JPH06265860A - Liquid crystal display element - Google Patents

Liquid crystal display element

Info

Publication number
JPH06265860A
JPH06265860A JP5743493A JP5743493A JPH06265860A JP H06265860 A JPH06265860 A JP H06265860A JP 5743493 A JP5743493 A JP 5743493A JP 5743493 A JP5743493 A JP 5743493A JP H06265860 A JPH06265860 A JP H06265860A
Authority
JP
Japan
Prior art keywords
liquid crystal
polymer
crystal display
dispersed
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5743493A
Other languages
Japanese (ja)
Inventor
Masayuki Yazaki
正幸 矢崎
Eiji Chino
英治 千野
Hidekazu Kobayashi
英和 小林
Hideto Iizaka
英仁 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP5743493A priority Critical patent/JPH06265860A/en
Publication of JPH06265860A publication Critical patent/JPH06265860A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

PURPOSE:To increase a voltage holding rate and to improve reliability by forming high-polymer particles of a specific liquid crystalline material mixture and irradiating these particles with UV rays, thereby polymerizing high-polymer precursors. CONSTITUTION:The high-polymer particles 10 and liquid crystals 104 have a structure in which these particles and liquid crystals are oriented and dispersed with each other. The high-polymer particles 105 and crystals 104 which are oriented and dispersed and have optical anisotropy are clamped by substrates 101, 108 on which electrodes 102, 107 are formed. Oriented films 103, 106 are formed on the surfaces of these electrodes 102, 107. The high-polymer dispersed liquid crystals are formed without using a photopolymn. initiator for the liquid crystalline material mixture. Namely, the panel contg. the oriented liquid crystalline material mixture is irradiated with UV rays to polymerize the high-polymer precursors by which the liquid crystals and the high-polymer particles having the optical anisotropy are separated in phases. The high-polymer particles 105 having refractive index anisotropy are formed by polymerizing the high-polymer precursors from the liquid crystal phase by irradiation with the UV rays.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、表示体を構成する液晶
表示素子に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display element which constitutes a display body.

【0002】[0002]

【従来の技術】近年、偏光板を用いない明るい液晶表示
素子として、液晶と高分子を互いに分散させた高分子分
散液晶を用いた液晶表示素子が注目されている。この液
晶表示素子の動作原理は、液晶と高分子の屈折率の差を
利用しており、電界印加により液晶と高分子の屈折率が
一致した場合には透過状態を示し、電界除去により屈折
率が相違した場合には散乱状態を示すことによる。LC
PC(旭硝子株式会社:アメリカ特許4,818,07
0)、PDLC(ケント州立大学:アメリカ特許4,6
85,771)、PNLC(大日本インキ化学株式会
社:ヨーロッパ公開特許EPA313,053)は、上
記の動作原理によるもので、高分子分散液晶を形成する
のに紫外線を照射している。これらは製造方法が簡易で
あり、低電圧駆動性を有する点で注目されている。一
方、電界無印加時に透過し、電界印加時に散乱する逆の
モードの高分子分散液晶を用いた液晶表示素子(ケント
州立大学:アメリカ特許4,994,204、セイコー
エプソン株式会社:ヨーロッパ公開特許EP04881
16A2、フィリップス:ヨーロッパ公開特許EP04
51905A1)も開発されており、上記の製法同様に
紫外線を照射して、高分子分散液晶を形成している。高
分子分散液晶を用いた液晶表示素子は、色素と組み合わ
せて視認性を高めることや、アクティブ素子と組み合わ
せての大容量表示が試みられている。
2. Description of the Related Art In recent years, as a bright liquid crystal display device which does not use a polarizing plate, a liquid crystal display device using a polymer-dispersed liquid crystal in which a liquid crystal and a polymer are dispersed has attracted attention. The operating principle of this liquid crystal display element utilizes the difference in the refractive index between the liquid crystal and the polymer. When the electric field is applied, the liquid crystal and the polymer show a transmissive state. The difference is due to the fact that a scattering state is shown. LC
PC (Asahi Glass Co., Ltd .: US Patent 4,818,07
0), PDLC (Kent State University: US Patents 4, 6)
85, 771) and PNLC (Dainippon Ink and Chemicals, Inc .: European Published Patent EPA 313, 053) are based on the above-mentioned operation principle, and irradiate ultraviolet rays to form polymer dispersed liquid crystal. These are attracting attention because they are easy to manufacture and have low voltage drivability. On the other hand, a liquid crystal display device using a polymer-dispersed liquid crystal of an opposite mode which transmits when no electric field is applied and scatters when an electric field is applied (Kent State University: US Pat. No. 4,994,204, Seiko Epson Corporation: European Published Patent EP04881).
16A2, Philips: European Published Patent EP04
51905A1) has also been developed and irradiated with ultraviolet rays in the same manner as in the above-mentioned production method to form a polymer dispersed liquid crystal. Liquid crystal display devices using polymer-dispersed liquid crystals have been attempted to enhance visibility by combining them with dyes and to display large capacity in combination with active devices.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、従来の
紫外線を照射して形成された高分子分散液晶は、明る
く、高コントラストで低電圧駆動が可能であるが、電圧
保持率が不十分なために、アクティブ駆動を行う上で問
題となっていた。また、従来の高分子分散液晶を用いた
液晶表示素子は、電気光学及び電気特性の経時変化が大
きいため、商品化の上で非常に大きな問題点を有してい
た。特に電圧保持率の経時変化による低下は著しく、ア
クティブ素子と組み合わせた大容量ディスプレイは、要
求される実用寿命にほど遠い状況にあった。
However, conventional polymer-dispersed liquid crystals formed by irradiating ultraviolet rays are bright and can be driven at a low voltage with high contrast, but their voltage holding ratio is insufficient. , It was a problem in active driving. Further, a liquid crystal display device using a conventional polymer-dispersed liquid crystal has a great problem in terms of commercialization because electro-optics and electric characteristics change greatly with time. In particular, the deterioration of the voltage holding ratio due to the change with time is remarkable, and the large-capacity display combined with the active element is far from the required practical life.

【0004】これらの原因としては、従来の高分子分散
液晶は、液晶/高分子前駆体/光重合開始剤からなる混
合系から紫外線を照射して形成していたために、光重合
開始剤及び高分子前駆体の一部が高分子分散液晶が形成
された後も液晶中に残存するためと考えられる。
The cause of these problems is that the conventional polymer-dispersed liquid crystal is formed by irradiating ultraviolet rays from a mixed system of liquid crystal / polymer precursor / photopolymerization initiator, and therefore, the photopolymerization initiator and high polymer It is considered that a part of the molecular precursor remains in the liquid crystal even after the polymer dispersed liquid crystal is formed.

【0005】そこで本発明の目的とするところは、電圧
保持率が高く、信頼性の優れた高分子分散液晶を用いた
液晶表示素子を提供するところにある。
Therefore, an object of the present invention is to provide a liquid crystal display device using a polymer dispersed liquid crystal having a high voltage holding ratio and excellent reliability.

【0006】[0006]

【課題を解決するための手段】上記問題を解決するため
に本発明の液晶表示素子は、以下の構成から成る。 (1)電極層を有する少なくとも一方が透明な2枚の基
板間に、互いに配向分散した液晶及び屈折率異方性を有
した高分子粒子が挟持された液晶表示素子において、該
高分子粒子はあらかじめ該基板間に介在された光重合開
始剤を含有しない液晶及び高分子前駆体から成る液晶性
混合材料から、紫外線を照射することによって該高分子
前駆体を重合させることにより形成することを特徴とす
る。
In order to solve the above problems, the liquid crystal display device of the present invention has the following constitution. (1) In a liquid crystal display element in which liquid crystal in which at least one of which has an electrode layer is transparent and which is dispersed in alignment and polymer particles having refractive index anisotropy are sandwiched, the polymer particles are It is formed by polymerizing the polymer precursor by irradiating it with ultraviolet light from a liquid crystalline mixed material composed of a liquid crystal and a polymer precursor which does not contain a photopolymerization initiator and is interposed between the substrates in advance. And

【0007】(2)上記液晶性混合材料が含む高分子前
駆体が2種類以上の化合物から成り、少なくとも1成分
に、官能基数2を有した高分子前駆体を含むことを特徴
とする。
(2) The polymer precursor contained in the liquid crystalline mixed material is composed of two or more kinds of compounds, and at least one component contains the polymer precursor having 2 functional groups.

【0008】[0008]

【実施例】【Example】

(実施例1)図1は、本発明の液晶表示素子の構成を示
す図である。高分子粒子105及び液晶104は、互い
に配向し、分散した構造をとる。これら配向分散した光
学的に異方性を有する高分子粒子105及び液晶104
は、電極102、107の形成された基板101、10
8により挟持され、電極102、107表面には、配向
膜103、106が形成される。本発明の液晶表示素子
の動作原理を説明する。電圧オフ時の高分子粒子105
及び液晶104が互いに配向している状態では、高分子
分散液晶媒体内で基板101から108へ、液晶及び高
分子粒子の屈折率が連続的に変化するため透明状態とな
る。偏光顕微鏡で観察した場合、配向分散している状態
に応じて、偏光依存性が観測される。一方、電圧を十分
に印加した場合、液晶104のみが電界方向に配向する
ために、媒体内で、屈折率の不連続点が発生するため
に、光散乱状態となる。さらに、液晶104が2色性色
素を含有している場合、電圧オフ時には2色性色素の吸
収による表示状態となり、一方電圧を十分印加した場
合、2色性色素の吸収はごく僅かとなるため、光散乱に
よる白濁した状態となる。
(Embodiment 1) FIG. 1 is a diagram showing a structure of a liquid crystal display element of the present invention. The polymer particles 105 and the liquid crystal 104 are aligned with each other and have a dispersed structure. These oriented and dispersed optically anisotropic polymer particles 105 and liquid crystal 104
Are substrates 101, 10 on which electrodes 102, 107 are formed.
The alignment films 103 and 106 are formed on the surfaces of the electrodes 102 and 107. The operating principle of the liquid crystal display device of the present invention will be described. Polymer particles 105 when voltage is off
In the state where the liquid crystal 104 and the liquid crystal 104 are aligned with each other, the refractive index of the liquid crystal and the polymer particles continuously changes from the substrate 101 to the substrate 108 in the polymer dispersed liquid crystal medium, so that the liquid crystal is in a transparent state. When observed with a polarization microscope, polarization dependence is observed depending on the state of orientation dispersion. On the other hand, when a sufficient voltage is applied, only the liquid crystal 104 is oriented in the direction of the electric field, and a discontinuity in the refractive index occurs in the medium, resulting in a light scattering state. Further, when the liquid crystal 104 contains a dichroic dye, the display state is brought about by the absorption of the dichroic dye when the voltage is off, while when the voltage is sufficiently applied, the absorption of the dichroic dye becomes very small. , It becomes cloudy due to light scattering.

【0009】以下本実施例として、液晶性混合材料に光
重合開始剤を用いないで高分子分散液晶を形成した例を
示す。
In this example, an example in which a polymer dispersed liquid crystal is formed without using a photopolymerization initiator as a liquid crystalline mixed material will be shown.

【0010】まず、配向分散した屈折率異方性を有する
高分子粒子及び液晶を形成する液晶性組成物について説
明する。液晶としてメルク社製のTL−202を、高分
子前駆体としてビフェニルメタクリレートを用い、液晶
に対してビフェニルメタクリレートを10wt%混合
し、液晶性混合材料とした。
First, a description will be given of a liquid crystal composition which forms a liquid crystal and polymer particles having anisotropy of refractive index which are dispersed in alignment. TL-202 manufactured by Merck & Co., Inc. was used as a liquid crystal, and biphenyl methacrylate was used as a polymer precursor, and 10 wt% of biphenyl methacrylate was mixed with the liquid crystal to obtain a liquid crystalline mixed material.

【0011】次に、この液晶性混合材料を、ITO電極
102、107の形成されたガラス基板101、108
を間隔5μm程度離して固定した空パネルに封入した。
なお、ITO電極102、106表面には、ポリイミド
配向膜103、106が形成されており、ラビングによ
り配向処理が施され、上下基板でラビング方向を同一方
向と設定した。このような空パネルに封入された液晶性
混合材料は、配向処理に従って平行配向した。
Next, the liquid crystalline mixed material is applied to the glass substrates 101 and 108 on which the ITO electrodes 102 and 107 are formed.
Were sealed in an empty panel fixed at a distance of about 5 μm.
In addition, polyimide alignment films 103 and 106 are formed on the surfaces of the ITO electrodes 102 and 106, alignment treatment is performed by rubbing, and the rubbing directions of the upper and lower substrates are set to be the same direction. The liquid crystalline mixed material enclosed in such an empty panel was aligned in parallel according to the alignment treatment.

【0012】このようにして配向した液晶性混合材料を
含んだパネルに、紫外線を照射し、高分子前駆体を重合
して液晶と光学的に異方性を有する高分子粒子を相分離
させた。重合条件は、ブラックライトを用い、照度2m
W/(平方cm)にて、10分間照射した。
The panel containing the liquid crystalline mixed material oriented in this way was irradiated with ultraviolet rays to polymerize the polymer precursor to phase-separate the liquid crystal and the polymer particles having optical anisotropy. . As for the polymerization conditions, a black light is used and the illuminance is 2 m.
Irradiation was performed for 10 minutes at W / (square cm).

【0013】こうして作製した液晶表示素子は、電圧オ
フ時に約85%と高い透明性を示し、電圧を印加したと
ころ、白濁した光散乱状態を示した。また、電圧保持率
を、選択時間65マイクロ秒にて、液晶表示素子に書き
込まれる電圧をV1、非選択期間16.7ミリ秒の間に
先に書き込まれた電圧がリークした結果、この期間に液
晶表示素子に実際に印加される実効値電圧をV2とした
とき、電圧保持率=V2/V1×100(%)と定義し
たとき、本実施例のおける液晶表示素子の電圧保持率は
95%であった。また、70度、500時間の高温放置
にて、信頼性試験を行ったところ、試験終了後の電圧保
持率は、90%であった。
The liquid crystal display device thus produced showed a high transparency of about 85% when the voltage was turned off, and when it was applied with a voltage, it exhibited a opaque light scattering state. In addition, as a result of the voltage holding ratio being 65 microseconds at the selection time, the voltage written in the liquid crystal display element being V1, and the voltage previously written leaking during the non-selection period of 16.7 milliseconds, as a result When the effective voltage actually applied to the liquid crystal display element is V2 and the voltage holding ratio is defined as V2 / V1 × 100 (%), the voltage holding ratio of the liquid crystal display element in this embodiment is 95%. Met. Further, when a reliability test was carried out at a high temperature of 70 ° C. for 500 hours, the voltage holding ratio after the test was 90%.

【0014】ここでは、配向処理方法として、ポリイミ
ドを塗布し、ラビングにより配向膜を形成したが、液晶
及び高分子前駆体を配向せしめる方法であれば何でもよ
く、例えば、斜方蒸着や、電極をそのままラビングして
もよい。また、本実施例では平行配向としたが、上下基
板でラビング方向に角度を持たせ、また液晶性組成物に
カイラル剤を添加してツイスト状に配向させてもよい。
Here, as the alignment treatment method, polyimide is applied and the alignment film is formed by rubbing, but any method can be used as long as it aligns the liquid crystal and the polymer precursor, for example, oblique vapor deposition or electrodes. You may rub it as it is. In addition, although parallel alignment is performed in this embodiment, the rubbing directions may be angled between the upper and lower substrates, or a chiral agent may be added to the liquid crystal composition for twist alignment.

【0015】屈折率異方性を有する高分子粒子105
は、液晶相から高分子前駆体を紫外線を照射して重合す
ることにより形成したが、高分子前駆体は、重合後の高
分子粒子が、このような製法にて光学的に異方性を有す
るすべてが使用対象となる。電極層102、107とし
ては、ITO電極としたが、片側をアルミニウム、クロ
ム等の金属電極として、反射型の液晶表示素子としても
よい。この場合、液晶に2色性色素を混合すれば、電圧
オフ時の色素による表示色と電圧オン時の光散乱による
白表示の、鮮明な反射型の液晶表示素子が得られる。ま
た、本発明の高分子分散液晶は電圧保持率が十分に高い
ため、電極相の一方に、MIM素子やTFT素子を形成
した場合、高表示品位な液晶表示素子が得られる。
Polymer particles 105 having refractive index anisotropy
Was formed by polymerizing the polymer precursor from the liquid crystal phase by irradiating it with ultraviolet rays. The polymer precursor had polymer particles that had been polymerized with such an optical anisotropy. Everything you have is subject to use. Although ITO electrodes are used as the electrode layers 102 and 107, one side may be a metal electrode of aluminum, chromium, or the like, and a reflective liquid crystal display element may be used. In this case, if a dichroic dye is mixed with the liquid crystal, a clear reflective liquid crystal display device having a display color of the dye when the voltage is off and a white display due to light scattering when the voltage is on can be obtained. Moreover, since the polymer-dispersed liquid crystal of the present invention has a sufficiently high voltage holding ratio, when a MIM element or a TFT element is formed on one of the electrode phases, a high display quality liquid crystal display element can be obtained.

【0016】(実施例2)実施例2として、高分子前駆
体が2種類から成り、1成分に官能基数2を有した高分
子前駆体を含む例について示す。
(Example 2) As Example 2, an example in which the polymer precursor is composed of two types and one component contains the polymer precursor having a functional group number of 2 is shown.

【0017】液晶性混合材料は、以下の通りとした。液
晶としてメルク社製のTL−202を、高分子前駆体と
してビフェニルメタクリレート、ビフェニルジメタクリ
レートを重量比1対1で用い、液晶に対して高分子前駆
体を10wt%混合し、液晶性混合材料とした。
The liquid crystalline mixed material was as follows. TL-202 manufactured by Merck Ltd. is used as a liquid crystal, and biphenyl methacrylate and biphenyl dimethacrylate are used as a polymer precursor in a weight ratio of 1: 1 and 10 wt% of the polymer precursor is mixed with the liquid crystal to obtain a liquid crystal mixture material. did.

【0018】上記の液晶性混合材料において、2官能基
を有する高分子前駆体を混合した以外は、実施例1と同
様にして液晶表示素子を得た。
A liquid crystal display device was obtained in the same manner as in Example 1 except that the polymer precursor having a bifunctional group was mixed in the above liquid crystalline mixed material.

【0019】この液晶表示素子は、電圧オフ時に約83
%と高い透明性を示し、電圧を印加したところ、白濁し
た光散乱状態を示した。また、電圧保持率は98%であ
った。また、70度、500時間の高温放置にて、信頼
性試験を行ったところ、試験終了後の電圧保持率は、9
6%であった。
This liquid crystal display device has about 83 when the voltage is off.
%, A high transparency was exhibited, and when a voltage was applied, a white turbid light scattering state was exhibited. The voltage holding ratio was 98%. Further, when a reliability test was performed by leaving it at a high temperature of 70 degrees for 500 hours, the voltage holding ratio after the test was 9
It was 6%.

【0020】本実施例においては、高分子前駆体を2成
分系としたが、勿論官能基数2を有する高分子前駆体を
1成分含めば、それ以上の多成分系でもよい。ただし、
官能基数2を有する高分子前駆体の比率が高くなると、
駆動電圧が上昇するため、その比率としては、0.7以
下が望ましい。
In this embodiment, the polymer precursor is a two-component system, but of course, a multi-component system having more than two components may be used as long as one polymer precursor having two functional groups is included. However,
When the ratio of the polymer precursor having 2 functional groups is increased,
Since the drive voltage increases, the ratio is preferably 0.7 or less.

【0021】以上のように本実施例では、官能基数2を
有した高分子前駆体を1成分混合したことにより、さら
に電圧保持率、信頼性ともに改善された。
As described above, in this embodiment, by mixing one component of the polymer precursor having 2 functional groups, both the voltage holding ratio and the reliability were further improved.

【0022】(比較例)比較例として、液晶性混合材料
に光重合開始剤を混合した例を示す。配向分散した屈折
率異方性を示す高分子粒子及び液晶を形成する液晶性混
合材料を以下の通りとした。液晶としてメルク社製のT
L−202を、高分子前駆体としてビフェニルメタクリ
レート、光重合開始剤として、2,4−ジエチルチオキ
サントンを用い、高分子前駆体を液晶に対して10wt
%、光重合開始剤を高分子前駆体に対して2wt%混合
し、液晶性混合材料とした。
Comparative Example As a comparative example, an example in which a photopolymerization initiator is mixed with a liquid crystalline mixed material will be shown. The liquid crystal mixed material that forms the liquid crystal and the polymer particles exhibiting the refractive index anisotropy in which the orientation is dispersed is as follows. Liquid crystal T made by Merck
L-202 was used as a polymer precursor, biphenyl methacrylate, and a photopolymerization initiator was used as 2,4-diethylthioxanthone.
%, And 2% by weight of a photopolymerization initiator with respect to the polymer precursor to prepare a liquid crystalline mixed material.

【0023】上記の液晶性組成物に光重合開始剤を混合
した以外は、実施例1と同様にして液晶表示素子を得
た。
A liquid crystal display device was obtained in the same manner as in Example 1 except that a photopolymerization initiator was mixed with the above liquid crystal composition.

【0024】この、液晶表示素子の電圧保持率を実施例
と同様に測定したところ、80%であった。また、実施
例と同様の信頼性試験を行ったところ、試験終了後、電
圧保持率は56%であった。
When the voltage holding ratio of the liquid crystal display device was measured in the same manner as in the example, it was 80%. Further, when a reliability test similar to that of the example was conducted, the voltage holding ratio was 56% after the completion of the test.

【0025】[0025]

【発明の効果】以上説明したように本発明の構成を用い
ることによって、偏光板を不要とする明るい液晶表示素
子が提供できた。特に、本発明の構成により、電圧保持
率が高く、信頼性の優れた液晶表示素子を提供すること
が可能となった。また、TFT素子やMIM素子のよう
なアクティブ素子と組み合わせることにより、商品化実
用寿命を兼ね揃えた明るい大容量反射型ディスプレイ
や、明るいライトバルブなどを作製することが可能とな
った。
As described above, by using the constitution of the present invention, a bright liquid crystal display device which does not require a polarizing plate can be provided. In particular, the configuration of the present invention makes it possible to provide a liquid crystal display device having a high voltage holding ratio and excellent reliability. In addition, by combining with an active element such as a TFT element or an MIM element, it has become possible to manufacture a bright large-capacity reflective display that has a commercial practical life and a bright light valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の液晶表示素子の断面図。FIG. 1 is a sectional view of a liquid crystal display element of the present invention.

【符号の説明】[Explanation of symbols]

101 基板 102 電極層 103 配向膜 104 液晶 105 高分子粒子 106 配向膜 107 電極層 108 基板 101 Substrate 102 Electrode Layer 103 Alignment Film 104 Liquid Crystal 105 Polymer Particles 106 Alignment Film 107 Electrode Layer 108 Substrate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 飯坂 英仁 長野県諏訪市大和3丁目3番5号 セイコ ーエプソン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hidehito Iizaka 3-3-5 Yamato, Suwa City, Nagano Seiko Epson Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 電極層を有する少なくとも一方が透明な
2枚の基板間に、互いに配向分散した液晶及び屈折率異
方性を有した高分子粒子が挟持された液晶表示素子にお
いて、該高分子粒子はあらかじめ該基板間に介在された
光重合開始剤を含有しない液晶及び高分子前駆体から成
る液晶性混合材料から、紫外線を照射することによって
該高分子前駆体を重合させることにより形成することを
特徴とする液晶表示素子。
1. A liquid crystal display device comprising an electrode layer, at least one of which is transparent between two substrates, and liquid crystal molecules which are aligned and dispersed with each other and polymer particles having anisotropy in refractive index are sandwiched between the substrates. The particles are formed by polymerizing the polymer precursor by irradiating it with ultraviolet light from a liquid crystalline mixed material composed of a liquid crystal and a polymer precursor which does not contain a photopolymerization initiator which is interposed between the substrates in advance. Liquid crystal display device characterized by.
【請求項2】 上記液晶性混合材料が含む高分子前駆体
が2種類以上の化合物から成り、少なくとも1成分に、
官能基数2を有した高分子前駆体を含むことを特徴とす
る請求項1記載の液晶表示素子。
2. The polymer precursor contained in the liquid crystalline mixed material is composed of two or more kinds of compounds, and is composed of at least one component,
The liquid crystal display device according to claim 1, comprising a polymer precursor having 2 functional groups.
JP5743493A 1993-03-17 1993-03-17 Liquid crystal display element Pending JPH06265860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5743493A JPH06265860A (en) 1993-03-17 1993-03-17 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5743493A JPH06265860A (en) 1993-03-17 1993-03-17 Liquid crystal display element

Publications (1)

Publication Number Publication Date
JPH06265860A true JPH06265860A (en) 1994-09-22

Family

ID=13055552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5743493A Pending JPH06265860A (en) 1993-03-17 1993-03-17 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JPH06265860A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304306B1 (en) 1995-02-17 2001-10-16 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US7274425B2 (en) 2002-02-04 2007-09-25 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304306B1 (en) 1995-02-17 2001-10-16 Sharp Kabushiki Kaisha Liquid crystal display device and method for producing the same
US7274425B2 (en) 2002-02-04 2007-09-25 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same
US7903215B2 (en) 2002-02-04 2011-03-08 Sharp Kabushiki Kaisha Liquid crystal display and method of manufacturing the same

Similar Documents

Publication Publication Date Title
US5305126A (en) Polymer-dispersed liquid crystal material with in-situ polymerized liquid crystal polymer grains dispersed in a layer of liquid crystal material sealed between substrates and field electrodes
EP0643318B1 (en) Display device and electronic apparatus
JP3551381B2 (en) Liquid crystal light modulation devices and materials
US5519519A (en) Production method for a polymer dispersed liquid crystal display
GB2425611A (en) Reflective colour display device
JP3679869B2 (en) Liquid crystal microcapsule and liquid crystal display device using the same
JP2000321562A (en) Liquid crystal optical device having reverse mode optical switching function and its production
US7499124B2 (en) Polymer dispersed liquid crystal device conditioned with a predetermined anchoring energy, a predetermined polymer concentration by weight percent and a predetermined cell gap to enhance phase separation and to make smaller and more uniform liquid crystal droplets
JP2937684B2 (en) Liquid crystal display device and method of manufacturing the same
JP2001296520A (en) Polymer/liquid crystal composite optical modulator
WO1992014185A1 (en) Liquid crystal display device, and manufacture and application thereof
JPH06265860A (en) Liquid crystal display element
KR0162271B1 (en) Lcd device and its production
JPH06324310A (en) Liquid crystal display element and optical system
JP4031702B2 (en) Optical deflection element
JP3298522B2 (en) Liquid crystal display device
JPH07333640A (en) Liquid crystal display element
JPH0545672A (en) Reflection type liquid crystal display element and its driving method
JPH04336531A (en) Drive for liquid crystal shutter
JPH0139085B2 (en)
JP4290795B2 (en) Manufacturing method of polymer dispersion type liquid crystal display device
JP3054005B2 (en) Liquid crystal display device and method of manufacturing the same
JPH0743730A (en) Liquid crystal display element
JP2001209035A (en) Liquid crystal optical shutter
JPH08248398A (en) Liquid crystal display element