JPH06265952A - Optical wavelength converting element - Google Patents

Optical wavelength converting element

Info

Publication number
JPH06265952A
JPH06265952A JP5401093A JP5401093A JPH06265952A JP H06265952 A JPH06265952 A JP H06265952A JP 5401093 A JP5401093 A JP 5401093A JP 5401093 A JP5401093 A JP 5401093A JP H06265952 A JPH06265952 A JP H06265952A
Authority
JP
Japan
Prior art keywords
waveguide
fundamental wave
optical wavelength
harmonic
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5401093A
Other languages
Japanese (ja)
Inventor
Kenji Todori
顕司 都鳥
Yasushi Mori
寧 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5401093A priority Critical patent/JPH06265952A/en
Publication of JPH06265952A publication Critical patent/JPH06265952A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the optical wavelength converting element which has a high conversion efficiency and does not require the processing of uncoverted light of an incident fundamental wave by shutting the fundamental wave, which is made incident on a waveguide part, in the waveguide part to allow it to resonance so that it is not radiated out of the optical wavelength converting element. CONSTITUTION:A waveguide part 1 consisting of a nonlinear optical material, a waveguide support part 2 which is arranged as one body together with the waveguide part 1, and a reflecting film 3 which is arranged as one body on both end faces in the guiding direction of the waveguide part 1 and reflects the fundamental wave made incident on the waveguide part 1 are added to make a resonator of the optical wavelength converting element. Thus, the power of the fundamental wave is accumulated in the resonator, and the efficiency of conversion to the second or third harmonic wave is considerably improved. Since the incident fundamental wave is shut in the waveguide part 1, the postprocessing of unconverted light in the fundamental wave is unnecessary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザー光を用いる情
報処理などにおいて使用される光波長変換素子に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical wavelength conversion element used in information processing using laser light.

【0002】[0002]

【従来の技術】レーザ光を利用したオプトロニクスの分
野においては、たとえば光記録などを行う際の情報密度
を上げるため、光源の短波長化,高出力化,小形化の要
求が高まっている。そして、この光源に関しては、小
形,安価で、かつ注入電流で直接変調が可能な半導体レ
ーザを一般的に利用しているが、この種の半導体レーザ
は、波長 600nm以下の発振が困難であるため、非線形光
ファイバや非線形光導波管などを用いて、入射波の 1/
2、もしくは 1/ 3の波長である第二高調波発生(SHG
) 、もしくは第三高調波発生(THG )を行い、波長の
短波長化が試みられている。ここで、半導体レーザと組
み合わせる光波長変換素子としては、クラッド(導波支
持部)としてのガラス製もしくはプラスチックス製のキ
ャピラリー内部に、非線形光学効果を有する有機単結
晶、より具体的には SHG活性や THG活性の有機単結晶を
コア(導波部)として充填して成るファイバー型の光波
長変換素子、あるいは同じく非線形光学効果を有するニ
オブ酸リチウム(LiNbO3 )など無機化合物を導波部とす
る平面型の光波長変換素子がよく知られている。
2. Description of the Related Art In the field of optronics using a laser beam, there is an increasing demand for a light source having a shorter wavelength, a higher output, and a smaller size in order to increase the information density when performing optical recording. For this light source, a semiconductor laser that is small and inexpensive and that can be directly modulated by an injection current is generally used. However, this type of semiconductor laser is difficult to oscillate at a wavelength of 600 nm or less. , Using a non-linear optical fiber or a non-linear optical waveguide
2nd or 1/3 wavelength second harmonic generation (SHG
) Or third harmonic generation (THG) to reduce the wavelength. Here, as an optical wavelength conversion element to be combined with a semiconductor laser, an organic single crystal having a nonlinear optical effect, more specifically, an SHG active material, is provided inside a glass or plastics capillary as a clad (waveguide support). Or a fiber type optical wavelength conversion device filled with THG active organic single crystal as a core (waveguide), or an inorganic compound such as lithium niobate (LiNbO 3 ) which also has a nonlinear optical effect as a waveguide Planar optical wavelength conversion elements are well known.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、前記光
波長変換素子の場合は、いずれも変換効率が低い状況に
あり、実用化において問題がある。たとえば、ファイバ
ー型の光波長変換素子の場合は、発生した第2高調波ま
たは第3高調波の集光やエネルギーの分散を避けるた
め、入射される基本波の横モードを単一に設定する必要
があり、そのためにコア径を、たとえば 1μm 程度と、
基本波の波長程度まで小さくすると、入射時のカップリ
ング効率が大幅に低下し、所望の機能が得られない。ま
た、特に非線形光学効果を有する有機単結晶を用いたフ
ァイバー型の光波長変換素子の場合、製造時にコアとク
ラッドとの間に隙間が生じるため、この隙間において第
2高調波または第3高調波のチェレンコフ放射の損失が
問題となる。すなわち、非線形光学効果を有する有機単
結晶を用いたファイバー型の光波長変換素子は、先ず長
さ数10cmのガラス製のキャピラリーの内部に、前記 SHG
活性,もしくは THG活性の有機単結晶を恒温炉内で成長
させ、キャピラリーをクラッド,有機単結晶をコアとす
るファイバーを作製した後、このファイバーを 5〜10mm
程度の長さに切断することにより一般的に製造されてい
る。このとき、前記有機単結晶を成長させる段階で、ク
ラッドのガラスとコアの非線形光学効果を有する有機単
結晶との熱膨脹率の違いから、コアとクラッドとの間に
隙間が生じる。そして、前記コアとクラッドとの隙間の
屈折率が約 1.0で、コアおよびクラッドの屈折率と大き
く異なるので、この屈折率の相違がチェレンコフ放射条
件を変化させて、変換効率の低減をもたらしている。
However, in the case of the above-mentioned optical wavelength conversion element, the conversion efficiency is low, and there is a problem in practical use. For example, in the case of a fiber-type optical wavelength conversion element, it is necessary to set the transverse mode of the incident fundamental wave to a single value in order to avoid condensing the generated second harmonic or third harmonic and energy dispersion. Therefore, the core diameter is, for example, about 1 μm,
If the wavelength is reduced to about the wavelength of the fundamental wave, the coupling efficiency at the time of incidence is significantly reduced, and the desired function cannot be obtained. Further, particularly in the case of a fiber-type optical wavelength conversion element using an organic single crystal having a non-linear optical effect, a gap is created between the core and the clad during manufacturing, so that the second harmonic wave or the third harmonic wave is generated in this gap. Cerenkov radiation loss becomes a problem. That is, a fiber-type optical wavelength conversion element using an organic single crystal having a non-linear optical effect is prepared by first placing the SHG inside a glass capillary with a length of several tens of centimeters.
After growing an active or THG-active organic single crystal in a thermostatic oven to prepare a fiber with a capillary as the cladding and an organic single crystal as the core, this fiber is used for 5 to 10 mm.
It is generally manufactured by cutting into a length. At this time, at the stage of growing the organic single crystal, a gap is formed between the core and the clad due to a difference in thermal expansion coefficient between the glass of the clad and the organic single crystal of the core having a nonlinear optical effect. Since the refractive index of the gap between the core and the clad is about 1.0, which is significantly different from the refractive index of the core and the clad, this difference in the refractive index changes the Cherenkov radiation condition, resulting in a reduction in conversion efficiency. .

【0004】さらに、従来の光波長変換素子の場合は、
大部分の基本波は変換されることがないので、未変換光
の処理が求められている。つまり、一端面から入射させ
た基本波のうち、変換されない基本波が光波長変換素子
外に放射されるため、その散乱光、特に目に見えない赤
外光の存在が危険性を及ぼすという問題がある。
Further, in the case of the conventional optical wavelength conversion element,
Since most of the fundamental waves are not converted, processing of unconverted light is required. In other words, since the fundamental wave that has not been converted among the fundamental waves that have been incident from one end surface is radiated to the outside of the optical wavelength conversion element, the presence of scattered light, especially invisible infrared light poses a risk. There is.

【0005】本発明は上記事情に対処してなされたもの
で、変換効率が高く、入射基本波の未変換光の処理も要
しない光波長変換素子の提供を目的とする。
The present invention has been made in view of the above circumstances, and an object thereof is to provide an optical wavelength conversion element which has high conversion efficiency and does not require processing of unconverted light of an incident fundamental wave.

【0006】[0006]

【課題を解決するための手段】本発明に係る光波長変換
素子は、非線形光学材料から成る導波部と、前記導波部
に一体的に配設されたアモルファス材料から成る導波支
持部と、前記導波部の導波方向両端面にそれぞれ一体的
に配設され、導波部に入射された基本波を反射する反射
膜とを具備して成ることを特徴とする。
An optical wavelength conversion element according to the present invention comprises a waveguide section made of a non-linear optical material, and a waveguide support section made of an amorphous material integrally disposed on the waveguide section. And a reflection film that is integrally provided on both end surfaces of the waveguide in the waveguide direction and that reflects the fundamental wave incident on the waveguide.

【0007】本発明に係る光波長変換素子は、いわゆる
ファイバー型もしくは平面型の光波長変換素子に、共振
作用を持たせるため、導波部の両端面に基本波を反射す
る反射膜を配設することを骨子とする。つまり、本発明
は、必ずしも導波部の端面から基本波を入射せずに、導
波部の周面側から入射した場合でも、所要の光波長変換
機能を十分に呈することに着目して成されたものであ
る。ここで、導波部両端面に付設する反射膜は、たとえ
ばAu,Ag,Al,誘電体多層膜などが挙げられ、基本波に
対して反射率が高いほど望ましい。
In the optical wavelength conversion element according to the present invention, the so-called fiber type or planar type optical wavelength conversion element is provided with a reflection film for reflecting the fundamental wave on both end faces of the waveguide in order to give a resonance effect. To do is the outline. That is, the present invention has been made paying attention to the fact that the required optical wavelength conversion function is sufficiently exhibited even when the fundamental wave is not necessarily incident from the end face of the waveguide portion but is incident from the peripheral surface side of the waveguide portion. It was done. Here, examples of the reflection film provided on both end surfaces of the waveguide include Au, Ag, Al, and dielectric multilayer film, and the higher the reflectance with respect to the fundamental wave, the more preferable.

【0008】なお、本発明において、前記導波支持部と
は、ファイバー型の光波長変換素子の場合はクラッド、
平面型の光波長変換素子の場合は基板に相当し、また、
前記導波部とは、ファイバー型の光波長変換素子の場合
はコア、平面型の光波長変換素子の場合は導波路に相当
する。さらに、本発明において、非線形光学材料として
有機単結晶を用いてファイバー型の光波長変換素子を構
成する場合、基本波の波長における屈折率がコアの屈折
率よりも低く、かつ融点が前記有機単結晶およびクラッ
ドで使用されたアモルファス材料よりも低い有機高分子
化合物を充填剤として、コアとクラッドとの隙間に注入
・充填しておくことが好ましく、この様な充填剤の注入
・充填はたとえば毛細管現象を利用することにより容易
に行うことができる。
In the present invention, the waveguide support means a clad in the case of a fiber type optical wavelength conversion element,
In the case of a planar type optical wavelength conversion element, it corresponds to the substrate,
The waveguide section corresponds to a core in the case of a fiber type optical wavelength conversion element and a waveguide in the case of a plane type optical wavelength conversion element. Further, in the present invention, when an optical single crystal is used as a nonlinear optical material to form a fiber-type optical wavelength conversion element, the refractive index at the wavelength of the fundamental wave is lower than the refractive index of the core, and the melting point is the organic single crystal. It is preferable to inject / fill the gap between the core and the clad with an organic polymer compound lower than the amorphous material used in the crystal and the clad as a filler. This can be easily done by utilizing the phenomenon.

【0009】[0009]

【作用】本発明によれば、ファイバー型や平面型の光波
長変換素子の導波部の両端面に、入射した基本波を反射
する反射膜を付設して、光波長変換素子を共振器化した
構成と成すことにより、基本波のパワーが共振器内に蓄
積され、第2高調波または第3高調波への変換効率が大
幅に向上する。なお、この構成では、導波部端面からは
基本波を導入し得ないが、導波部の周面側(たとえば反
射膜が付設されたクラッド端面部などや主面側)から基
本波を導波部に入射させることが可能である。また、入
射した基本波は導波部の内部に閉じ込められるため、基
本波中の未変換光の後処理も不要となる。
According to the present invention, a reflection film for reflecting an incident fundamental wave is attached to both end faces of a waveguide portion of a fiber-type or flat-type optical wavelength conversion element to convert the optical wavelength conversion element into a resonator. With this configuration, the power of the fundamental wave is accumulated in the resonator, and the conversion efficiency into the second harmonic wave or the third harmonic wave is significantly improved. In this configuration, the fundamental wave cannot be introduced from the end face of the waveguide, but the fundamental wave is guided from the peripheral face side of the waveguide part (for example, the clad end face part with a reflection film or the main face side). It is possible to make it incident on the wave portion. Further, since the incident fundamental wave is confined inside the waveguide, post-processing of the unconverted light in the fundamental wave is unnecessary.

【0010】なお、前記共振器化した構成の、光波長変
換素子内部に立つ波動の縦モード周波数間隔△νは、導
波部の屈折率をn,光速をc,共振器長をLとすると、 △ν=c/( 2・n・L) で示される。ここで、c= 3×108 m/s ,n= 1.7,L
=0.01m とすると、△ν= 8.8×109 となるので、これ
以上の半値幅をもつレーザー光を基本波として入射させ
た場合、縦モードが立つことになり、 1×1012Hz程度の
周波数半値幅をもつ光を発振るできる大部分の半導体レ
ーザについては、前記条件を満することができる。
The longitudinal mode frequency interval Δν of the waves standing inside the optical wavelength conversion element having the above-described resonator structure is given by the following formula: n is the refractive index of the waveguide, c is the speed of light, and L is the resonator length. , Δν = c / (2 · n · L). Where c = 3 × 10 8 m / s, n = 1.7, L
= 0.01 m, Δν = 8.8 × 10 9 , so if a laser beam with a full width at half maximum is made incident as the fundamental wave, the longitudinal mode will rise, and 1 × 10 12 Hz The above conditions can be satisfied for most semiconductor lasers capable of oscillating light having a half-width of frequency.

【0011】[0011]

【実施例】以下図1〜図4を参照して本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0012】実施例1 この実施例は、本発明を光ファイバー型の第2高調波発
生素子に適用した例である。
Example 1 This example is an example in which the present invention is applied to an optical fiber type second harmonic generating element.

【0013】図1は第2高調波発生素子の要部構成例を
示す縦断面図、図2はこの第2高調波発生素子の使用態
様例を模式的に示す縦断面図である。
FIG. 1 is a vertical cross-sectional view showing an example of the essential structure of the second harmonic generation element, and FIG. 2 is a vertical cross-sectional view schematically showing an example of the usage of the second harmonic generation element.

【0014】先ず、図1において、1は4-( N,N-ジメチ
ルアミノ)-3-アセトアミドニトロベンゼン (DAN)から成
る直径 1μm のファイバー状の導波部(コア)、2は前
記導波部1の外周面を一体的に被覆する厚さ約 0.5mmの
ガラスから成る導波支持部(クラッド)、3は前記導波
部1の両端面に、たとえば気相成長によって被着形成さ
れたAuから成る反射膜であり、このとき反射膜3の周辺
部が導波支持部2端面を一部または全部被覆してもよ
い。
First, in FIG. 1, 1 is a fiber-like waveguide portion (core) having a diameter of 1 μm and made of 4- (N, N-dimethylamino) -3-acetamidonitrobenzene (DAN), and 2 is the waveguide portion. A waveguide supporting portion (clad) 3 made of glass having a thickness of about 0.5 mm for integrally covering the outer peripheral surface of 1 is formed on both end surfaces of the waveguide portion 1 by Au deposition, for example. In this case, the peripheral portion of the reflective film 3 may cover the end surface of the waveguide support portion 2 partially or entirely.

【0015】また、上記構成においては、基本波として
入射される cwYAGレリーザー光の波長ωにおける導波部
1および導波支持部2の屈折率はそれぞれnc (ω)=
1.720,nk (ω)= 1.718でかつ第2高調波の波長 2
ωにおける導波支持部2の屈折率はnk (2ω)= 1.722
で、nk (ω)<nc (ω)<nk (2ω)のチェレンコ
フ放射条件が成立する。
In the above structure, the refractive index of the waveguide section 1 and the waveguide support section 2 at the wavelength ω of the cwYAG relaser light incident as the fundamental wave is n c (ω) =
1.720, n k (ω) = 1.718 and the second harmonic wavelength 2
The refractive index of the waveguide support portion 2 at ω is n k (2ω) = 1.722.
Then, the Cherenkov radiation condition of n k (ω) <n c (ω) <n k (2ω) is satisfied.

【0016】前記構成の第2高調波発生素子について、
図2に模式的に示すごとく、導波部1の端面に付設され
た反射膜3の外側から、集光レンズ10を用いて cwYAGレ
リーザーを光源11とした波長1064nm,パワー 500mWの基
本波をリング状に入射したところ、第2高調波パワー約
80mW,波長 532nmの第2高調波8が2方向へ発生した。
この第2高調波発生は、前記反射膜3を付設しない外は
同一構成とし、同一条件で第2高調波を発生した場合
(比較例)の第2高調波パワー 5mWに較べて遥かに大き
い変換効率である。
With respect to the second harmonic generating element having the above structure,
As shown schematically in FIG. 2, a fundamental wave with a wavelength of 1064 nm and a power of 500 mW is ringed from the outside of the reflection film 3 attached to the end face of the waveguide section 1 using a condenser lens 10 as a light source 11 of a cwYAG laser. Incident, the second harmonic power is about
A second harmonic wave 8 of 80 mW and a wavelength of 532 nm was generated in two directions.
This second harmonic generation is much larger than the second harmonic power of 5 mW when the second harmonic is generated under the same conditions (comparative example) except that the reflection film 3 is not provided. Efficiency.

【0017】なお、上記第2高調波発生素子の構成にお
いて、さらに導波部(コア)1と導波支持部(クラッ
ド)2との隙間に、たとえば屈折率1.54のポリエチレン
樹脂を130℃の溶融状態として、毛細管現象により注入
・充填した場合、約 100mWの第2高調波パワーが発生し
た。そして、本発明に係る第2高調波発生素子の場合
は、いずれも入射した基本波が外部で観測されなかっ
た。
In the structure of the second harmonic generating element, a polyethylene resin having a refractive index of 1.54 is melted at 130 ° C. in the gap between the waveguide portion (core) 1 and the waveguide supporting portion (clad) 2. As a condition, when injected and filled by the capillary phenomenon, the second harmonic power of about 100 mW was generated. In the case of the second harmonic generation element according to the present invention, the incident fundamental wave was not observed outside.

【0018】実施例2 この実施例は本発明を平面型の第2高調波発生素子に適
用した例であり、図3はその要部構成例を示す縦断面
図、図4は第2高調波発生素子の使用態様例を模式的に
示す縦断面図である。
Embodiment 2 This embodiment is an example in which the present invention is applied to a planar type second harmonic generating element. FIG. 3 is a longitudinal sectional view showing an example of a main part configuration, and FIG. 4 is a second harmonic. It is a longitudinal section showing an example of a mode of use of a generating element.

【0019】図3において、導波支持部5は厚さ 2mm程
度のニオブ酸リチウムから成る基板、4は前記導波支持
部5面上に形成されたプロトン交換型ニオブ酸リチウム
(LiNbO3 )から成る厚さ 1μm 程度の薄膜導波部であ
り、反射膜6は前記導波部4の両端面に、たとえばエピ
タキシャル成長によって被着形成されたAuでそれぞれ構
成されている。
In FIG. 3, the waveguide supporting portion 5 is a substrate made of lithium niobate having a thickness of about 2 mm, and 4 is a proton exchange type lithium niobate formed on the surface of the waveguide supporting portion 5.
It is a thin film waveguide made of (LiNbO 3 ) and has a thickness of about 1 μm, and the reflection film 6 is composed of Au deposited on both end faces of the waveguide 4 by, for example, epitaxial growth.

【0020】また、上記構成においては、基本波として
入射される cwYAGレーザー光の波長ωにおける導波部4
および導波支持部5の屈折率をそれぞれng (ω),n
s(ω),第2高調波の波長 2ωにおける導波支持部5
の屈折率をns (2ω)としたとき、ns (ω)<n
g (ω)<ns (2ω)のチェレンコフ放射条件が成立す
る。
Further, in the above structure, the waveguide section 4 at the wavelength ω of the cwYAG laser light incident as the fundamental wave.
And the refractive index of the waveguide support portion 5 are n g (ω), n
s (ω), waveguide support 5 at the second harmonic wavelength 2ω
Let n s (2ω) be the refractive index of n s (ω) <n
The Cherenkov radiation condition of g (ω) <n s (2ω) is satisfied.

【0021】前記構成の第2高調波発生素子について、
図4に模式的に示すごとく、導波部4の主面から、集光
レンズ10およびプリズム7を用いて cwYAGレーザーを光
源11とした波長1064nm,パワー 500mWの基本波を入射し
たところ、第2高調波パワー約70mW,波長 532nmの第2
高調波9が2方向へ発生した。この第2高調波発生は、
前記反射膜6を付設しない外は同一構成とし、同一条件
で第2高調波を発生した場合(比較例)の第2高調波パ
ワー 3mWに較べて遥かに大きい変換効率である。また、
本発明に係る第2高調波発生素子の場合は、入射した基
本波が外部で観測されなかった。
With respect to the second harmonic generating element having the above structure,
As shown schematically in FIG. 4, when a fundamental wave having a wavelength of 1064 nm and a power of 500 mW with a cwYAG laser 11 as the light source 11 is incident from the main surface of the waveguide 4 using the condenser lens 10 and the prism 7, Harmonic power about 70mW, wavelength 532nm second
Harmonics 9 were generated in two directions. This second harmonic generation is
The conversion efficiency is much higher than the second harmonic power of 3 mW when the second harmonic is generated under the same conditions (comparative example) except that the reflection film 6 is not provided. Also,
In the case of the second harmonic generation element according to the present invention, the incident fundamental wave was not observed outside.

【0022】なお、上記光波長変換素子の構成例におい
て、ファイバー型の場合、導波部を成す有機単結晶とし
て、2-メチル -4-ニトロアニリン (MNA),N-(4-ニトロ
フェニル)-(S)- プロリノール (NPP),3-メチル (2,4-
ジニトロフェニル)アミノプロピオネート (MAP)などを
用いても、また平面型の場合、プロトン交換型ニオブ酸
リチウム以外の、他の非線形光学効果を有する無機化合
物を用いても、同様に高い変換効率が得られ、かつ未変
換光に対する処理も不要な光波長変換素子として機能し
得る。
In the configuration example of the optical wavelength conversion element, in the case of the fiber type, 2-methyl-4-nitroaniline (MNA), N- (4-nitrophenyl) is used as the organic single crystal forming the waveguide. -(S) -Prolinol (NPP), 3-methyl (2,4-
High conversion efficiency even when using dinitrophenyl) aminopropionate (MAP), etc., or in the case of the planar type, other inorganic compounds having non-linear optical effect other than proton exchange type lithium niobate. And can function as an optical wavelength conversion element that does not require processing for unconverted light.

【0023】[0023]

【発明の効果】上記説明したごとく、本発明に係る光波
長変換素子によれば、導波部に入射された基本波は導波
部内部に閉じ込められ共振し、光波長変換素子外に放射
されないため、第2高調波または第3高調波±k変換効
率が著しく向上し、かつ危険性を考慮した基本波の未変
換光の後処理も不要となる。
As described above, according to the optical wavelength conversion element of the present invention, the fundamental wave incident on the waveguide section is confined inside the waveguide section and resonates, and is not radiated outside the optical wavelength conversion element. Therefore, the second harmonic wave or the third harmonic wave ± k conversion efficiency is remarkably improved, and the post-processing of the fundamental wave unconverted light in consideration of the risk is also unnecessary.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るファイバー型の第2高調波発生素
子の要部構成例を示す縦断面図。
FIG. 1 is a vertical cross-sectional view showing a configuration example of a main part of a fiber type second harmonic generation element according to the present invention.

【図2】本発明に係るファイバー型の第2高調波発生素
子の使用態様例を模式的に示す縦断面図。
FIG. 2 is a vertical cross-sectional view schematically showing an example of usage of the fiber-type second harmonic generation element according to the present invention.

【図3】本発明に係る平面型の第2高調波発生素子の要
部構成例を示す縦断面図。
FIG. 3 is a vertical cross-sectional view showing a configuration example of a main part of a planar second harmonic generation element according to the present invention.

【図4】本発明に係る平面型の第2高調波発生素子の使
用態様例を模式的に示す縦断面図。
FIG. 4 is a vertical cross-sectional view schematically showing an example of usage of the planar second harmonic generation element according to the present invention.

【符号の説明】[Explanation of symbols]

1,4…導波部 2,5…導波支持部 3,6…反
射膜 7…プリズム 8,9…第2高調波 10…集光レンズ 11…光源
1, 4 ... Waveguide part 2, 5 ... Waveguide support part 3, 6 ... Reflective film 7 ... Prism 8, 9 ... Second harmonic wave 10 ... Condenser lens 11 ... Light source

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非線形光学材料から成る導波部と、前記
導波部に一体的に配設されたアモルファス材料から成る
導波支持部と、前記導波部の導波方向両端面にそれぞれ
一体的に配設され、導波部に入射された基本波を反射す
る反射膜とを具備して成ることを特徴とする光波長変換
素子。
1. A waveguide section made of a non-linear optical material, a waveguide support section made of an amorphous material which is integrally disposed on the waveguide section, and both end surfaces of the waveguide section in the waveguide direction are integrally formed. And a reflection film that reflects the fundamental wave incident on the waveguide section.
JP5401093A 1993-03-15 1993-03-15 Optical wavelength converting element Pending JPH06265952A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5401093A JPH06265952A (en) 1993-03-15 1993-03-15 Optical wavelength converting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5401093A JPH06265952A (en) 1993-03-15 1993-03-15 Optical wavelength converting element

Publications (1)

Publication Number Publication Date
JPH06265952A true JPH06265952A (en) 1994-09-22

Family

ID=12958622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5401093A Pending JPH06265952A (en) 1993-03-15 1993-03-15 Optical wavelength converting element

Country Status (1)

Country Link
JP (1) JPH06265952A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083507A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Video projector
WO2007043560A1 (en) * 2005-10-12 2007-04-19 Matsushita Electric Industrial Co., Ltd. Wavelength conversion module, laser light source device, two-dimensional image display, backlight light source, liquid crystal display and laser material processing system
US9679741B2 (en) 2010-11-09 2017-06-13 Fei Company Environmental cell for charged particle beam system

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005083507A1 (en) * 2004-02-27 2005-09-09 Matsushita Electric Industrial Co., Ltd. Video projector
JPWO2005083507A1 (en) * 2004-02-27 2007-08-09 松下電器産業株式会社 Video projection device
US7988304B2 (en) 2004-02-27 2011-08-02 Panasonic Corporation Video projector
JP4841428B2 (en) * 2004-02-27 2011-12-21 パナソニック株式会社 Video projection device
WO2007043560A1 (en) * 2005-10-12 2007-04-19 Matsushita Electric Industrial Co., Ltd. Wavelength conversion module, laser light source device, two-dimensional image display, backlight light source, liquid crystal display and laser material processing system
US7692848B2 (en) 2005-10-12 2010-04-06 Panasonic Corporation Wavelength conversion module, laser light source device, two-dimensional image display device, backlight light source, liquid crystal display device and laser processing device
JP4837671B2 (en) * 2005-10-12 2011-12-14 パナソニック株式会社 Wavelength conversion module, laser light source device, two-dimensional image display device, backlight light source, liquid crystal display device, and laser processing device
US9679741B2 (en) 2010-11-09 2017-06-13 Fei Company Environmental cell for charged particle beam system

Similar Documents

Publication Publication Date Title
US5247528A (en) Second harmonic generator using a laser as a fundamental wave source
US4838638A (en) Optical wavelength conversion device
JP4545380B2 (en) Optical waveguide device, coherent light source using the same, and optical apparatus provided with the same
JPH01105220A (en) Optical wavelength converting element
JPH0820654B2 (en) Optical wavelength conversion element
JP3848093B2 (en) Optical waveguide device, optical wavelength conversion device, and optical waveguide device manufacturing method
JP3129028B2 (en) Short wavelength laser light source
US5197072A (en) Optical wavelength converting device, and laser diode pumped solid laser
JPH0523410B2 (en)
JP3156444B2 (en) Short wavelength laser light source and method of manufacturing the same
JP2753118B2 (en) Optical wavelength converter
JP2000171844A (en) Optical wavelength conversion element, coherent beam generating device using the element and optical information processor
JP2751914B2 (en) Optical waveguide device
JPH06265952A (en) Optical wavelength converting element
JP2725302B2 (en) Waveguide type wavelength conversion element
US5167000A (en) Optical wavelength converter
JP2005055528A (en) Method and device for oscillating blue laser beam
JP3111786B2 (en) Short wavelength laser light source
JP2001264832A (en) Short wavelength laser light source
JP2658381B2 (en) Waveguide type wavelength conversion element
JPS6118933A (en) Device for changing wavelength of light
JP2004020571A (en) Wavelength transformation device
JPH0593931A (en) Wavelength conversion element and short wavelength laser beam source
JP2688102B2 (en) Optical wavelength converter
JP5695590B2 (en) Harmonic generator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021126