JPH06264297A - Protective coating treatment of surface of metal with insulating organic polymer film - Google Patents

Protective coating treatment of surface of metal with insulating organic polymer film

Info

Publication number
JPH06264297A
JPH06264297A JP7869293A JP7869293A JPH06264297A JP H06264297 A JPH06264297 A JP H06264297A JP 7869293 A JP7869293 A JP 7869293A JP 7869293 A JP7869293 A JP 7869293A JP H06264297 A JPH06264297 A JP H06264297A
Authority
JP
Japan
Prior art keywords
potential
film
organic polymer
coating
coating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7869293A
Other languages
Japanese (ja)
Other versions
JP3264552B2 (en
Inventor
Jun Kawaguchi
純 川口
Tetsuya Aisaka
哲彌 逢坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Waseda University
Nihon Parkerizing Co Ltd
Original Assignee
Waseda University
Nihon Parkerizing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Waseda University, Nihon Parkerizing Co Ltd filed Critical Waseda University
Priority to JP07869293A priority Critical patent/JP3264552B2/en
Publication of JPH06264297A publication Critical patent/JPH06264297A/en
Application granted granted Critical
Publication of JP3264552B2 publication Critical patent/JP3264552B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To subject the surface of a metal to protective coating treatment with an insulating org. polymer film. CONSTITUTION:When the surface of a metal is brought into contact with a soln. prepd. by dissolving one or more kinds of heterocyclic compds. as monomers in an electrolytic soln. contg. an inorg. supporting electrolyte to form an org. polymer film on the surface of the metal by anodic electrolysis, this anodic electrolysis is carried out at higher potential than the peroxidation potential of the org. polymer to form an insulating org. polymer film having excellent corrosion resistance and adhesion to a coating film on the surface of the metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電解重合法を用いて金
属表面に膜厚数100nm〜数1000nmの極めて均
一な有機高分子絶縁性膜を形成することにより、該金属
表面に優れた耐食性を付与し、さらにその後塗装に供さ
れたときに優れた塗膜密着性を備えた前処理皮膜の形成
が可能な、新規な金属表面の保護被覆処理方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention forms an extremely uniform organic polymer insulating film having a film thickness of several 100 nm to several 1000 nm on a metal surface by using an electrolytic polymerization method, thereby providing excellent corrosion resistance on the metal surface. The present invention relates to a novel method for protective coating of a metal surface, which is capable of forming a pretreatment film having excellent coating film adhesion when applied to a coating material and then applied.

【0002】[0002]

【従来技術】金属表面を種々の環境から保護するために
該表面に有機高分子膜を形成させる方法は、塗装に代表
されるように古くから行われている。しかし、これらの
塗膜を直接金属表面に形成したのでは充分な耐食性、密
着性が得られないことから、一般にはりん酸塩処理(鉄
鋼、亜鉛系めっき材料)、クロメート処理(鉄鋼、ステ
ンレス鋼、亜鉛系めっき材料、アルミ系材料)等の無機
皮膜の形成を経由して行われる。
2. Description of the Related Art A method for forming an organic polymer film on a metal surface in order to protect it from various environments has long been practiced as represented by painting. However, if these coatings are formed directly on the metal surface, sufficient corrosion resistance and adhesion cannot be obtained. Therefore, phosphate treatment (steel and zinc-based plating materials) and chromate treatment (steel and stainless steel) are generally used. , A zinc-based plating material, an aluminum-based material) and the like to form an inorganic film.

【0003】一方、これらの無機皮膜はりん酸塩皮膜に
おいては単独では耐食性に乏しく、しかも対象素材が限
定されること、クロメート皮膜においては6価クロムの
溶出等による公害問題を内包している。そこで、近年で
は有機複合鋼板のような素材製造段階において予め有機
高分子膜を形成させた表面処理済み金属材料が台頭して
きた。これは、主に亜鉛系めっき鋼板上にクロメート皮
膜を形成後、1μm程度の有機高分子膜をコーティング
するものであるが、従来材に比べて次のようなメリット
を有する。すなわち、優れた1次防錆性(素材メーカ
ーからユーザーニ渡るまでの防錆性)を有するために従
来材のような防錆油の塗布が必要ないこと(公害問題か
ら溶剤系脱脂剤の使用が不可となってきているので意義
は大きい)、従って外観を重視しない用途にはそのまま
使用可能であること、表面は有機物であることから指
紋などの汚れが付着しにくくユーザーサイドのハンドリ
ングがよいこと、プレス成形性に優れること、直接
塗装が可能なこと等である。従って、これらの表面処理
鋼板においては、ユーザーサイドにおける素材から製品
に至る工程を大幅に軽減することができる。
On the other hand, these inorganic coatings have poor corrosion resistance when used alone as a phosphate coating, and the target materials are limited, and the chromate coating involves pollution problems due to elution of hexavalent chromium. Therefore, in recent years, a surface-treated metal material having an organic polymer film formed in advance at a material manufacturing stage such as an organic composite steel sheet has emerged. This is mainly for forming a chromate film on a zinc-based plated steel sheet and then coating an organic polymer film of about 1 μm, but it has the following advantages over conventional materials. That is, since it has excellent primary rust resistance (rust resistance from the material manufacturer to the user), it is not necessary to apply rust-preventive oil unlike conventional materials (use of solvent-based degreasing agents due to pollution problems). Therefore, it can be used as it is for applications where appearance is not important, and since the surface is organic, it is difficult for dirt such as fingerprints to adhere and handling on the user side is good. In addition, it is excellent in press formability and can be directly painted. Therefore, in these surface-treated steel sheets, the steps from the raw material to the product on the user side can be significantly reduced.

【0004】しかし、これらの有機高分子膜の形成方法
は従来の塗装と同様「塗布−焼付け乾燥」といった物理
的な方法により行われているので、対象素材の表面粗さ
が少なくとも2〜5μmであることを考慮すると、高々
1μm程度の膜厚では十分均一な被覆膜が形成されてい
るとは言い難い(過度に厚膜化すると溶接性、電着塗装
性、加工性が劣化する)。さらに、焼付け工程において
は溶剤等の揮発による被覆膜の収縮や素材との熱膨張率
の差から、ピンホールやワレなどに代表される多くの欠
陥を有している。従って、金属表面との密着性と耐食性
付与の目的から、前述のようにクロメート前処理が不可
欠であるが、このことからもクロム溶出による公害問題
が完全に解決されたとは言い難い。これらの現状を踏ま
えて、昨今における有機複合表面処理鋼板の開発目標と
して次の4点が挙げられており、このような要求を満た
し得るものとして種々の有機高分子組成物が提案されて
いる。 より耐食性が優れていること 該鋼板上に形成される塗膜との密着性を損なわないこ
と より焼付け乾燥温度が低いこと できればクロメート処理を行わないこと 有機高分子組成物が水系であること(有機溶剤撤廃の
方向性から)
However, since these organic polymer films are formed by a physical method such as "coating-baking and drying" as in the case of conventional coating, the surface roughness of the target material is at least 2-5 .mu.m. Considering this, it is hard to say that a sufficiently uniform coating film is formed with a film thickness of at most about 1 μm (if the film is excessively thick, the weldability, electrodeposition coatability, and workability deteriorate). Further, in the baking process, there are many defects such as pinholes and cracks due to the shrinkage of the coating film due to the volatilization of the solvent and the difference in the coefficient of thermal expansion from the material. Therefore, the chromate pretreatment is indispensable as described above for the purpose of adhering to the metal surface and imparting corrosion resistance, but it cannot be said that the pollution problem due to the elution of chromium was completely solved from this as well. Based on these circumstances, the following four points are listed as the development goals of the organic composite surface-treated steel sheet in recent years, and various organic polymer compositions have been proposed as those that can satisfy such requirements. More excellent corrosion resistance Do not impair the adhesion with the coating film formed on the steel sheet. Lower the baking drying temperature If possible, do not perform chromate treatment. Organic polymer composition is water-based (organic (From the direction of solvent elimination)

【0005】[0005]

【発明が解決しようとする課題】従って、本発明ではか
かる技術的背景の下に、ピンホール、ワレ等の膜欠陥が
無く、被覆膜厚が均一な有機高分子絶縁性薄膜を金属表
面に直接的に形成することにより、該金属表面を腐食環
境等から保護し、さらにその後の塗装塗膜形成時に高い
密着性を付与するための金属表面保護被覆前処理方法を
提供するものである。
Therefore, in the present invention, under the above technical background, an organic polymer insulating thin film having no film defects such as pinholes and cracks and having a uniform coating film thickness on a metal surface is provided. It is intended to provide a metal surface protective coating pretreatment method for directly protecting the metal surface from a corrosive environment or the like and further imparting high adhesion at the time of subsequent coating film formation.

【0006】[0006]

【課題を解決するための手段】本発明者らは以上の問題
点を踏まえ鋭意研究を重ねた結果、金属表面上に有機高
分子被覆膜の形成方法として、従来のような物理的膜形
成法の代わりに、電解重合法を用いて、有機高分子の過
酸化電位以上の電位により陽極電解処理を行い、有機高
分子絶縁性膜形成することにより上記問題点を解決でき
ることがわかり本発明を完成させた。
Means for Solving the Problems As a result of intensive studies conducted by the present inventors in view of the above problems, as a method for forming an organic polymer coating film on a metal surface, a conventional physical film formation method was used. Instead of the method, by using an electrolytic polymerization method, it is found that the above problems can be solved by performing an anodic electrolytic treatment at a potential higher than the peroxide potential of the organic polymer to form an organic polymer insulating film. Completed

【0007】すなわち、本発明は、モノマーとして複素
環式化合物から選ばれる1種又は2種以上の化合物を無
機支持電解質を含有する電解液に溶解させた液に、金属
表面を接触させて陽極電解処理を行うことにより、該金
属表面に有機高分子膜を形成する際に、有機高分子の過
酸化電位以上の電位により陽極電解処理を行い、有機高
分子絶縁性膜を形成させることを特徴とする有機高分子
絶縁性膜による金属表面の保護被覆処理方法を提供す
る。なお、本明細書における過酸化電位とは、次ぎのよ
うに定義される。すなわち、本発明におけるモノマー系
をある電位E以下で陽極電解重合すると膜は導電性を示
すが、この導電性高分子は電気化学的に活性なため、電
解液中である酸化還元電位範囲内(すなわち、酸化側の
上限電位はE)で走査を行うと(アニオンのドーブ、脱
ドープによる)可逆的な酸化還元電流ピークが検出され
るが、酸化側の電位限界Eをこえて走査すると電流ピー
クがみられなくなり非可逆となる。このときの電位Eを
過酸化電位と定義する。また、ここでいう電位とは電気
化学的ポテンシャルを意味することから、陽極−陰極間
の電圧ではなく、水素標準電極、飽和カロメル電極、A
g/AgCl電極等の参照電極に対する電位をいう。
That is, according to the present invention, a metal surface is brought into contact with a solution prepared by dissolving one or more compounds selected from heterocyclic compounds as a monomer in an electrolytic solution containing an inorganic supporting electrolyte to carry out anodic electrolysis. When the organic polymer film is formed on the metal surface by performing the treatment, an anodic electrolytic treatment is performed at a potential higher than the peroxidation potential of the organic polymer to form an organic polymer insulating film. Provided is a method for protecting and coating a metal surface with an organic polymer insulating film. The peroxide potential in the present specification is defined as follows. That is, when the monomer system according to the present invention is subjected to anodic electrolytic polymerization at a certain potential E or lower, the film exhibits conductivity, but since this conductive polymer is electrochemically active, it falls within the redox potential range in the electrolytic solution ( That is, a reversible redox current peak is detected (due to anion doping and dedoping) when the upper limit potential on the oxidation side is E), but the current peak is detected when the potential limit E on the oxidation side is exceeded. It becomes irreversible without the appearance. The potential E at this time is defined as the peroxide potential. In addition, since the potential here means an electrochemical potential, it is not a voltage between the anode and the cathode, but a hydrogen standard electrode, a saturated calomel electrode, A
g / AgCl refers to the potential with respect to a reference electrode such as an electrode.

【0008】以下、本発明の構成を詳述する。本発明に
おいて対象となる金属は、主として鉄系合金、亜鉛系め
っき材、アルミニウム系合金であり、その他ニッケル、
コバルト、クロム、スズ、銅及びそれらによるめっき材
も本発明は適用可能である。
The structure of the present invention will be described in detail below. The target metal in the present invention is mainly an iron-based alloy, a zinc-based plated material, an aluminum-based alloy, other nickel,
The present invention is also applicable to cobalt, chromium, tin, copper and plated materials made from them.

【0009】本発明の有機高分子膜形成用の化合物とし
て、複素環式化合物から選ばれる1種又は2種以上の化
合物が用いられる。モノマーとしての複素環式化合物と
しては、具体的には電解重合可能なピロール、チオフェ
ン、フラン、カルバゾール、ピリダジンが用いられ、特
にピロール、ピロール誘導体、チオフェン、及びチオフ
ェン誘導体が好ましい。ピロール誘導体の具体例として
は、メチル、エチル等のアルキルピロール、ジアルキル
ピロールが挙げられ、またチオフェン誘導体具体例とし
ては、メチル、エチル等のアルキルチオフェン、ジアル
キルチオフェンが挙げられる。
As the compound for forming the organic polymer film of the present invention, one or more compounds selected from heterocyclic compounds are used. Specific examples of the heterocyclic compound as a monomer include pyrrole, thiophene, furan, carbazole, and pyridazine that can be electropolymerized, and pyrrole, a pyrrole derivative, thiophene, and a thiophene derivative are particularly preferable. Specific examples of the pyrrole derivative include alkylpyrrole such as methyl and ethyl, and dialkylpyrrole, and specific examples of the thiophene derivative include alkylthiophene such as methyl and ethyl, and dialkylthiophene.

【0010】本発明では、無機支持電解質を含有する電
解液が用いられる。無機支持電解質としては、電解液に
十分な導電性を付与できるものであればよく、例えば塩
素イオン、過塩素酸イオン、硫酸イオン、硝酸イオン、
フッ素錯イオン、炭酸イオン、重炭酸イオンからなる酸
もしくはそれらのアルカリ金属塩、もしくはアルカリ金
属の水酸化物等から選ばれる1種または2種以上の化合
物をそれぞれ0.001〜1.0mol/L含有するも
のであればよい。
In the present invention, an electrolytic solution containing an inorganic supporting electrolyte is used. The inorganic supporting electrolyte may be any one that can impart sufficient conductivity to the electrolytic solution, for example, chlorine ion, perchlorate ion, sulfate ion, nitrate ion,
0.001 to 1.0 mol / L of one or two or more compounds selected from an acid consisting of a fluorine complex ion, a carbonate ion, a bicarbonate ion or an alkali metal salt thereof, or an alkali metal hydroxide. It may be contained.

【0011】また、電解液の溶媒は使用されるモノマー
系により選択されるべきで、例えばピロールの場合では
制限が少なく水を初めとして、メタノールやエタノール
等のプロトン性有機溶媒、あるいはジメチルフォルムア
ミド、ベンゾニトリル、ニトロメタン、ニトロベンゼ
ン、プロピレンカーボネート、無水酢酸等の非プロトン
性有機溶媒が利用可能で、一方チオフェンの場合は選択
範囲が狭くアセトニトリル、プロピレンカーボネート等
の非プロトン性有機溶媒を用いるのが好ましい。
The solvent of the electrolytic solution should be selected depending on the monomer system used. For example, in the case of pyrrole, there are few restrictions, and water, as well as a protic organic solvent such as methanol or ethanol, or dimethylformamide, An aprotic organic solvent such as benzonitrile, nitromethane, nitrobenzene, propylene carbonate or acetic anhydride can be used, while in the case of thiophene, the selection range is narrow and it is preferable to use an aprotic organic solvent such as acetonitrile or propylene carbonate.

【0012】次に、本発明における電解重合法について
述べる。本発明における電解重合法は、無機支持電解質
を含有する電解液にモノマーとして複素環式化合物から
選ばれる1種または2種以上の化合物を溶解させて、そ
の中で被処理金属を陽極電解することにより、金属表面
においてモノマーを酸化重合することにより、直接的に
有機高分子絶縁膜を形成する方法である。
Next, the electrolytic polymerization method in the present invention will be described. In the electrolytic polymerization method in the present invention, one or more compounds selected from heterocyclic compounds as monomers are dissolved in an electrolytic solution containing an inorganic supporting electrolyte, and the metal to be treated is subjected to anodic electrolysis therein. Is a method of directly forming an organic polymer insulating film by oxidatively polymerizing a monomer on the metal surface.

【0013】電解液に溶解させるモノマーとして複素環
式化合物もしくはその誘導体から選ばれる1種又は2種
以上の化合物の濃度は0.001〜1.0mol/Lが
好ましい。電解重合時の温度は−20〜60℃まで広い
範囲で可能なので特に限定しないが、通常は常温で十分
である。
The concentration of one or more compounds selected from heterocyclic compounds or their derivatives as the monomer dissolved in the electrolytic solution is preferably 0.001 to 1.0 mol / L. The temperature at the time of electrolytic polymerization can be in a wide range from −20 to 60 ° C. and is not particularly limited, but normal temperature is usually sufficient.

【0014】この電解重合法はそのままでは均一被覆膜
を得るには不十分である。何故なら、電解重合法は主に
導電性高分子の合成方法として発達してきていることか
らもわかるように、析出高分子膜の多くが導電性を有す
るからである。この結果、電流密度分布による(陽極−
陰極極間距離の小さい部分では電流密度大、逆に大きい
部分では電流密度小となる)析出膜の形成速度の差異
が、電解初期から終了にかけて変化せず、析出被覆膜は
不均一なものとなる。この問題を回避するためには析出
被覆膜の導電性が低いことが望ましい。すなわち、電解
初期には電流密度の大きな部分から局部的析出が起こっ
ても、析出被覆膜の導電性が低ければその部分の電気抵
抗が増大することにより電流の流れは未被覆の部分に移
動し、それに応じて電流密度分布が最終的に均一な被覆
膜厚が得られる方向に変化するのである。
This electrolytic polymerization method as it is is not sufficient to obtain a uniform coating film. This is because most of the deposited polymer films have conductivity, as can be seen from the fact that the electrolytic polymerization method has been developed mainly as a method for synthesizing conductive polymers. As a result, the current density distribution (anode-
The current density is high in the part where the distance between the cathodes is small, and conversely the current density is low in the part where it is large.) The difference in the deposition film formation rate does not change from the beginning to the end of electrolysis, and the deposition coating film is non-uniform Becomes In order to avoid this problem, it is desirable that the deposition coating film have low conductivity. That is, even if local deposition occurs from a portion with a large current density in the initial stage of electrolysis, if the conductivity of the deposited coating film is low, the electrical resistance of that portion increases and the current flow moves to the uncoated portion. Then, the current density distribution changes in the direction in which a uniform coating film thickness is finally obtained.

【0015】以上により本発明において金属表面に形成
される有機高分子被覆膜は絶縁性でなければならない
が、これはさらに次のような理由にもよる。被覆膜が導
電性であることは耐食性にも悪影響を及ぼす。通常、金
属の腐食はアノード反応としての金属の溶出とカソード
反応としての水素発生あるいは溶存酸素の還元が金属表
面において同時に起こることに起因する。従って、有機
高分子被覆膜は金属表面を環境から遮断することによ
り、これらの反応を阻止するものであるが、被覆膜が導
電性である場合は後者のカソード反応が金属表面のみで
はなく被覆表面でも起こり得るため環境からの遮断能力
が半減するのである。
As described above, the organic polymer coating film formed on the metal surface in the present invention must be insulative, but this is also due to the following reasons. The conductivity of the coating film also adversely affects the corrosion resistance. Usually, metal corrosion is caused by simultaneous elution of metal as an anode reaction and hydrogen evolution or reduction of dissolved oxygen as a cathode reaction on the metal surface. Therefore, the organic polymer coating film blocks these reactions by shielding the metal surface from the environment, but when the coating film is conductive, the latter cathode reaction is not limited to the metal surface. Since it can occur even on the coated surface, the ability to shield from the environment is halved.

【0016】従って、本発明において形成される被覆膜
は絶縁性でなくてはならないため、電解重合時の電位
(過酸化電位)を規制した。すなわち、一般に電解重合
液中にて被処理金属を過酸化電位以上にまで陽極分極す
ると図1(ピロールの場合)に示されるような電位−電
流曲線が得られるが、0.9V付近に見られる第1ピー
クが電解重合による被覆膜析出を示しており、このピー
ク付近の電位で電解すると得られる被覆膜は前述のよう
に電気化学的酸化還元に対して可逆的な挙動を示し、導
電性となる。一方、1.1V付近に第2ピークが見られる
が(過酸化電位)、これは第1ピークまでに得られた導
電性高分子の二重結合の破壊を示しており、少なくとも
この第2ピーク以上の電位で電解すると1度重合された
(導電状態の)高分子被覆膜は過酸化状態となって不活
性化し、電気化学的酸化還元に対しても非可逆となり、
絶縁性の被覆膜に変化するのである。一方、電解重合法
を用いて絶縁性の被覆膜を得るには、他にフェノールを
塩基性メタノール中で電解する(ポリフェニレンオキシ
ドが成膜される)等の方法があるが、形成される有機高
分子系と電解重合液組成、重合方法が限定されるためあ
まり一般的な方法とはいえず、しかもこれらの方法は本
発明による方法とは異なり析出物そのものが絶縁性を示
すために高々100nm程度の膜厚しかえられず、また
膜厚の制御が非常に困難である。
Therefore, since the coating film formed in the present invention must be insulating, the potential (peroxidation potential) during electrolytic polymerization was regulated. That is, generally, when the metal to be treated is anodically polarized to a level higher than the peroxide potential in an electrolytic polymerization solution, a potential-current curve as shown in FIG. 1 (in the case of pyrrole) is obtained, but it is seen around 0.9V. The first peak indicates the deposition of the coating film by electrolytic polymerization, and the coating film obtained by electrolysis at a potential near this peak exhibits reversible behavior with respect to electrochemical redox, as described above, It becomes sex. On the other hand, a second peak is seen around 1.1 V (peroxidation potential), which indicates the breaking of the double bond of the conductive polymer obtained up to the first peak, and at least this second peak. When electrolyzed at the above potential, the polymer coating film that has been polymerized once (in a conductive state) becomes a peroxidized state and becomes inactive, and becomes irreversible even against electrochemical redox,
It changes to an insulating coating film. On the other hand, in order to obtain an insulating coating film using the electrolytic polymerization method, there is another method such as electrolyzing phenol in basic methanol (polyphenylene oxide is formed into a film). This is not a general method because the composition of the polymer, the composition of the electropolymerization solution, and the polymerization method are limited, and these methods are different from the method according to the present invention. It is possible to obtain a film thickness of only a certain degree, and it is very difficult to control the film thickness.

【0017】重合させるための電解法には、電位走引電
解法、定電位電解法、定電流電解法、交流電解法がある
が、本発明においては実際に印加される電位範囲が図1
に示すような過酸化ピーク(第2ピーク)電位以上の電
位であれば特に限定はない(矢印で示される範囲が本発
明における電解電位の請求範囲)。また、このときの電
位の上限については特に規定しないが、過度に高い電位
では電解液の溶媒が酸化分解する可能性があるため(水
系溶媒においては酸素発生)、得られる被覆膜に支障の
無い程度に適時上限を選択すべきである。ところで、被
覆膜が絶縁性であると電解による被覆膜形成に伴い被処
理金属表面の抵抗が上昇し、ついには電流が流れなくな
る。これをもって、被覆膜の形成は終了するが、このと
きの膜厚は目的により制御可能であることが好ましい。
これは、支持電解質の選択、2種類以上のモノマーの組
合せ、あるいは重合電位の選択により可能である。これ
は、本発明による絶縁性有機高分子膜の形成は重合(導
電性膜形成)とその後の過酸化状態への移行(導電性膜
の絶縁化)といった2つのプロセスにより行われるの
で、重合電位、電解液組成の選択はこれら2つの反応の
比率を制御することに相当する。すなわち、低い重合電
位による電解、もしくは逆に高い酸化電位を有する電解
液組成(図1のピークが高電位側にあるような組成)に
おいては高膜厚のものが得られ、高い重合電位による電
解、もしくは低い酸化電位を有する電解液組成において
は低膜厚のものが得られる。
As the electrolysis method for polymerizing, there are a potential sweep electrolysis method, a potentiostatic electrolysis method, a constant current electrolysis method, and an alternating current electrolysis method. In the present invention, the potential range actually applied is shown in FIG.
There is no particular limitation as long as it is a potential equal to or higher than the peroxide peak (second peak) potential as shown in (the range indicated by the arrow is the scope of the electrolytic potential in the present invention). Although the upper limit of the potential at this time is not particularly specified, the solvent of the electrolytic solution may be oxidatively decomposed at an excessively high potential (oxygen is generated in the aqueous solvent), which may interfere with the obtained coating film. The upper limit should be selected in a timely manner. By the way, if the coating film is insulative, the resistance of the surface of the metal to be treated increases as the coating film is formed by electrolysis, and finally the current stops flowing. This completes the formation of the coating film, but the film thickness at this time is preferably controllable according to the purpose.
This is possible by selecting the supporting electrolyte, combining two or more kinds of monomers, or selecting the polymerization potential. This is because the formation of the insulating organic polymer film according to the present invention is performed by two processes such as polymerization (formation of a conductive film) and subsequent transition to a peroxide state (insulation of the conductive film). , Selection of the electrolyte composition corresponds to controlling the ratio of these two reactions. That is, electrolysis at a low polymerization potential, or conversely, in an electrolytic solution composition having a high oxidation potential (a composition in which the peak in FIG. 1 is on the high potential side), a high film thickness is obtained, and electrolysis at a high polymerization potential is obtained. Alternatively, in the case of an electrolytic solution composition having a low oxidation potential, a low film thickness is obtained.

【0018】本発明で有機高分子絶縁性膜を形成させる
工程を次に示す。 すなわち、素材→脱脂→水洗→純水洗→電解重合→水洗
→純水洗→(乾燥) ただし、乾燥は水分を蒸発除去するだけなので、自然放
置でもよい。
The steps of forming an organic polymer insulating film according to the present invention will be described below. That is, material → degreasing → washing → washing with pure water → electrolytic polymerization → washing with water → washing with pure water → (drying) However, since drying only evaporates and removes water, it may be left naturally.

【0019】本発明の方法では被覆膜の構成要素はモノ
マーであるためにその単位構造はnmオーダーであり、
既に述べた従来の被覆法のように予め高分子化した有機
組成物を物理的に被覆するよりも、被覆膜は該金属表面
によく追随し、膜欠陥がなく、均一な膜厚のものが得ら
れることから、公害問題を内在するクロメート処理等の
前処理を行うことなく、より耐食性及び密着性の高い保
護被覆膜が得られる。しかも、高分子化は被覆と同時に
行われるためにその後の工程は物理的に付着する電解重
合液の洗浄と乾燥だけでよく、前述の被覆方法のように
高温度での焼付けを必要としない。さらに、従来の有機
高分子被覆では塗工上板物にしか適用が困難であるが、
本発明の方法によれば形状物に対しても可能であるメリ
ットも有する。また、電解重合法による有機高分子被覆
膜は該金属表面に直接形成され、しかも薄膜であるため
に素材外観を変化させることがなく、特に金属特有の美
麗な光沢を生かしたクリア塗装下地としてより好適であ
る。
In the method of the present invention, since the constituent element of the coating film is a monomer, its unit structure is nm order,
Rather than physically coating a prepolymerized organic composition as in the conventional coating method described above, the coating film follows the metal surface well, has no film defects, and has a uniform film thickness. Therefore, a protective coating film having higher corrosion resistance and adhesiveness can be obtained without performing a pretreatment such as a chromate treatment which has a pollution problem. Moreover, since the polymerizing is performed at the same time as the coating, the subsequent steps only need to wash and dry the electrolytically polymerized liquid that physically adheres, and does not require baking at a high temperature as in the coating method described above. Further, although it is difficult to apply the conventional organic polymer coating only to the coated top plate,
The method of the present invention also has an advantage that it can be applied to a shape. Also, the organic polymer coating film formed by the electrolytic polymerization method is formed directly on the metal surface, and since it is a thin film, it does not change the appearance of the material, and as a clear coating base that makes the most of the beautiful luster peculiar to metal. It is more suitable.

【0020】[0020]

〔被覆膜の表面状態の観察〕[Observation of surface state of coating film]

走査電子顕微鏡:T−20、日本電子製 〔絶縁性の評価〕 導電率の測定:pA/DC Voltage Sour
ce Model−4140B、横川ヒューレットパッ
カード製 (絶縁膜の両端に0.5Vの直流電圧を印加したときの
電流を測定)
Scanning electron microscope: T-20, manufactured by JEOL [Evaluation of insulation] Conductivity measurement: pA / DC Voltage Source
ce Model-4140B, manufactured by Yokogawa Hewlett-Packard (measuring the current when applying a DC voltage of 0.5 V to both ends of the insulating film)

【0021】〔塗膜密着性試験方法〕試験片にアミラッ
ク1000(関西ペイント製メラミンアルキッド系塗
料)を塗装バーにより目標膜厚20μmで塗装し、12
0℃で30分間焼付を行った後、碁盤目試験(塗装面に
NTカッターにて1mm角100個のゴバン面を切り、
セロハンテープ剥離を行った後の塗膜残存数で評価)で
評価した。
[Coating Film Adhesion Test Method] Amirac 1000 (Melamine alkyd paint manufactured by Kansai Paint Co., Ltd.) was applied to a test piece with a coating bar at a target film thickness of 20 μm.
After baking at 0 ° C for 30 minutes, a cross-cut test (cutting 100 mm 1 mm square 1 mm square with a NT cutter on the coated surface,
The number of remaining coating films after the removal of the cellophane tape was used for evaluation).

【0022】 〔試験片作製工程〕 素材 ↓ 脱脂:日本パーカライジング(株)製ファインクリーナー4360を濃度 2%で建浴し、温度60℃に加温して2分間浸漬 ↓ 水洗:水道水流しかけ ↓ 純水洗:脱イオン水を流しかけ ↓ 電解重合:脱イオン水を用いて実施例表記の溶液を調製後、20分間窒素 バブリングを行い溶存している空気を除去。 重合時の温度は常温(25℃)とし、対極にもSUS304を 使用した。 ↓ 水洗:水道水流しかけ ↓ 純水洗:脱イオン水を流しかけ ↓ 乾燥:ドライヤーで温風乾燥[Test piece production process] Material ↓ Degreasing: Fine Cleaner 4360 manufactured by Nihon Parkerizing Co., Ltd. was bathed at a concentration of 2%, heated to 60 ° C. and soaked for 2 minutes ↓ Washing: Sprinkling tap water ↓ Pure Washing with water: flowing deionized water ↓ Electropolymerization: After preparing the solutions described in Examples using deionized water, nitrogen bubbling was performed for 20 minutes to remove dissolved air. The temperature during the polymerization was room temperature (25 ° C), and SUS304 was used as the counter electrode. ↓ Washing with water: over running tap water ↓ Washing with pure water: over running deionized water ↓ Drying: drying with warm air with a dryer

【0023】実施例1 絶縁性のポリピロール被覆膜を以下に示すモノマー、支
持電解質を含有した水溶液中にて、ポリピロールの過酸
化電位を越える1.5V(Ag/AgClに対する電
位)で定電位電解することにより鏡面研磨ステンレス
(SUS304)板上に形成した。 ピロールモノマー 0.25mol/L NaHCO3 0.20mol/L
Example 1 An insulating polypyrrole coating film was subjected to constant potential electrolysis at 1.5 V (potential against Ag / AgCl) exceeding the peroxidation potential of polypyrrole in an aqueous solution containing the following monomers and a supporting electrolyte. By doing so, it was formed on a mirror-polished stainless steel (SUS304) plate. Pyrrole monomer 0.25 mol / L NaHCO 3 0.20 mol / L

【0024】実施例2 以下に示すモノマーと支持電解質を含有する水溶液を用
いて実施例1と同様の方法でポリピロール被覆膜を形成
した。 ピロールモノマー 0.25mol/L Na2CO3 0.20mol/L
Example 2 A polypyrrole coating film was formed in the same manner as in Example 1 using an aqueous solution containing the following monomers and a supporting electrolyte. Pyrrole monomer 0.25 mol / L Na 2 CO 3 0.20 mol / L

【0025】実施例3 以下に示すモノマーと支持電解質を含有する水溶液を用
いて実施例1と同様の方法でポリピロール被覆膜を形成
した。 ピロールモノマー 0.25mol/L NaOH 0.20mol/L N−メチルピロール 1.0mmol/L
Example 3 A polypyrrole coating film was formed in the same manner as in Example 1 using an aqueous solution containing the following monomers and a supporting electrolyte. Pyrrole monomer 0.25 mol / L NaOH 0.20 mol / L N-methylpyrrole 1.0 mmol / L

【0026】実施例4 実施例1の試験片について塗膜密着性試験を行ったとこ
ろ全く剥離が認められなかった。
Example 4 When a coating film adhesion test was conducted on the test piece of Example 1, no peeling was observed.

【0027】比較例1 実施例1と同様の電解重合液、素材を用いて、電解電位
をポリピロールの過酸化電位以下の0.8V(Ag/A
gClに対する電位)で定電位電解を行い、ポリピロー
ル被覆膜を形成した。
Comparative Example 1 Using the same electrolytic polymerization liquid and material as in Example 1, the electrolytic potential was 0.8 V (Ag / A) which was less than the peroxide potential of polypyrrole.
Potentiostatic electrolysis was performed at (potential relative to gCl) to form a polypyrrole coating film.

【0028】比較例2 従来の物理的塗布法により有機高分子膜を形成させた例
として、鏡面研磨ステンレス(SUS304)板上にパ
ーレン4523(日本パーカライジング製水系アクリル
ーエポキシコーティング剤)を塗装バーにより目標膜厚
1μmでコーティングし、最高到達温度100℃で5秒
間焼付けた。
Comparative Example 2 As an example in which an organic polymer film was formed by a conventional physical coating method, Parlen 4523 (a water-based acrylic-epoxy coating agent manufactured by Japan Parkerizing) was coated on a mirror-polished stainless steel (SUS304) plate with a coating bar. Coating was performed with a target film thickness of 1 μm, and baking was performed at a maximum attainable temperature of 100 ° C. for 5 seconds.

【0029】比較例3 鏡面研磨ステンレス(SUS304)板上にパルクロム
283(日本パーカライジング製塗装下地用塗布型クロ
メート薬剤)をロールコーターによりクロム付着量が5
0mg/m2となるように塗布し最高到達温度100℃
で5秒間焼付けた。さらに、実施例4と同様の塗装を施
し塗膜密着性を評価したところ全く剥離が認められなか
った。
Comparative Example 3 On a mirror-polished stainless steel (SUS304) plate, palchrome 283 (coating type chromate chemical for coating base made by Nippon Parkerizing) was coated with a roll coater to give a chrome adhesion amount of 5
The maximum temperature reached is 100 ° C by applying 0 mg / m 2
Baked for 5 seconds. Further, when the same coating as in Example 4 was applied and the coating film adhesion was evaluated, no peeling was observed.

【0030】実施例、比較例から次のことが言える 図2に実施例1、2、3の電解時間に対する被覆膜厚
の変化を示すが、ある時間を越えると被覆膜厚の増加は
停止し、一定値に近付く。 図3に示した比較例1では被覆膜厚は時間とともに直
線的に増加し、実施例においては絶縁性の被覆膜が、比
較例においては導電性の被覆膜が形成されている。 図2における実施例2、3から、それぞれ支持電解
質、及び2種類のモノマーの混合により、形成される被
覆膜の膜厚を制御することが可能である。 以上の結果のうち代表的なものを表1にまとめたが、
それぞれの被覆膜のSEM観察結果から実施例1ではピ
ンホール等の欠陥が認められず極めて平滑な被覆膜が観
察されるのに対して、比較例1では凸凹が激しく、比較
例2ではピンホール、亀裂などの欠陥の多い被覆膜とな
った。 電解重合法における比較(実施例と比較例1の比較)
では比較例の導電率がきわめて大きいことがわかる。従
って、本発明による電解重合方法を用いることにより、
金属表面に極めて膜厚が均一でかつ高絶縁性を有する有
機高分子保護被覆膜を得ることができる。 さらに、実施例4と比較例3の比較から本発明による
方法は、従来より塗装下地として用いられているクロメ
ート処理と同等の塗膜密着性が得られる。
The following can be said from the examples and the comparative examples. FIG. 2 shows the change in the coating film thickness with respect to the electrolysis time in Examples 1, 2 and 3. The coating film thickness increases after a certain time. Stop and approach a certain value. In Comparative Example 1 shown in FIG. 3, the coating film thickness linearly increases with time, and an insulating coating film is formed in the example and a conductive coating film is formed in the comparative example. From Examples 2 and 3 in FIG. 2, it is possible to control the film thickness of the coating film formed by mixing the supporting electrolyte and the two kinds of monomers, respectively. Table 1 shows the representative results of the above.
From the SEM observation results of the respective coating films, in Example 1, defects such as pinholes were not observed and an extremely smooth coating film was observed, whereas in Comparative Example 1, irregularities were severe and in Comparative Example 2, The coating film had many defects such as pinholes and cracks. Comparison in electrolytic polymerization method (comparison between Example and Comparative Example 1)
Shows that the conductivity of the comparative example is extremely high. Therefore, by using the electrolytic polymerization method according to the present invention,
It is possible to obtain an organic polymer protective coating film having an extremely uniform film thickness and a high insulating property on the metal surface. Furthermore, from the comparison between Example 4 and Comparative Example 3, the method according to the present invention can obtain the same coating film adhesion as the chromate treatment conventionally used as the coating base.

【0031】[0031]

【発明の効果】本発明の方法により電位を一定以上に制
御することにより高絶縁性で、かつピンホール、ワレ等
の膜欠陥がない均一な被覆膜が形成される。この結果得
られた被覆膜は耐食性および塗膜密着性において優れて
いる。特に、金属表面との密着性、重合膜と有機樹脂被
覆(塗装等)膜との密着性が優れている。また、重合時
間が長くなると膜厚はある一定の値となり膜厚管理が容
易で、しかも支持電解質の選択および複数のモノマーの
組合せにより目的膜厚を広い範囲で選択することが可能
(これは重合電位の制御でも可能)である。
EFFECTS OF THE INVENTION By controlling the electric potential to a certain level or higher by the method of the present invention, a uniform coating film having a high insulating property and having no film defects such as pinholes and cracks can be formed. The coating film obtained as a result is excellent in corrosion resistance and coating adhesion. In particular, the adhesiveness to the metal surface and the adhesiveness between the polymer film and the organic resin coating (coating etc.) film are excellent. In addition, when the polymerization time becomes long, the film thickness becomes a certain value and it is easy to control the film thickness. Moreover, the target film thickness can be selected in a wide range by selecting the supporting electrolyte and combining a plurality of monomers. It is also possible to control the potential).

【0032】[0032]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】ピロールモノマー0.25mol/L、支持電
解質としてNaOH0.25mol/Lを含有する水溶
液中における陽極分極曲線を示す図。
FIG. 1 is a view showing an anodic polarization curve in an aqueous solution containing 0.25 mol / L of pyrrole monomer and 0.25 mol / L of NaOH as a supporting electrolyte.

【図2】実施例1、2及び3における電解時間と被覆膜
厚との関係を示す図。
FIG. 2 is a graph showing the relationship between electrolysis time and coating film thickness in Examples 1, 2 and 3.

【図3】比較例1における電解時間と被覆膜厚との関係
を示す図。
FIG. 3 is a graph showing the relationship between electrolysis time and coating film thickness in Comparative Example 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】モノマーとして複素環式化合物から選ばれ
る1種又は2種以上の化合物を無機支持電解質を含有す
る電解液に溶解させた液に、金属表面を接触させて陽極
電解処理を行うことにより、該金属表面に有機高分子膜
を形成する際に、有機高分子の過酸化電位以上の電位に
より陽極電解処理を行い、有機高分子絶縁性膜を形成さ
せることを特徴とする有機高分子絶縁性膜による金属表
面の保護被覆処理方法。
1. Anodic electrolysis is carried out by bringing a metal surface into contact with a solution prepared by dissolving one or more compounds selected from heterocyclic compounds as monomers in an electrolyte solution containing an inorganic supporting electrolyte. When forming an organic polymer film on the metal surface, an organic polymer insulating film is formed by performing an anodic electrolytic treatment at a potential higher than the peroxidation potential of the organic polymer. A method for protecting and coating a metal surface with an insulating film.
【請求項2】前記複素環式化合物がピロール、ピロール
誘導体、チオフェン及びチオフェン誘導体から選ばれる
1種又は2種以上の化合物である請求項1記載の方法。
2. The method according to claim 1, wherein the heterocyclic compound is one or more compounds selected from pyrrole, pyrrole derivatives, thiophene and thiophene derivatives.
JP07869293A 1993-03-12 1993-03-12 Protective coating method for metal surface with organic polymer insulating film Expired - Fee Related JP3264552B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07869293A JP3264552B2 (en) 1993-03-12 1993-03-12 Protective coating method for metal surface with organic polymer insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07869293A JP3264552B2 (en) 1993-03-12 1993-03-12 Protective coating method for metal surface with organic polymer insulating film

Publications (2)

Publication Number Publication Date
JPH06264297A true JPH06264297A (en) 1994-09-20
JP3264552B2 JP3264552B2 (en) 2002-03-11

Family

ID=13668923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07869293A Expired - Fee Related JP3264552B2 (en) 1993-03-12 1993-03-12 Protective coating method for metal surface with organic polymer insulating film

Country Status (1)

Country Link
JP (1) JP3264552B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190896A (en) * 2005-12-19 2007-08-02 Nisshin Steel Co Ltd Organic resin-coated steel plate excellent in corrosion resistance after painting
JP2008010407A (en) * 2006-05-31 2008-01-17 Honda Motor Co Ltd Manufacturing method and device of conductive polymer membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007190896A (en) * 2005-12-19 2007-08-02 Nisshin Steel Co Ltd Organic resin-coated steel plate excellent in corrosion resistance after painting
JP2008010407A (en) * 2006-05-31 2008-01-17 Honda Motor Co Ltd Manufacturing method and device of conductive polymer membrane

Also Published As

Publication number Publication date
JP3264552B2 (en) 2002-03-11

Similar Documents

Publication Publication Date Title
US5721056A (en) Process for the production of corrosion-protected metallic materials and materials obtainable therewith
US20090162563A1 (en) Electrochemically produced layers for corrosion protection or as a primer
JPS62278298A (en) Chromated zn or zn alloy plated steel sheet and its production
WO1996032750A1 (en) Precoated steel sheet for positive electrode can of alkaline dry cell
US5997714A (en) Organic coated material having an electrolytically polymerized coating film containing chromium and method
JP3264552B2 (en) Protective coating method for metal surface with organic polymer insulating film
KR101223879B1 (en) Electroplating solution composition and method for manufacturing coating using the same
JP2816559B2 (en) Manufacturing method of black galvanized steel sheet
Palraj et al. Effect of pretreatments on electrodeposited epoxy coatings for electronic industries.
Filazi et al. PANi/PPy and PANi Films on ZnNi alloy coated carbon steel; Electrochemical syntheses and corrosion performances
JPH0447037B2 (en)
JPH0340117B2 (en)
JPS62278297A (en) Method for chromating metal-surface-treated steel sheet
JPH07246679A (en) Resin coated aluminum-containing metal composite material excellent in conductivity and production thereof
JP3230907B2 (en) Method for producing blackened steel sheet excellent in productivity and blackening
US7291252B2 (en) Electrocoating chrome-plated steel
JPH0340116B2 (en)
KR100470638B1 (en) A method for manufacturing pre-phosphated anti-finger treatment steel sheet with good corrosion resistance property and anti-alkalinity
KR20040031481A (en) A Post-Treatment Method of Cold Rolled Steel Sheets with Improved Corrosion Resistance
KR101714934B1 (en) Fe-Ni ALLOY METAL FOIL HAVING EXCELLENT CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
JPH05295562A (en) Method for chromate-treating galvanized steel sheet
JPH0270088A (en) Production of zn alloy electroplated steel sheet having superior chemical treatability
KR960004784B1 (en) Steel plates of removing fingerprint with an excellent corrosion resistance, conductivity and coating adhesivity
JPH03223490A (en) Production of steel sheet electroplated with zn alloy excellent in chemical conversion treating property
JPH06235092A (en) Method for electrolytically chromating steel sheet excellent in color tone stability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081228

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20081228

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20091228

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20101228

LAPS Cancellation because of no payment of annual fees