JPH06267481A - Focusing method for charged particle beam device - Google Patents

Focusing method for charged particle beam device

Info

Publication number
JPH06267481A
JPH06267481A JP5057023A JP5702393A JPH06267481A JP H06267481 A JPH06267481 A JP H06267481A JP 5057023 A JP5057023 A JP 5057023A JP 5702393 A JP5702393 A JP 5702393A JP H06267481 A JPH06267481 A JP H06267481A
Authority
JP
Japan
Prior art keywords
sample
focusing
signal
region
charged particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5057023A
Other languages
Japanese (ja)
Other versions
JP3114416B2 (en
Inventor
Hironobu Moriwaki
弘暢 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON DENSHI TECH KK
NIPPON DENSHI TEKUNIKUSU KK
Jeol Ltd
Original Assignee
NIPPON DENSHI TECH KK
NIPPON DENSHI TEKUNIKUSU KK
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON DENSHI TECH KK, NIPPON DENSHI TEKUNIKUSU KK, Jeol Ltd filed Critical NIPPON DENSHI TECH KK
Priority to JP05057023A priority Critical patent/JP3114416B2/en
Publication of JPH06267481A publication Critical patent/JPH06267481A/en
Application granted granted Critical
Publication of JP3114416B2 publication Critical patent/JP3114416B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide a focusing method for a charged particle beam by which focusing can be performed with high accuracy even in the case where a feature part exists in only one part of the surface of a sample. CONSTITUTION:The specific region of a sample 4 is scanned by an electron beam, and a secondary electron produced on the basis of the scanning is detected by a detector 6, and the detection signal is supplied to a memory 19 through an amplifier 7, an AD converter 18 and a control circuit 14 and stored thereinto. With respect to the secondary electron detection signal of the predetermined region of the stored sample, the control circuit 14 virtually divides the region. The control circuit 14 integrates the intensity of an image signal to be stored into a memory for every virtual region. The control circuit 14 performs the comparison of the integrated signal for every virtual region to find out a region in which the maximum integrated signal can be obtained. By such steps, a divided region in which a feature part exists is found out from the scanned region of a sample 4, and after that, an automatic focusing operation is carried out on the basis of a signal obtained by scanning the divided region.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自動的に荷電粒子ビー
ムの焦点合わせを行うことができる走査電子顕微鏡など
の荷電粒子ビーム装置における焦点合わせ方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a focusing method in a charged particle beam apparatus such as a scanning electron microscope capable of automatically focusing a charged particle beam.

【0002】[0002]

【従来の技術】走査電子顕微鏡では、自動的な焦点合わ
せ機能が備えられている。この焦点合わせは、集束レン
ズの励磁をステップ状に変化させ、各励磁状態、すなわ
ち、電子ビームの各集束状態のときに試料の所定領域を
電子ビームで走査し、その際、検出器によって2次電子
や反射電子を検出し、各集束状態ごとに検出信号を積算
するようにしている。そして、各集束状態のときの検出
信号の積算値を比較し、最大値が得られたときの集束状
態を合焦点位置と判断し、その状態に集束レンズの励磁
を設定するようにしている。
2. Description of the Related Art A scanning electron microscope has an automatic focusing function. In this focusing, the excitation of the focusing lens is changed stepwise, and a predetermined region of the sample is scanned with the electron beam in each excitation state, that is, in each focusing state of the electron beam. Electrons and backscattered electrons are detected, and detection signals are integrated for each focusing state. Then, the integrated values of the detection signals in each focusing state are compared, the focusing state when the maximum value is obtained is determined as the focus position, and the excitation of the focusing lens is set in that state.

【0003】[0003]

【発明が解決しようとする課題】上述した焦点合わせに
おいて、試料の走査領域の全面に渡って凹凸が存在して
いれば、精度の高い焦点合わせを実行することができ
る。しかしながら、ICパターンのように、電子ビーム
の走査領域の一部分に直線状に特徴部分が存在し、他の
大部分は滑らかな平面となっている試料の場合には、焦
点合わせのために用いられる検出信号の積算値が、電子
ビームの各集束状態によっても差が小さくなり、焦点合
わせの精度が低下することがある。
In the above-described focusing, if unevenness exists over the entire scanning region of the sample, highly accurate focusing can be performed. However, in the case of a sample in which a characteristic part exists linearly in a part of the scanning region of the electron beam and the other part is a smooth plane like the IC pattern, it is used for focusing. The difference in the integrated value of the detection signal may be small depending on each focusing state of the electron beam, and the focusing accuracy may be lowered.

【0004】本発明は、このような点に鑑みてなされた
もので、その目的は、試料表面の一部分にしか特徴部分
が存在しない場合でも、高い精度で焦点合わせを行うこ
とができる荷電粒子ビームにおける焦点合わせ方法を実
現するにある。
The present invention has been made in view of such a point, and an object thereof is a charged particle beam capable of performing focusing with high accuracy even if a characteristic portion exists only in a part of the sample surface. To realize the focusing method in.

【0005】[0005]

【課題を解決するための手段】本発明に基づく荷電粒子
ビーム装置における焦点合わせ方法は、荷電粒子ビーム
を試料上に集束するための集束レンズと、試料上の荷電
粒子ビームの照射位置を走査するための走査手段と、試
料への荷電粒子ビームの照射によって得られた信号を検
出する検出器と、試料上の荷電粒子ビームの集束状態を
ステップ状に変化させる手段とを備えた荷電粒子ビーム
装置において、各集束状態のときに試料の所定領域を荷
電粒子ビームで走査し、その際、検出器によって検出さ
れた信号に基づいて最適焦点位置を求め、最適焦点位置
に集束レンズを設定する焦点合わせ動作を行う焦点合わ
せ方法であって、焦点合わせ動作に先だって試料の所定
領域を走査し、その結果得られた信号を検出すると共
に、試料の所定領域を仮想的に分割し、各分割領域ごと
の信号の積算値を比較し、最大強度の積算値が得られた
分割領域について前記焦点合わせを行うようにしたこと
を特徴としている。
A focusing method in a charged particle beam apparatus according to the present invention scans a focusing lens for focusing a charged particle beam on a sample and an irradiation position of the charged particle beam on the sample. Particle beam apparatus comprising a scanning means for scanning, a detector for detecting a signal obtained by irradiating the sample with the charged particle beam, and a means for changing the focused state of the charged particle beam on the sample in a stepwise manner. In, in each focusing state, the predetermined area of the sample is scanned with the charged particle beam, the optimum focus position is obtained based on the signal detected by the detector, and the focusing lens is set at the optimum focus position. A focusing method for performing an operation, wherein a predetermined area of a sample is scanned prior to the focusing operation, and a signal obtained as a result is detected, and a predetermined area of the sample is detected. Divided virtually, it compares the integrated value of the signals of each of the divided regions, and characterized in that to perform the focus of the divided regions the integrated value of the maximum intensity was obtained.

【0006】[0006]

【作用】本発明に基づく荷電粒子ビーム装置における焦
点合わせ方法は、焦点合わせ動作に先だって、試料表面
の特徴のある部分の領域を見出だし、その領域の検出信
号に基づいて焦点合わせ動作を実行する。
The focusing method in the charged particle beam system according to the present invention finds a region of a characteristic portion of the sample surface prior to the focusing operation and executes the focusing operation based on the detection signal of the region. .

【0007】[0007]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明に基づく焦点合わせ方法を実
施するための走査電子顕微鏡の一例を示しており、1は
電子銃である。電子銃1から発生した電子ビームEB
は、集束レンズ2と対物レンズ3によって試料4上に細
く集束される。また、電子ビームEBは、偏向コイル5
によって偏向され、試料4上の電子ビームの照射位置は
走査される。試料4への電子ビームの照射によって発生
した2次電子は、2次電子検出器6によって検出され
る。検出器6の検出信号は、増幅器7によって増幅され
た後、ハイパスフィルタ8と陰極線管9に供給される。
Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 shows an example of a scanning electron microscope for carrying out a focusing method according to the present invention, and 1 is an electron gun. Electron beam EB generated from electron gun 1
Is finely focused on the sample 4 by the focusing lens 2 and the objective lens 3. Further, the electron beam EB is applied to the deflection coil 5
And the electron beam irradiation position on the sample 4 is scanned. Secondary electrons generated by the irradiation of the sample 4 with the electron beam are detected by the secondary electron detector 6. The detection signal of the detector 6 is amplified by the amplifier 7 and then supplied to the high-pass filter 8 and the cathode ray tube 9.

【0008】ハイパスフィルタ8を通過した信号は、絶
対値回路10を経て積分器11に供給される。積分器1
1の積分結果は、AD変換器12を介してピーク検出回
路13に供給される。ピーク検出回路13で検出された
ピーク値は、制御回路14に供給される。15は操作盤
であり、操作盤15は、制御回路14に指示信号を送
る。制御回路14は、対物レンズ3の駆動電源16と偏
向コイル5の駆動電源17を制御する。更に、この実施
例では、検出器6によって検出され、増幅器7によって
増幅された信号は、AD変換器18によってディジタル
信号に変換された後、制御回路14を介してメモリー1
9に供給されて記憶される。このような構成の動作は次
の通りである。
The signal passed through the high pass filter 8 is supplied to the integrator 11 via the absolute value circuit 10. Integrator 1
The integration result of 1 is supplied to the peak detection circuit 13 via the AD converter 12. The peak value detected by the peak detection circuit 13 is supplied to the control circuit 14. Reference numeral 15 is an operation panel, and the operation panel 15 sends an instruction signal to the control circuit 14. The control circuit 14 controls the drive power supply 16 for the objective lens 3 and the drive power supply 17 for the deflection coil 5. Further, in this embodiment, the signal detected by the detector 6 and amplified by the amplifier 7 is converted into a digital signal by the AD converter 18, and then is converted into a digital signal via the control circuit 14.
9 and is stored. The operation of such a configuration is as follows.

【0009】通常の2次電子像を観察する場合、操作盤
15からの指示信号に基づき、制御回路14は駆動電源
17を制御し、駆動電源17から所定の走査信号が偏向
コイル5に供給され、試料4上の任意の領域が電子ビー
ムEBによって走査される。試料4への電子ビームの照
射によって発生した2次電子は、検出器6によって検出
される。その検出信号は、増幅器7を介して偏向コイル
5への走査信号と同期した陰極線管9に供給され、陰極
線管9には試料の任意の領域の2次電子像が表示され
る。
When observing a normal secondary electron image, the control circuit 14 controls the drive power supply 17 based on an instruction signal from the operation panel 15, and the drive power supply 17 supplies a predetermined scanning signal to the deflection coil 5. , An arbitrary region on the sample 4 is scanned by the electron beam EB. Secondary electrons generated by irradiating the sample 4 with the electron beam are detected by the detector 6. The detection signal is supplied to the cathode ray tube 9 synchronized with the scanning signal to the deflection coil 5 through the amplifier 7, and the secondary electron image of an arbitrary region of the sample is displayed on the cathode ray tube 9.

【0010】次に、通常の電子ビームの焦点合わせ動作
を行う場合について説明する。操作盤15を操作し、焦
点合わせモードの指示を行うと、制御回路14は、対物
レンズ3の駆動電源16と偏向コイル5の駆動電源17
とを制御する。この結果、駆動電源16は対物レンズ3
にステップ状に変化する励磁電流を供給し、駆動電源1
7はステップ状の励磁電流の変化の都度、試料の所定領
域の操作を行うための走査信号を偏向コイル5に供給す
る。
Next, a case where a normal electron beam focusing operation is performed will be described. When the operation panel 15 is operated to instruct the focusing mode, the control circuit 14 causes the driving power supply 16 for the objective lens 3 and the driving power supply 17 for the deflection coil 5 to be performed.
And control. As a result, the driving power source 16 is operated by the objective lens 3
To the driving power source 1
Reference numeral 7 supplies a scanning signal to the deflection coil 5 for operating a predetermined region of the sample each time the step-like exciting current changes.

【0011】各ステップ状の励磁電流によるフォーカス
の状態における検出器6によって検出された2次電子信
号は、増幅器7によって増幅された後、ハイパスフィル
タ8によって直流分が除去された後、絶対値回路10に
よって正の信号に変換させられる。絶対値回路10の出
力は、積分器11に供給され、対物レンズ3の各励磁ス
テップごとの1回の電子ビームの走査に基づく信号が積
分される。積分器11の積分値は、AD変換器12によ
ってディジタル信号に変換された後、ピーク検出回路1
3に供給される。
The secondary electron signal detected by the detector 6 in the focus state by each step-like exciting current is amplified by the amplifier 7 and, after the direct current component is removed by the high pass filter 8, the absolute value circuit. It is converted by 10 into a positive signal. The output of the absolute value circuit 10 is supplied to the integrator 11, and the signal based on one scanning of the electron beam for each excitation step of the objective lens 3 is integrated. The integrated value of the integrator 11 is converted into a digital signal by the AD converter 12, and then the peak detection circuit 1
3 is supplied.

【0012】ピーク検出回路13においては、対物レン
ズ3の各励磁ステップごとに積分器11の積分値を記憶
する。図2はこのときの記憶された積分値変化を示して
おり、縦軸が積分値、横軸が対物レンズ3の励磁強度で
ある。ピーク検出回路13は、記憶された積分値の変化
曲線のピークの時の対物レンズ3の励磁強度を検出し、
その値は制御回路14に供給される。制御回路14は、
駆動電源16を制御し、ピークの時の励磁強度に対物レ
ンズ3を設定し、このようにして焦点合わせ動作が行わ
れる。
The peak detection circuit 13 stores the integrated value of the integrator 11 for each excitation step of the objective lens 3. FIG. 2 shows changes in the stored integrated value at this time, where the vertical axis represents the integrated value and the horizontal axis represents the excitation intensity of the objective lens 3. The peak detection circuit 13 detects the excitation intensity of the objective lens 3 at the peak of the change curve of the stored integrated value,
The value is supplied to the control circuit 14. The control circuit 14
The drive power supply 16 is controlled to set the objective lens 3 to the excitation intensity at the peak, and the focusing operation is performed in this manner.

【0013】さて、本発明の方法では、上記した焦点合
わせ動作に先だって、焦点合わせに用いる試料領域の特
定動作が実行される。まず、試料4の所定領域を電子ビ
ームで走査し、その走査に基づいて発生した2次電子を
検出器6によって検出し、その検出信号を増幅器7によ
って増幅した後、AD変換器18によってディジタル信
号に変換する。変換された信号は制御回路14を介して
メモリー19に供給され記憶される。
In the method of the present invention, the operation of specifying the sample area used for focusing is executed prior to the above-described focusing operation. First, a predetermined region of the sample 4 is scanned with an electron beam, secondary electrons generated based on the scanning are detected by a detector 6, the detected signal is amplified by an amplifier 7, and then a digital signal is generated by an AD converter 18. Convert to. The converted signal is supplied to and stored in the memory 19 via the control circuit 14.

【0014】さて、制御回路14は記憶された試料の所
定領域の2次電子検出信号について、仮想的に領域を分
割する。図3はメモリー19に記憶された試料像Dを示
しており、像の一部分に直線状の特徴部分(例えば、I
Cパターン)Lが存在している。また、特徴部分L以外
は滑らかな面である。このような像領域は、例えば8つ
の領域S1〜S8に仮想的に分割される。図中の点線は
仮想的分割の境界を示している。制御回路14は各仮想
領域ごとに記憶された像信号の強度を積算する。この結
果、8種類の積算信号が得られる。制御回路14は8種
類の積算信号を比較し、最大積算信号が得られる領域を
見出だす。この図3のケースでは、領域S5に直線状の
特徴部分が存在しているため、領域S5において最大積
算信号が得られる。
The control circuit 14 virtually divides the stored secondary electron detection signal of the predetermined region of the sample into regions. FIG. 3 shows a sample image D stored in the memory 19, where a linear feature (eg, I
C pattern) L exists. The surface other than the characteristic portion L is a smooth surface. Such an image area is virtually divided into, for example, eight areas S1 to S8. The dotted line in the figure indicates the boundary of virtual division. The control circuit 14 integrates the intensities of the image signals stored for each virtual area. As a result, eight kinds of integrated signals are obtained. The control circuit 14 compares the eight kinds of integrated signals and finds a region where the maximum integrated signal is obtained. In the case of FIG. 3, since the linear characteristic portion exists in the area S5, the maximum integrated signal can be obtained in the area S5.

【0015】上記ステップにより、試料4の走査領域の
うち、特徴部分Lが存在している分割領域S5が判明す
るが、その後、自動焦点合わせ動作が実行される。この
焦点合わせ動作においては、制御回路14は、対物レン
ズ3の各励磁ステップの都度、領域S5の部分のみが電
子ビームによって走査されるように、駆動電源17を制
御する。この領域S5の電子ビームの走査に基づく2次
電子信号のみが、増幅器7によって増幅され、ハイパス
フィルタ8によって直流分が除去された後、絶対値回路
10によって正の信号に変換させられる。絶対値回路1
0の出力は、積分器11に供給され、対物レンズ3の各
励磁ステップごとの1回の電子ビームの走査に基づく信
号が積分される。積分器11の積分値は、AD変換器1
2によってディジタル信号に変換された後、ピーク検出
回路13に供給され、前記した焦点合わせ動作が実行さ
れる。
From the above steps, the divided area S5 in which the characteristic portion L is present in the scanning area of the sample 4 is identified, and thereafter the automatic focusing operation is executed. In this focusing operation, the control circuit 14 controls the driving power supply 17 so that only the region S5 is scanned by the electron beam at each excitation step of the objective lens 3. Only the secondary electron signal based on the scanning of the electron beam in the region S5 is amplified by the amplifier 7, the direct current component is removed by the high pass filter 8, and then converted into a positive signal by the absolute value circuit 10. Absolute value circuit 1
The output of 0 is supplied to the integrator 11, and the signal based on the scanning of the electron beam once for each excitation step of the objective lens 3 is integrated. The integrated value of the integrator 11 is the AD converter 1
After being converted into a digital signal by 2, the signal is supplied to the peak detection circuit 13 and the focusing operation described above is executed.

【0016】上記した実施例では、自動焦点合わせ動作
の際には、分割領域S5のみを電子ビームで走査するよ
うにしたが、電子ビームの走査は全領域行い、検出され
た信号のうち、領域S5の部分の信号のみを焦点合わせ
用に使用するようにしても良く、また、S1からS5ま
でを走査し、S5の領域のみの信号を用いるようにして
も良い。更に、水平方向に細長い領域に像領域を分割し
たが、垂直方向に細長く像領域を分割しても良い。ま
た、図4に示すように、像領域の一部Pに特徴部分があ
るような場合には、水平,垂直の両方向に像領域を区画
し、各分割領域の信号強度を得るようにしても良い。そ
して、自動焦点合わせのために用いる信号を特定の1つ
の領域の信号のみ用いるのではなく、最大信号強度が得
られた領域と2番目の信号強度が得られた領域の2つの
領域の信号を用いるようにしても良く、更に多数の領域
の信号を用いるようにしても良い。
In the above-described embodiment, only the divided area S5 is scanned with the electron beam during the automatic focusing operation. However, the electron beam is scanned over the entire area, and the area of the detected signal is detected. Only the signal in the S5 portion may be used for focusing, or scanning from S1 to S5 may be performed and only the signal in the S5 area may be used. Further, although the image area is divided into the elongated areas in the horizontal direction, the image area may be divided into elongated areas in the vertical direction. Further, as shown in FIG. 4, when there is a characteristic portion in a part P of the image area, the image area is divided in both horizontal and vertical directions, and the signal intensity of each divided area is obtained. good. Then, the signal used for automatic focusing is not limited to the signal of one specific area, but the signals of two areas, that is, the area where the maximum signal strength is obtained and the area where the second signal strength is obtained are The signals may be used, or the signals of a larger number of areas may be used.

【0017】以上本発明の一実施例を詳述したが、本発
明はこの実施例に限定されない。例えば、2次電子を検
出したが、反射電子を検出してもよい。また、実施例で
は、走査電子顕微鏡を例に説明したが、イオンビームを
用いた装置などにも本発明を適用することかできる。更
に、焦点合わせ動作の際に対物レンズの励磁を変化させ
たが、対物レンズの補助レンズを設け、補助レンズの励
磁を変化させるようにしても良い。更にまた、焦点合わ
せの際、1走査ごとに検出信号を積算し、積算信号を比
較して最適焦点位置を得るように構成したが、検出信号
の最大の振幅値(ピークツーピーク値)を検出するよう
にしても良い。
Although one embodiment of the present invention has been described in detail above, the present invention is not limited to this embodiment. For example, although secondary electrons are detected, reflected electrons may be detected. Further, in the embodiments, the scanning electron microscope has been described as an example, but the present invention can also be applied to an apparatus using an ion beam. Furthermore, although the excitation of the objective lens was changed during the focusing operation, an auxiliary lens of the objective lens may be provided and the excitation of the auxiliary lens may be changed. Furthermore, when focusing, the detection signals are integrated for each scanning and the integrated signals are compared to obtain the optimum focus position. However, the maximum amplitude value (peak-to-peak value) of the detection signal is detected. It may be done.

【0018】[0018]

【発明の効果】以上説明したように、本発明に基づく荷
電粒子ビーム装置における焦点合わせ方法は、焦点合わ
せ動作に先だって、試料表面の特徴のある部分の領域を
見出だし、その領域の検出信号に基づいて焦点合わせ動
作を実行するようにしたので、滑らかな表面部分からの
信号を除去して焦点合わせ動作を行うことができる。そ
の結果、試料上の特徴のある部分の信号に基づいて自動
焦点合わせが行われるので、焦点合わせの精度を高める
ことかできる。
As described above, the focusing method in the charged particle beam apparatus according to the present invention finds the characteristic region of the sample surface prior to the focusing operation, and detects the detection signal in that region. Since the focusing operation is executed based on this, the focusing operation can be performed by removing the signal from the smooth surface portion. As a result, the automatic focusing is performed based on the signal of the characteristic portion on the sample, so that the accuracy of focusing can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施するための走査電子顕微鏡
の一例を示す図である。
FIG. 1 is a diagram showing an example of a scanning electron microscope for carrying out the method of the present invention.

【図2】対物レンズの励磁強度と積分値との関係を示す
図である。
FIG. 2 is a diagram showing a relationship between an excitation intensity of an objective lens and an integrated value.

【図3】領域分割される試料像を示す図である。FIG. 3 is a diagram showing a sample image which is divided into regions.

【図4】領域分割される試料像を示す図である。FIG. 4 is a diagram showing a sample image divided into regions.

【符号の説明】[Explanation of symbols]

1 電子銃 2 集束レンズ 3 対物レンズ 4 試料 5 偏向コイル 6 検出器 7 増幅器 9 陰極線管 12 AD変換器 14 制御回路 15 操作盤 16 駆動電源 17 駆動電源 18 AD変換器 19 メモリー 1 electron gun 2 focusing lens 3 objective lens 4 sample 5 deflection coil 6 detector 7 amplifier 9 cathode ray tube 12 AD converter 14 control circuit 15 operation panel 16 drive power supply 17 drive power supply 18 AD converter 19 memory

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 荷電粒子ビームを試料上に集束するため
の集束レンズと、試料上の荷電粒子ビームの照射位置を
走査するための走査手段と、試料への荷電粒子ビームの
照射によって得られた信号を検出する検出器と、試料上
の荷電粒子ビームの集束状態をステップ状に変化させる
手段とを備えた荷電粒子ビーム装置において、各集束状
態のときに試料の所定領域を荷電粒子ビームで走査し、
その際、検出器によって検出された信号に基づいて最適
焦点位置を求め、最適焦点位置に集束レンズを設定する
焦点合わせ動作を行う焦点合わせ方法であって、焦点合
わせ動作に先だって試料の所定領域を走査し、その結果
得られた信号を検出すると共に、試料の所定領域を仮想
的に分割し、各分割領域ごとの信号の積算値を比較し、
最大強度の積算値が得られた分割領域について前記焦点
合わせを行うようにした荷電粒子ビーム装置における焦
点合わせ方法。
1. A focusing lens for focusing a charged particle beam on a sample, a scanning means for scanning an irradiation position of the charged particle beam on the sample, and a sample obtained by irradiating the sample with the charged particle beam. In a charged particle beam apparatus equipped with a detector for detecting a signal and a means for changing a focused state of a charged particle beam on a sample in a stepwise manner, a predetermined region of the sample is scanned with the charged particle beam in each focused state. Then
At that time, it is a focusing method that obtains the optimum focus position based on the signal detected by the detector, and performs a focus operation that sets the focusing lens at the optimum focus position. Scan, detect the signal obtained as a result, virtually divide a predetermined region of the sample, compare the integrated value of the signal for each divided region,
A focusing method in a charged particle beam device, wherein the focusing is performed on a divided area for which an integrated value of maximum intensity is obtained.
JP05057023A 1993-03-17 1993-03-17 Focusing method in charged particle beam device Expired - Lifetime JP3114416B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05057023A JP3114416B2 (en) 1993-03-17 1993-03-17 Focusing method in charged particle beam device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05057023A JP3114416B2 (en) 1993-03-17 1993-03-17 Focusing method in charged particle beam device

Publications (2)

Publication Number Publication Date
JPH06267481A true JPH06267481A (en) 1994-09-22
JP3114416B2 JP3114416B2 (en) 2000-12-04

Family

ID=13043840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05057023A Expired - Lifetime JP3114416B2 (en) 1993-03-17 1993-03-17 Focusing method in charged particle beam device

Country Status (1)

Country Link
JP (1) JP3114416B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361896B2 (en) 2004-05-18 2008-04-22 Hitachi High-Technologies Corporation Scanning electron microscope and a method for adjusting a focal point of an electron beam of said scanning electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7361896B2 (en) 2004-05-18 2008-04-22 Hitachi High-Technologies Corporation Scanning electron microscope and a method for adjusting a focal point of an electron beam of said scanning electron microscope

Also Published As

Publication number Publication date
JP3114416B2 (en) 2000-12-04

Similar Documents

Publication Publication Date Title
US4097740A (en) Method and apparatus for focusing the objective lens of a scanning transmission-type corpuscular-beam microscope
JP3021917B2 (en) Automatic focusing and astigmatism correction method in electron beam device
JPH0689687A (en) Automatic focusing device for scanning electron microscope
JP3114416B2 (en) Focusing method in charged particle beam device
JPH06243812A (en) Scanning electron microscope
JP3236433B2 (en) Focusing method in charged particle beam device
JPH08138605A (en) Focusing method and astigmatism correcting method in electron beam device, and electron beam device
JP3114335B2 (en) Focusing method in scanning electron microscope
JP3101089B2 (en) Brightness correction method for scanning electron microscope
JP2000195457A (en) Scanning microscope
JPH10172489A (en) Adjusting method of electron beam in scan electron microscope
JPH08167396A (en) Electron beam device provided with field emission type electron gun
JP3112548B2 (en) Image signal processing method in charged particle beam device
JP3364400B2 (en) Method of adjusting electron beam in scanning electron microscope and scanning electron microscope
JP3202857B2 (en) Focusing method and apparatus in charged particle beam apparatus
JPH05114378A (en) Scanning electron microscope
JPH04522Y2 (en)
JP2001110347A (en) Automated focusing method for charged-particle beam apparatus
JPH05290780A (en) Focusing method and astigmatism correcting method in charged particle beam device
JP3112541B2 (en) Astigmatism correction method for electron beam device
JP3037006B2 (en) Automatic image adjustment method for scanning electron microscope
JPH08273576A (en) Focusing method for use in electron beam device, and electron beam device
JPH04147549A (en) Scanning electron microscope
JPH0831364A (en) Scanning electron microscope
JPH09204892A (en) Focusing method for charged particle beam device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 12