second main electrode provided in the first conductivity type emitter layer A second conductive type semiconductor layer provided in the second conductive type semiconductor layer and in contact with the first first conductive type semiconductor layer and the first main electrode, and the second conductive type It has the second first-conductivity-type semiconductor layer which is provided in the emitter layer and is connected to the first-conductivity-type base layer and the first main electrode and at least one of the second first-conductivity-type semiconductor layers. Characterized by

【0013】ここで、上記第2導電型半導体層内に設け
られた第2の第1導電型半導体層は、第1の第1導電型
半導体層と同一のものでも良いし、また、第1の第1導
電型半導体層とは別の第2の第1導電型半導体層であっ
ても良い。同様に、上記第2導電型エミッタ層内に設け
られた第2の第1導電型半導体層は、第1導電型ベース
層と同一のものでも良いし、また、第1導電型ベース層
とは別の第2の第1導電型半導体層であっても良い。
Here, the second first-conductivity-type semiconductor layer provided in the second-conductivity-type semiconductor layer may be the same as the first first-conductivity-type semiconductor layer or the first first-conductivity-type semiconductor layer. It may be a second first-conductivity-type semiconductor layer different from the first-conductivity-type semiconductor layer. Similarly, the second first-conductivity-type semiconductor layer provided in the second-conductivity-type emitter layer may be the same as the first-conductivity-type base layer or the first-conductivity-type base layer. It may be another second first conductivity type semiconductor layer.

【0014】また、上記第2導電型半導体層内に設けら
れた第2の第1導電型半導体層は、単数でも複数でも良
い。同様に、上記第2導電型エミッタ層内に設けられた
第2の第1導電型半導体層も、単数でも複数でも良い。
Further, the second semiconductor layer of the first conductivity type provided in the semiconductor layer of the second conductivity type may be a single layer or a plurality of layers. Similarly, the number of second semiconductor layers of the first conductivity type provided in the emitter layer of the second conductivity type may be single or plural.

【0015】[0015]

【作用】本発明の絶縁ゲート型電力用半導体素子は、第
1の第1導電型半導体層および第1の主電極と接した第
2の第1導電型半導体層、並びに第2導電型エミッタ層
内に設けられ、且つ第1導電型ベース層および第1の主
電極に接続した第2の第1導電型半導体層の少なくとも
一方の第2の第1導電型半導体層を備えている。すなわ
ち、第2導電型半導体層は第2の第1導電型半導体層に
より複数の領域に分けられるか、又は第2導電型エミッ
タ層は第2の第1導電型半導体層により複数の領域に分
けられるか、又は第2導電型半導体層および第2導電型
エミッタ層は第1導電型半導体層により複数の領域に分
けられる。
The insulated gate power semiconductor device of the present invention comprises a second first conductivity type semiconductor layer in contact with the first first conductivity type semiconductor layer and the first main electrode, and a second conductivity type emitter layer. A second first-conductivity-type semiconductor layer that is provided inside and is connected to the first-conductivity-type base layer and the first main electrode is at least one of the second first-conductivity-type semiconductor layers. That is, the second conductive type semiconductor layer is divided into a plurality of regions by the second first conductive type semiconductor layer, or the second conductive type emitter layer is divided into a plurality of regions by the second first conductive type semiconductor layer. Alternatively, the second conductive type semiconductor layer and the second conductive type emitter layer are divided into a plurality of regions by the first conductive type semiconductor layer.

【0016】ここで、第2導電型半導体層が第2の第1
導電型半導体層により複数の領域に分けられている場合
には、ターンオフ時における個々の領域の第2導電型半
導体層の下部の第1の第1導電型半導体層内におけるキ
ャリア(第1導電型エミッタ層の多数キャリア)の走行
距離は、いずれも第2の第1導電型半導体層が無い従来
の場合のそれに比べて小さいものとなる。
Here, the second conductivity type semiconductor layer is the second first semiconductor layer.
When divided into a plurality of regions by the conductive type semiconductor layer, carriers (first conductive type) in the first conductive type semiconductor layer below the second conductive type semiconductor layer in each region at the time of turn-off are separated. The traveling distances of majority carriers in the emitter layer are smaller than those in the conventional case where the second semiconductor layer of the first conductivity type is not provided.

【0017】このため、第1の主電極と第2導電型半導
体層とのコンタクト面積を大きくしても、ターンオフ時
における個々の領域の第2導電型半導体層の下部の第1
の第1導電型半導体層の電圧降下は、いずれも第2の第
1導電型半導体層が無い従来の場合のそれに比べて小さ
いものとなる。
Therefore, even if the contact area between the first main electrode and the second conductive type semiconductor layer is increased, the first conductive layer below the second conductive type semiconductor layer in each region is turned off.
The voltage drop of the first conductivity type semiconductor layer is smaller than that in the conventional case where the second first conductivity type semiconductor layer is not provided.

【0018】したがって、オン抵抗の増加を招くこと無
く、第1導電型エミッタ層,第2導電型ベース層,第1
導電型ベース層および第1の第1導電型半導体層で構成
された寄生サイリスタのラッチアップを防止できる。
Therefore, the first conductivity type emitter layer, the second conductivity type base layer, the first conductivity type emitter layer
It is possible to prevent the parasitic thyristor composed of the conductive type base layer and the first first conductive type semiconductor layer from latching up.

【0019】[0019]

【実施例】以下、図面を参照しながら実施例を説明す
る。
Embodiments will be described below with reference to the drawings.

【0020】図1は、本発明の第1の実施例に係るES
Tの構造を示す図であり、同図(a)は平面図を示し、
同図(b)は同図(a)のESTのA−A´断面図を示
している。
FIG. 1 shows an ES according to the first embodiment of the present invention.
It is a figure which shows the structure of T, The figure (a) shows a top view,
The figure (b) has shown the AA 'cross section figure of EST of the figure (a).

【0021】図中、1はN型ベース層1(第2導電型ベ
ース層)を示しており、このN型ベース層1の一方の表
面には不純物濃度が高いP+ 型エミッタ層3(第1導電
型エミッタ層)が接し、このP+ 型エミッタ層3にはア
ノード電極9(第2の主電極)が設けられている。ま
た、N型ベース層1の他方の表面にはP型ベース層2
(第1導電型ベース層)が接しており、このP型ベース
層2の表面には不純物濃度が高いN+ 型エミッタ層4
(第2導電型エミッタ層)が選択的に形成されている。
更に、不純物濃度が高いP+ 型不純物拡散層10(第1
の第1導電型半導体層)がP型ベース層2の表面にN+
型エミッタ層4と別に選択的に形成されている。
In the figure, reference numeral 1 denotes an N-type base layer 1 (second conductivity type base layer), and one surface of the N-type base layer 1 is P + having a high impurity concentration. Type emitter layer 3 (first conductivity type emitter layer) is in contact with this P + The mold emitter layer 3 is provided with an anode electrode 9 (second main electrode). The P-type base layer 2 is formed on the other surface of the N-type base layer 1.
(First conductivity type base layer) is in contact with the surface of the P type base layer 2 and N + having a high impurity concentration Type emitter layer 4
(Second conductivity type emitter layer) is selectively formed.
Furthermore, P + with high impurity concentration Type impurity diffusion layer 10 (first
First conductive type semiconductor layer) of N + on the surface of the P type base layer 2
It is selectively formed separately from the mold emitter layer 4.

【0022】上記P+ 型不純物拡散層10の表面の一部
からP型ベース層2の表面にかけては不純物濃度が高い
+ 型不純物拡散層5(第2導電型半導体層)が選択的
に形成され、このN+ 型不純物拡散層5内にはP+ 型不
純物拡散層10およびカソード電極8(第1の主電極)
に接する複数の不純物濃度が高いP+ 型不純物拡散層1
2(第2の第1導電型半導体層)が設けられている。す
なわち、カソード電極8はN+ 型不純物拡散層5にコン
タクトするとともに、P+ 型不純物拡散層12を介して
+ 型不純物拡散層10にもコンタクトしている。
The above P + From the part of the surface of the p-type impurity diffusion layer 10 to the surface of the p-type base layer 2, the impurity concentration of N + is high . Type impurity diffusion layer 5 (second conductivity type semiconductor layer) is selectively formed, and this N + In the impurity diffusion layer 5 of the type, P + -Type impurity diffusion layer 10 and cathode electrode 8 (first main electrode)
P + with a high concentration of impurities Type impurity diffusion layer 1
2 (second first conductivity type semiconductor layer) is provided. That is, the cathode electrode 8 is N + Contact with the impurity diffusion layer 5 of the type, and P + P + via the impurity diffusion layer 12 The type impurity diffusion layer 10 is also contacted.

【0023】更に、図1(b)に示すように、P+ 型不
純物拡散層12により分けられた個々の領域のN+ 型不
純物拡散層5のチャネル方向の寸法Lは、ホール電流に
よって生じる個々のN+ 型不純物拡散層5の下部のP+
型不純物拡散層10の電圧降下が、P+ 型不純物拡散層
10とN+ 型不純物拡散層5とで形成されるPN接合の
ビルトイン電圧よりも小さくなるように選ばれている。
また、N+ 型不純物拡散層5のチャネル方向の寸法は、
ゲート電極7から離れほど小さくする。
Further, as shown in FIG. 1 (b), P + Individual regions of N which are divided by type impurity diffusion layer 12 + The dimension L of the impurity diffusion layer 5 in the channel direction is determined by the individual N + generated by the hole current. Of P + under the impurity diffusion layer 5
The voltage drop of the impurity diffusion layer 10 is P + -Type impurity diffusion layer 10 and N + It is selected to be smaller than the built-in voltage of the PN junction formed with the type impurity diffusion layer 5.
Also, N + The dimension of the type impurity diffusion layer 5 in the channel direction is
The smaller the distance from the gate electrode 7, the smaller.

【0024】このようなP+ 型不純物拡散層12は、例
えば、P+ 型不純物拡散層10を形成した後、N型不純
物をP+ 型不純物拡散層10に選択的に拡散して形成し
たり、P+ 型不純物拡散層10を形成し、更に、このP
+ 型不純物拡散層10の表面全体にN+ 型不純物拡散層
5を形成した後、P型不純物をN+ 型不純物拡散層5に
選択的に拡散して形成しても良い。すなわち、P+ 型不
純物拡散層12とP+ 型不純物拡散層10とはもともと
同じものであっても良いし、別工程で形成されたもので
あっても良い。
Such a P+ Type impurity diffusion layer 12 is an example
For example, P+ After forming the impurity diffusion layer 10, the N-type impurity
Thing P+ Formed by selectively diffusing into the type impurity diffusion layer 10.
Or P+ A type impurity diffusion layer 10 is formed, and further P
+ N on the entire surface of the impurity diffusion layer 10+ Type impurity diffusion layer
5 is formed, P-type impurities are added to N+ Type impurity diffusion layer 5
It may be selectively diffused and formed. That is, P+ Typeless
Pure substance diffusion layer 12 and P+ Type impurity diffusion layer 10 originally
It may be the same, or it may be formed in a separate process.
It may be.

【0025】また、N+ 型エミッタ層4とN+ 型不純物
拡散層5との間のP型ベース層2上にはゲート絶縁膜6
を介してゲート電極7が配設されている。このゲート電
極7は絶縁膜11によりカソード電極と電気的に分離さ
れている。
Also, N + Type emitter layer 4 and N + On the P-type base layer 2 between the gate-type impurity diffusion layer 5 and the gate-type impurity diffusion layer 5.
The gate electrode 7 is provided via the. The gate electrode 7 is electrically separated from the cathode electrode by the insulating film 11.

【0026】このように構成されたESTをターンオン
するには、アノード電極9,カソード電極8にそれぞれ
正電圧,負電圧を印加した状態で、ゲート電極7に正電
圧を印加する。
To turn on the EST having the above structure, a positive voltage is applied to the gate electrode 7 while a positive voltage and a negative voltage are applied to the anode electrode 9 and the cathode electrode 8, respectively.

【0027】このような電圧が印加されると、ゲート電
極7の下部のP型ベース層2の表面にN型チャネルが形
成され、N+ 型エミッタ層4とカソード電極8とが短絡
される。この状態にて、図示はされていないが、例え
ば、p型ベース層2の端部に設けられたオン用MOSF
ETによりトリガ電圧を与えると、N+ 型エミッタ層4
からN型ベース層1に電子が注入され、P+ 型エミッタ
層3からP型ベース層2に正孔が注入される。
When such a voltage is applied, an N-type channel is formed on the surface of the P-type base layer 2 below the gate electrode 7, and N + The mold emitter layer 4 and the cathode electrode 8 are short-circuited. In this state, although not shown, for example, an on-state MOSF provided at the end of the p-type base layer 2 is provided.
When a trigger voltage is given by ET, N + Type emitter layer 4
Electrons are injected into the N-type base layer 1 from P + Holes are injected from the type emitter layer 3 to the P-type base layer 2.

【0028】このような電子,正孔の流れによって、P
+ 型エミッタ層3,N型ベース層1およびP型ベース層
2で構成されたトランジスタと、N型ベース層1,P型
ベース層2およびN型エミッタ層4で構成されたトラン
ジスタとが互いのコレクタ電流を増幅し合う結果、半導
体層1,2,3,4で構成されたサイリスタがターンオ
ンする。
Due to such a flow of electrons and holes, P
+ Type emitter layer 3, N-type base layer 1 and P-type base layer 2 and a transistor formed of N-type base layer 1, P-type base layer 2 and N-type emitter layer 4 are collectors of each other. As a result of mutually amplifying the currents, the thyristors formed of the semiconductor layers 1, 2, 3, 4 are turned on.

【0029】一方、ターンオフにするには、ゲート電極
7に負電圧を印加して上記N型チャネルを消滅させ、N
+ 型エミッタ層4への電子の供給を遮断すれば良い。こ
のとき、素子内に蓄積されていた正孔は、N+ 型不純物
拡散層5下部のP+ 型不純物拡散層10を通った後、P
+ 型不純物拡散層12を通ってカソード電極8から素子
外に排出される。
On the other hand, to turn off, a negative voltage is applied to the gate electrode 7 to extinguish the N-type channel,
+ The supply of electrons to the mold emitter layer 4 may be cut off. At this time, the holes accumulated in the element are N + Of P + under the impurity diffusion layer 5 After passing through the type impurity diffusion layer 10, P
+ It is discharged from the cathode electrode 8 to the outside of the device through the type impurity diffusion layer 12.

【0030】ここで、個々の領域のN+ 型不純物拡散層
5のチャネル方向の寸法Lは、上述した条件の寸法に選
んであるので、P+ 型不純物拡散層10内にホール電流
が流れても、N+ 型不純物拡散層5からN型ベース層1
に電子が注入されることはない。このため、ターンオフ
時に半導体層1,3,5,10で構成された寄生サイリ
スタがラッチアップし、アノード・カソード間に電流が
流れ続けるという問題は生じない。
Here, N + of each region The dimension L in the channel direction of the type impurity diffusion layer 5 is selected according to the above-mentioned conditions, and therefore P + Even if a hole current flows in the impurity diffusion layer 10, the N + Type impurity diffusion layer 5 to N type base layer 1
No electrons are injected into. Therefore, there is no problem that the parasitic thyristor composed of the semiconductor layers 1, 3, 5, 10 latch up at the time of turn-off, and the current continues to flow between the anode and the cathode.

【0031】また、個々の領域のN+ 型不純物拡散層5
とカソード電極8とのコンタクト面積は小さいものとな
るが、全体としては大きいものとなるので、N+ 型不純
物拡散層5とカソード電極8とのコンタクト抵抗が増加
するという問題は生じない。以上述べたように本実施例
によれば、N+ 型不純物拡散層5内にカソード電極8お
よびP+ 型不純物拡散層10に接するP+ 型不純物拡散
層12を設けて、各領域のN+ 型不純物拡散層5のチャ
ネル方向の寸法を従来より短くすることにより、コンタ
クト抵抗の増加を招くこと無く、寄生サイリスタのラッ
チアップを防止できる。なお、本実施例では、P+ 型不
純物拡散層10を設けたがP+ 型不純物拡散層12の分
布を適当に選ぶことにより省くことも可能である。
In addition, N + of each area Type impurity diffusion layer 5
The contact area between the cathode electrode 8 and the cathode electrode 8 is small, but it is large as a whole, so N + The problem that the contact resistance between the type impurity diffusion layer 5 and the cathode electrode 8 increases does not occur. As described above, according to this embodiment, N + In the impurity diffusion layer 5 of cathode type and P + P + in contact with the impurity diffusion layer 10 By providing the type impurity diffusion layer 12, N + of each region is By making the dimension of the type impurity diffusion layer 5 in the channel direction shorter than in the conventional case, latch-up of the parasitic thyristor can be prevented without causing an increase in contact resistance. In this embodiment, P + Type impurity diffusion layer 10 is provided, but P + It is also possible to omit it by appropriately selecting the distribution of the type impurity diffusion layer 12.

【0032】図2は、本発明の第2の実施例に係るES
Tの構造を示す図であり、同図(a)は平面図を示し、
同図(b)は同図(a)のESTのB−B´断面図を示
している。なお、以下の実施例で参照する図において、
図1のESTと対応する部分には図1と同一符号を付
し、詳細な説明は省略する。
FIG. 2 shows an ES according to the second embodiment of the present invention.
It is a figure which shows the structure of T, The figure (a) shows a top view,
FIG. 11B shows a cross-sectional view of the EST of FIG. In the drawings referred to in the following examples,
The parts corresponding to the EST in FIG. 1 are assigned the same reference numerals as those in FIG. 1, and detailed description thereof will be omitted.

【0033】本実施例のESTが先の実施例のそれと主
として異なる点は、N+ 型不純物拡散層5でなく、N+
型エミッタ層4内に不純物濃度が高いP+ 型不純物拡散
層13を設けたことにある。また、カソード電極8はN
+ 型エミッタ層4側まで延在しており、更に、この延在
したカソード電極8はN+ 型エミッタ層4にコンタクト
しないようにP+ 型不純物拡散層13上に開口部が形成
された絶縁膜を介してP+ 型不純物拡散層13にコンタ
クトしている。
The EST of this embodiment is mainly the same as that of the previous embodiment.
Is different from N+ Type impurity diffusion layer 5, not N+
P with a high impurity concentration in the emitter layer 4+ Type impurity diffusion
The layer 13 is provided. In addition, the cathode electrode 8 is N
+ Type emitter layer 4 side, and this extension
The cathode electrode 8 is N+ Type emitter layer 4 contact
Do not do P+ An opening is formed on the type impurity diffusion layer 13.
Through the insulating film+ Type impurity diffusion layer 13
I am working.

【0034】このように構成されたESTによれば、タ
ーンオフ時における正孔の排出経路は、P+ 型エミッタ
層3,N型ベース層1,P+ 型不純物拡散層10,カソ
ード電極8という従来の排出経路の他に、P+ 型エミッ
タ層3,N型ベース層1,P型ベース層2,P+ 型不純
物拡散層13,カソード電極8という排出経路が追加さ
れる。
According to the EST thus constructed, the hole discharge path at the time of turn-off is P +. Type emitter layer 3, N type base layer 1, P + Type impurity diffusion layer 10 and cathode electrode 8 in addition to the conventional discharge path, P + Type emitter layer 3, N type base layer 1, P type base layer 2, P + A discharge route including the type impurity diffusion layer 13 and the cathode electrode 8 is added.

【0035】したがって、本実施例によれば、新たな排
出経路が増えた分だけP+ 型不純物拡散層10に流れる
正孔の量が減少するので、ターンオフ時およびターンオ
ン時におけるN+ 型不純物拡散層5の下部のP+ 型不純
物拡散層10の電圧降下が小さくなり、寄生サイリスタ
のラッチアップが起こり難くなる。また、オン状態のと
きは、新たな排出経路により、N+ 型エミッタ層4の下
部のN型ベース層1およびP型ベース層2中の正孔の密
度が高くなるので、オン抵抗が小さくなる。
Therefore, according to this embodiment, P + is increased by the number of new discharge routes. Since the amount of holes flowing in the impurity diffusion layer 10 decreases, N + at turn-off and at turn-on Of P + under the impurity diffusion layer 5 The voltage drop of the type impurity diffusion layer 10 becomes small, and the latch-up of the parasitic thyristor hardly occurs. When it is on, N + Since the density of holes in the N-type base layer 1 and the P-type base layer 2 below the type emitter layer 4 becomes high, the on-resistance becomes small.

【0036】図3は、本発明の第3の実施例に係るES
Tの構造を示す図であり、同図(a)は平面図を示し、
同図(b)は同図(a)のESTのC−C´断面図を示
している。
FIG. 3 shows an ES according to the third embodiment of the present invention.
It is a figure which shows the structure of T, The figure (a) shows a top view,
FIG. 11B shows a sectional view taken along the line CC ′ of the EST shown in FIG.

【0037】本実施例のESTは図1のESTと図2の
ESTとを組み合わせたものとなっている。すなわち、
+ 型不純物拡散層5,N+ 型エミッタ層4内にそれぞ
れP+ 型不純物拡散層12,13が設けられている。
The EST of this embodiment is a combination of the EST of FIG. 1 and the EST of FIG. That is,
N + Type impurity diffusion layer 5, N + P + in the emitter layer 4 Type impurity diffusion layers 12 and 13 are provided.

【0038】このように構成されたESTによれば、素
子内の電流密度が高くなって、P型ベース層2中を横方
向に流れるホール電流が増加した場合でも、N+ 型不純
物拡散層5からN型ベース層1への電子注入を招かずに
カソード電極8にホール電流を流すことができ、寄生サ
イリスタのラッチアップ耐量を大幅に増大させることが
可能となる。
According to the EST constructed as described above, even when the current density in the element is increased and the hole current flowing in the P type base layer 2 in the lateral direction is increased, N + A hole current can be passed through the cathode electrode 8 without injecting electrons from the type impurity diffusion layer 5 into the N-type base layer 1, and the latch-up resistance of the parasitic thyristor can be significantly increased.

【0039】図4は、本発明の第4の実施例に係るES
Tの構造を示す図であり、同図(a)は平面図を示し、
同図(b)は同図(a)のESTのD−D´断面図を示
している。
FIG. 4 shows an ES according to the fourth embodiment of the present invention.
It is a figure which shows the structure of T, The figure (a) shows a top view,
FIG. 16B shows a DD ′ cross-sectional view of the EST of FIG.

【0040】本実施例のESTは図2のESTの一部を
変形したのもので、ゲート絶縁膜6とN型ベース層1と
の距離を縮めた例である。本実施例のESTによれば、
図2のESTに比べて、P型ベース層2中を横方向に流
れるホール電流が減少するので、寄生サイリスタのラッ
チアップ耐量が大きくなる。
The EST of this embodiment is a modification of the EST of FIG. 2 and is an example in which the distance between the gate insulating film 6 and the N-type base layer 1 is shortened. According to the EST of this embodiment,
As compared with the EST shown in FIG. 2, since the hole current flowing in the P-type base layer 2 in the lateral direction is reduced, the latch-up resistance of the parasitic thyristor is increased.

【0041】図5は、本発明の第5の実施例に係るES
Tの構造を示す図であり、同図(a)は平面図を示し、
同図(b)は同図(a)のESTのE−E´断面図を示
している。
FIG. 5 shows an ES according to the fifth embodiment of the present invention.
It is a figure which shows the structure of T, The figure (a) shows a top view,
FIG. 11B shows a cross-sectional view of the EST shown in FIG.

【0042】本実施例のESTは図4のESTの一部を
変形したのもので、ゲート絶縁膜6とN型ベース層1と
が接している例である。本実施例のESTによれば、図
4のESTに比べて、P型ベース層2中を横方向に流れ
るホール電流が更に減少するので、寄生サイリスタのラ
ッチアップ耐量がより大きくなる。図6は、本発明の第
6の実施例に係るIGBTの構造を示す図である。本実
施例のIGBTが従来のそれと異なる点は、図2のES
Tの場合と同様に、N型エミッタ層4内にP+ 型不純物
拡散層13が設けられてることにある。
The EST of this embodiment is a modification of a part of the EST of FIG. 4, and is an example in which the gate insulating film 6 and the N-type base layer 1 are in contact with each other. According to the EST of the present embodiment, the hole current that flows laterally in the P-type base layer 2 is further reduced as compared with the EST of FIG. 4, so that the latch-up resistance of the parasitic thyristor becomes larger. FIG. 6 is a diagram showing the structure of the IGBT according to the sixth embodiment of the present invention. The IGBT of this embodiment is different from the conventional one in that the ES of FIG.
As in the case of T, P + in the N-type emitter layer 4 The type impurity diffusion layer 13 is provided.

【0043】このように構成されたIGBTによれば、
チャネル総長の減少やチャネル抵抗を招かずに、N+
エミッタ層4,P型ベース層2およびN型ベース層1で
構成された寄生トランジスタのラッチアップを防止でき
る。
According to the IGBT thus constructed,
N + without reducing the total channel length or channel resistance It is possible to prevent the latch-up of the parasitic transistor formed of the type emitter layer 4, the P type base layer 2 and the N type base layer 1.

【0044】[0044]

【発明の効果】以上詳述したように本発明によれば、第
2導電型半導体層内に設けられ、第1の第1導電型半導
体層および第1の主電極に接した第2の第1導電型半導
体層によって、第1の主電極と第2導電型半導体層との
コンタクト面積の低下を招くこと無く、ターンオフ時に
おける第2導電型半導体層の下部の第1の第1導電型半
導体層の電圧降下を小さくできるので、オン抵抗の増加
を招くこと無く寄生サイリスタのラッチアップの防止で
きる。
As described above in detail, according to the present invention, the second conductive type semiconductor layer provided in the second conductive type semiconductor layer and in contact with the first first conductive type semiconductor layer and the first main electrode is provided. The first-conductivity-type semiconductor layer prevents the contact area between the first main electrode and the second-conductivity-type semiconductor layer from decreasing, and the first-first-conductivity-type semiconductor layer under the second-conductivity-type semiconductor layer is turned off. Since the voltage drop in the layers can be reduced, the latch-up of the parasitic thyristor can be prevented without increasing the on-resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例に係るESTの構造を示
す図。
FIG. 1 is a diagram showing a structure of an EST according to a first embodiment of the present invention.

【図2】本発明の第2の実施例に係るESTの構造を示
す図。
FIG. 2 is a diagram showing a structure of an EST according to a second embodiment of the present invention.

【図3】本発明の第3の実施例に係るESTの構造を示
す図。
FIG. 3 is a diagram showing a structure of an EST according to a third embodiment of the present invention.

【図4】本発明の第4の実施例に係るESTの構造を示
す図。
FIG. 4 is a diagram showing a structure of an EST according to a fourth embodiment of the present invention.

【図5】本発明の第5の実施例に係るESTの構造を示
す図。
FIG. 5 is a diagram showing a structure of an EST according to a fifth embodiment of the present invention.

【図6】本発明の第6の実施例に係るIGBTの構造を
示す図。
FIG. 6 is a diagram showing a structure of an IGBT according to a sixth embodiment of the present invention.

【図7】従来のESTの構造を示す図。FIG. 7 is a diagram showing a structure of a conventional EST.

【符号の説明】[Explanation of symbols]

1…N型ベース層(第2導電型ベース層) 2…P型ベース層(第1導電型ベース層) 3…P+ 型エミッタ層(第1導電型エミッタ層) 4…N+ 型エミッタ層(第2導電型エミッタ層) 5…N+ 型不純物拡散層(第2導電型半導体層) 6…ゲート絶縁膜 7…ゲート電極 8…カソード電極(第1の主電極) 9…アノード電極(第2の主電極) 10…P+ 型半導体層(第1の第1導電型半導体層) 11…絶縁膜 12,13…P+ 型半導体層(第2の第1導電型半導体
層)
1 ... N-type base layer (second conductivity type base layer) 2 ... P-type base layer (first conductivity type base layer) 3 ... P + Type emitter layer (first conductivity type emitter layer) 4 ... N + Type emitter layer (second conductivity type emitter layer) 5 ... N + Type impurity diffusion layer (second conductivity type semiconductor layer) 6 ... Gate insulating film 7 ... Gate electrode 8 ... Cathode electrode (first main electrode) 9 ... Anode electrode (second main electrode) 10 ... P + Type semiconductor layer (first first conductivity type semiconductor layer) 11 ... Insulating film 12, 13, ... P + Type semiconductor layer (second first conductivity type semiconductor layer)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1導電型エミッタ層に接した第2導電型
ベース層と、 この第2導電型ベース層に接した第1導電型ベース層
と、 この第1導電型ベース層の表面に選択的に形成された第
2導電型エミッタ層と、 この第2導電型エミッタ層とは別に前記第1導電型ベー
ス層の表面に選択的に形成された第1の第1導電型半導
体層と、 この第1の第1導電型半導体層の表面の一部から、前記
第2導電型エミッタ層側の前記第1導電型ベース層の表
面にまたがって形成された第2導電型半導体層と、 この第2導電型半導体層と前記第2導電型エミッタ層と
の間の前記第1導電型ベース層上にゲート絶縁膜を介し
て設けられたゲート電極と、 このゲート電極と電気的に分離され、前記第2導電型半
導体層に設けられた第1の主電極と、 前記第1導電型エミッタ層に設けられた第2の主電極と
を有する絶縁ゲート型電力用半導体素子において、 前記第2導電型半導体層内に設けられ、且つ前記第1の
第1導電型半導体層および前記第1の主電極に接した第
2の第1導電型半導体層、並びに前記第2導電型エミッ
タ層内に設けられ、且つ前記第1導電型ベース層および
前記第1の主電極に接続した第2の第1導電型半導体層
の少なくとも一方の前記第2の第1導電型半導体層を有
することを特徴とする絶縁ゲート型電力用半導体素子。
1. A second conductivity type base layer in contact with the first conductivity type emitter layer, a first conductivity type base layer in contact with the second conductivity type base layer, and a surface of the first conductivity type base layer. A second conductive type emitter layer selectively formed, and a first first conductive type semiconductor layer selectively formed on the surface of the first conductive type base layer separately from the second conductive type emitter layer A second conductivity type semiconductor layer formed so as to extend from a part of the surface of the first conductivity type semiconductor layer to the surface of the first conductivity type base layer on the side of the second conductivity type emitter layer, A gate electrode provided on the first conductive type base layer between the second conductive type semiconductor layer and the second conductive type emitter layer via a gate insulating film, and electrically isolated from the gate electrode. A first main electrode provided on the second conductivity type semiconductor layer; An insulated gate power semiconductor element having a second main electrode provided on a first emitter type semiconductor layer, wherein the first conductive type semiconductor layer and the first first conductive type semiconductor layer are provided in the second conductive type semiconductor layer. A second semiconductor layer of the first conductivity type which is in contact with the first main electrode, and a second layer which is provided in the second conductivity type emitter layer and is connected to the first conductivity type base layer and the first main electrode. 2. An insulated gate power semiconductor device having the second first-conductivity-type semiconductor layer of at least one of the first-conductivity-type semiconductor layers.
JP4953393A 1993-03-10 1993-03-10 Insulated gate type power semiconductor device Pending JPH06268207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4953393A JPH06268207A (en) 1993-03-10 1993-03-10 Insulated gate type power semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4953393A JPH06268207A (en) 1993-03-10 1993-03-10 Insulated gate type power semiconductor device

Publications (1)

Publication Number Publication Date
JPH06268207A true JPH06268207A (en) 1994-09-22

Family

ID=12833807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4953393A Pending JPH06268207A (en) 1993-03-10 1993-03-10 Insulated gate type power semiconductor device

Country Status (1)

Country Link
JP (1) JPH06268207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713904B1 (en) * 2001-06-29 2007-05-07 주식회사 하이닉스반도체 Method for fabricating semiconductor device
CN109887992A (en) * 2018-12-10 2019-06-14 章美云 A kind of metal-oxide semiconductor (MOS) cutoff thyristor and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713904B1 (en) * 2001-06-29 2007-05-07 주식회사 하이닉스반도체 Method for fabricating semiconductor device
CN109887992A (en) * 2018-12-10 2019-06-14 章美云 A kind of metal-oxide semiconductor (MOS) cutoff thyristor and preparation method thereof

Similar Documents

Publication Publication Date Title
US6724043B1 (en) Bipolar MOSFET device
JP3163820B2 (en) Semiconductor device
JPH04146674A (en) Semiconductor device and manufacture thereof
US5444273A (en) MOSFET controlled thyristor
US5498884A (en) MOS-controlled thyristor with current saturation characteristics
US5923055A (en) Controllable semiconductor component
JPH10173170A (en) Semiconductor device
US5298769A (en) GTO thyristor capable of preventing parasitic thyristors from being generated
US5463231A (en) Method of operating thyristor with insulated gates
US5925900A (en) Emitter-switched thyristor having a floating ohmic contact
US6111278A (en) Power semiconductor devices having discontinuous emitter regions therein for inhibiting parasitic thyristor latch-up
JP3338276B2 (en) Power semiconductor device
US5336907A (en) MOS gate controlled thyristor having improved turn on/turn off characteristics
JP3522983B2 (en) Horizontal IGBT
KR100316723B1 (en) Power MOSFET having low on-resistance and high ruggedness
US6803609B1 (en) Bipolar high-voltage power component
US5194927A (en) Semiconductor device
KR0163928B1 (en) Emitter switch thrystor
US6683348B1 (en) Insulated gate bipolar semiconductor device transistor with a ladder shaped emitter
JPH06268207A (en) Insulated gate type power semiconductor device
JP3300482B2 (en) Thyristor with insulated gate
JP3200328B2 (en) Composite semiconductor device
JP4407172B2 (en) Horizontal insulated gate bipolar transistor
JPH0758783B2 (en) Conduction modulation type MOSFET
JP3342944B2 (en) Horizontal high voltage semiconductor device