JPH06264197A - Low core loss ferrous amorphous alloy high in magnetic flux density and excellent in insulated film treatability - Google Patents

Low core loss ferrous amorphous alloy high in magnetic flux density and excellent in insulated film treatability

Info

Publication number
JPH06264197A
JPH06264197A JP5227193A JP5227193A JPH06264197A JP H06264197 A JPH06264197 A JP H06264197A JP 5227193 A JP5227193 A JP 5227193A JP 5227193 A JP5227193 A JP 5227193A JP H06264197 A JPH06264197 A JP H06264197A
Authority
JP
Japan
Prior art keywords
magnetic flux
flux density
alloy
amorphous alloy
core loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5227193A
Other languages
Japanese (ja)
Other versions
JP3366681B2 (en
Inventor
Masao Yukimoto
正雄 行本
Fumio Kogiku
史男 小菊
Nobuisa Shiga
信勇 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP05227193A priority Critical patent/JP3366681B2/en
Publication of JPH06264197A publication Critical patent/JPH06264197A/en
Application granted granted Critical
Publication of JP3366681B2 publication Critical patent/JP3366681B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To produce a low iron core loss ferrous amorphous allay excellent in insulated film treatability at a low cost without deteriorating its magnetic flux density by adding a specified ant. of Mn or furthermore Ni to the conventional Fe-B-Si series amorphous magnetic alloy. CONSTITUTION:The surface of a water-cooled roll rotating at a high speed is injected with the molten metal of an alloy having a compsn. expressed by the chemical formula; FeXBYSiZMna or FeXBYSiZMnaNib (by atom, X; >80 to 83%, Y; 6 to 11%, Z; 8 to 13%, a; 0.5 to 3% and b; 0.2 to 2%), which is rapidly cooled to form the thin film of an amorphous alloy. The thin sheet of the low core loss ferrous amorphous alloy having core loss W13/50<=0.25W/kg and a high magnetic flux density satisfying magnetic flux density B10>=1.5T and excellent in insulated film treatability can be obtd. at a low cost with a small amt. of expensive B to be used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、積トランスや巻トラ
ンス等の鉄心材料の用途に供して好適な鉄系非晶質合金
に関し、とくに鉄損特性や磁束密度などの軟磁気特性だ
けでなく、絶縁被膜処理性の向上を図ったものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an iron-based amorphous alloy suitable for use as an iron core material for product transformers, winding transformers, etc., and particularly not only for iron loss characteristics and soft magnetic characteristics such as magnetic flux density. It is intended to improve the insulating film processability.

【0002】[0002]

【従来の技術】特公昭63-30393号公報や特公平2-11662
号公報に開示されているように、Fe−Si−B系等の溶融
合金を、単ロール法や双ロール法等によって 105〜106
℃/s程度の冷却速度で急冷凝固させると、板厚が20〜
50μm 程度で無秩序な原子配列を持ついわゆる非晶質合
金薄帯が得られる。かような非晶質合金薄帯は、トラン
スやモーター等の鉄心材料として有力で、現在実用化さ
れるに至っている。
[Prior Art] Japanese Patent Publication No. Sho 63-30393 and Japanese Patent Publication No. 2-11662
As disclosed in Japanese Patent Laid-Open Publication No. 10-105, a molten alloy such as Fe-Si-B is formed by a single-roll method, a twin-roll method, or the like at 10 5 to 10 6
When rapidly solidified at a cooling rate of about ℃ / s, the plate thickness is 20 ~
A so-called amorphous alloy ribbon having a disordered atomic arrangement of about 50 μm is obtained. Such amorphous alloy ribbons are promising as iron core materials for transformers, motors, etc., and are now in practical use.

【0003】特に、電力トランス用材料として市販され
ているFe78B13Si9合金はその代表的なものであり、優れ
た鉄損特性が報告されている。しかしながら、ボロンは
高価な元素であることから、これに起因したFe−B−Si
合金の高価格がその商業化、拡販を妨げてきた。従っ
て、上記Fe78B13Si9合金と同程度の磁気特性及び熱安定
性を維持しながら、しかもボロン量を抑えることができ
れば、コスト低減による工業的意義は極めて大きいとい
える。この点を考慮して、たとえば特公平1-54422号公
報には、Fe:75〜80at%(以下単に%で示す),Mn:0.
5 〜3%, Si:9〜15%, B:7〜13%組成になる、低
コストで、鉄損が低く、しかも絶縁被膜処理にに優れた
鉄基非晶質合金が提案されている。
In particular, Fe 78 B 13 Si 9 alloy, which is commercially available as a material for power transformers, is a typical one, and excellent iron loss characteristics have been reported. However, since boron is an expensive element, Fe-B-Si resulting from this is
The high price of alloys has hindered their commercialization and sales expansion. Therefore, if the amount of boron can be suppressed while maintaining the same magnetic characteristics and thermal stability as those of the Fe 78 B 13 Si 9 alloy, it can be said that the industrial significance due to cost reduction is extremely large. In consideration of this point, for example, in Japanese Examined Patent Publication No. 1-54422, Fe: 75 to 80 at% (hereinafter simply expressed as%), Mn: 0.
An iron-based amorphous alloy having a composition of 5 to 3%, Si: 9 to 15%, B: 7 to 13%, low cost, low iron loss, and excellent in insulating film treatment has been proposed. .

【0004】また、非晶質合金薄帯を用いた電力用トラ
ンスは、従来のけい素鋼と比較すると磁束密度が低いた
め、大型化が余儀なくされるという問題がある。そのた
め、上記した市販のFe78B13Si9合金についてもFe分を多
くしたFe80B12Si8合金等に変わっており、磁束密度の改
善が重要視されている。かような考えのもとに特開昭61
-559号公報には、Fe:79.4〜79.8%、B:12〜14%、S
i:6〜8%組成のものが提案されている。
Further, the power transformer using the amorphous alloy ribbon has a magnetic flux density lower than that of the conventional silicon steel, and therefore has a problem that the size is inevitably increased. Therefore, the above-mentioned commercially available Fe 78 B 13 Si 9 alloy has also been changed to an Fe 80 B 12 Si 8 alloy having a large Fe content, and improvement of the magnetic flux density is considered important. Based on such an idea, JP-A-61
-559 publication, Fe: 79.4-79.8%, B: 12-14%, S
i: 6-8% composition is proposed.

【0005】さらに、最近の非晶質合金薄帯製造技術の
向上に伴い、表面粗度等の表面性状が改善され、占積率
は著しく向上したものの、一方で層間抵抗の低下を招来
している。従来の非晶質合金薄帯では、合金自身の高い
電気抵抗に加え表面粗度が大きかったことから、比較的
高い層間抵抗を容易に維持でき、このため層間絶縁のた
めの被膜は不要とされていた。しかしながら、表面性状
の改善による層間抵抗の低下に伴い、層間絶縁被膜の付
与が必要になってきた。
Furthermore, although the surface properties such as surface roughness have been improved and the space factor has been remarkably improved due to the recent improvement in the amorphous alloy ribbon manufacturing technique, on the other hand, the interlayer resistance is lowered. There is. In the conventional amorphous alloy ribbon, the relatively high interlayer resistance can be easily maintained because the surface roughness as well as the high electrical resistance of the alloy itself is large, and thus a film for interlayer insulation is not required. Was there. However, it has become necessary to provide an interlayer insulating film as the interlayer resistance decreases due to the improvement of the surface properties.

【0006】かかる絶縁被膜の付与手段としては、湿式
法や電解法などが考えられるが、超急冷法による薄帯製
造においては、表面層の酸化が不可避であって表面には
酸化膜の形成が余儀なくされるため、湿式法によってク
ロム酸塩やりん酸塩の絶縁被膜を被成しようとしてもし
ばしば液はじきが発生し、他方電解法によっては均一な
電解が行い難く、いずれにしても均質な絶縁被膜の形成
は極めて難しいという問題があった。
As a method for applying such an insulating film, a wet method, an electrolytic method, or the like can be considered. However, in the production of thin strips by the ultra-quenching method, the surface layer is inevitably oxidized and an oxide film is not formed on the surface. Since it is unavoidable, even if an attempt is made to form an insulating coating of chromate or phosphate by the wet method, liquid repellency often occurs, and on the other hand, uniform electrolysis is difficult to perform by the electrolysis method. There is a problem that it is extremely difficult to form a film.

【0007】この点、前掲した特公平1-54422号公報で
は、Mnを添加することにより、良好な熱安定性を維持し
つつボロン量を効果的に低減して低コスト化を実現する
のみならず、併せて絶縁被膜処理性の改善を図ってい
る。しかしながら、この種合金すなわちFe:75〜80%、
Mn:0.5 〜3%、Si:9〜15%、B:7〜13%組成の合
金は、図1に示すように、B10<1.5 Tと磁束密度が低
く、しかもMn添加量が増大するに伴って磁束密度が一層
低下するところに問題を残していた。
[0007] In this regard, in Japanese Patent Publication No. 1-54422 mentioned above, by adding Mn, it is only necessary to effectively reduce the amount of boron while maintaining good thermal stability and realize cost reduction. At the same time, we are working to improve the processability of insulating coating. However, this seed alloy, Fe: 75-80%,
As shown in FIG. 1, the alloy having a composition of Mn: 0.5 to 3%, Si: 9 to 15%, B: 7 to 13% has a low magnetic flux density of B 10 <1.5 T, and the Mn addition amount increases. However, a problem remains where the magnetic flux density is further reduced.

【0008】[0008]

【発明が解決しようとする課題】この発明は、上記の問
題を有利に解決するもので、磁束密度の低下を招くこと
なしに、絶縁被膜処理性の有利な向上を実現した低鉄損
鉄系非晶質合金を提案することを目的とする。ここにこ
の発明で目標とする鉄損特性及び磁束密度は、W13/50
≦0.25 W/kg、B10≧1.5 Tである。
SUMMARY OF THE INVENTION The present invention advantageously solves the above-mentioned problems, and is a low iron loss iron-based material which realizes an advantageous improvement in insulating coating processability without causing a decrease in magnetic flux density. The aim is to propose an amorphous alloy. Here, the target iron loss characteristics and magnetic flux density in the present invention are W 13/50
≦ 0.25 W / kg and B 10 ≧ 1.5 T.

【0009】[0009]

【課題を解決するための手段】この発明は、 化学式:FeX Y SiZ Mna ここでX:80超〜83% Y:6〜11% Z:8〜13% a:0.5 〜3% で示される組成になり、かつ鉄損W13/50 ≦0.25 W/kg
、磁束密度B10≧1.5 Tを満足することを特徴とする
磁束密度が高く、絶縁被膜処理性に優れた低鉄損鉄系非
晶質合金である(第1発明)。
The present invention has the chemical formula: Fe X BY Si Z Mn a where X: more than 80 to 83% Y: 6 to 11% Z: 8 to 13% a: 0.5 to 3% The composition is indicated by and the iron loss W 13/50 ≤ 0.25 W / kg
A low iron loss iron-based amorphous alloy having a high magnetic flux density and excellent processability for insulating coating, characterized by satisfying a magnetic flux density B 10 ≧ 1.5 T (first invention).

【0010】またこの発明は、 化学式:FeX Y SiZ Mna Nib ここでX:80超〜83% Y:6〜11% Z:8〜13% a:0.5 〜3% b:0.2 〜2% で示される組成になり、かつ鉄損W13/50 ≦0.25 W/kg
、磁束密度B10≧1.5 Tを満足することを特徴とする
磁束密度が高く、絶縁被膜処理性に優れた低鉄損鉄系非
晶質合金である(第2発明)。
[0010] The present invention has the formula: Fe X B Y Si Z Mn a Ni b where X: 80 ultra ~83% Y: 6~11% Z: 8~13% a: 0.5 ~3% b: 0.2 ~ 2% composition and iron loss W 13/50 ≤ 0.25 W / kg
A low iron loss iron-based amorphous alloy having a high magnetic flux density and excellent processability for insulating coating, characterized by satisfying a magnetic flux density B 10 ≧ 1.5 T (second invention).

【0011】以下、この発明を由来するに至った実験結
果に基づき、この発明を具体的に説明する。さて、Fe−
Si−B3元系合金の鉄損と成分組成との関係について
は、従来から数多くの研究がなされており、例えば図2
に示す結果によれば、Fe:75〜78%の範囲においてはB
量を8〜10%に低減しても鉄損の劣化はほとんどない
か、あっても極く僅かであることが示されている。従っ
て、B量の低減は鉄損の若干の劣化をもたらすとは言
え、そのコスト低減を考慮すれば、工業的にはむしろメ
リットと言える。また、鉄損の低い組成では結晶化温度
X が高いことも知られている。
The present invention will be described in detail below based on the experimental results that led to the origin of the present invention. By the way, Fe−
Many studies have been conducted on the relationship between the iron loss and the component composition of a Si-B ternary alloy, for example, as shown in FIG.
According to the result shown in, Fe: B in the range of 75 to 78%
It has been shown that even if the amount is reduced to 8 to 10%, there is little or no deterioration in iron loss. Therefore, it can be said that the reduction of the amount of B brings about a slight deterioration of the iron loss, but if the cost reduction is taken into consideration, it can be said to be an industrial advantage. It is also known that the crystallization temperature T X is high in the composition having a low iron loss.

【0012】しかしながら、単なるFe−B−Si系では組
成をいかように調整しても非晶質合金薄帯製造時に強固
なB−Si−Oを基本とする酸化物が形成されるため、絶
縁被膜処理時における液はじきや不均一電解を回避でき
ず、それ故良質の絶縁被膜の形成は望み得なかった。そ
こで酸化膜の改質を目的として、種々の添加元素につい
て調査したところ、Mnの添加がとりわけ有効であること
が究明された。
However, in a simple Fe-B-Si system, no matter how the composition is adjusted, a strong B-Si-O-based oxide is formed during the production of the amorphous alloy ribbon, so that the insulation The liquor and non-uniform electrolysis during the coating process cannot be avoided and therefore the formation of a good quality insulating coating could not be expected. Therefore, when various additive elements were investigated for the purpose of modifying the oxide film, it was found that the addition of Mn was particularly effective.

【0013】図3に、第4成分としてMnを1%加えたFe
81Mn1 9Si9組成の溶湯を、高速で回転する水冷銅合金
ロール表面に射出し、急冷凝固させて得た非晶質合金薄
帯につき、イオンマイクロアナライザーを用いて、表面
近傍での各元素の深さ方向分布について調べた結果を示
す。同図より明らかなように、表面酸化膜中に著しいMn
の濃縮が認められたが、かかるMnの濃縮によって酸化膜
が改善され、その結果、絶縁被膜形成処理時における不
均一な電流の流れが抑制され、均質な絶縁被膜の形成が
もたらされるものと考えられる。
In FIG. 3, Fe containing 1% Mn as the fourth component is added.
The amorphous alloy ribbon obtained by injecting a molten metal of 81 Mn 1 B 9 Si 9 composition onto the surface of a water-cooled copper alloy roll rotating at high speed and rapidly solidifying the molten alloy was measured in the vicinity of the surface using an ion microanalyzer. The result of having investigated about the depth direction distribution of each element is shown. As is clear from the figure, the remarkable Mn in the surface oxide film
However, it is considered that the concentration of Mn improves the oxide film, and as a result, suppresses the non-uniform current flow during the insulating film formation process, resulting in the formation of a uniform insulating film. To be

【0014】次に、Fe−Si−B3元系合金の飽和磁化に
ついて調べた結果を図4に示す。同図より明らかなよう
に、Fe:75〜80%の範囲では、磁束密度はB10で 1.4〜
1.5 Tが限界であり、磁束密度の一層の向上のためには
80%を超えるFeの多量添加が必要となるが、図2からこ
の領域では大幅な鉄損劣化が予想される。しかしなが
ら、この点に関する発明者らの研究によれば、Mnの添加
はFeの磁気モーメントを希釈する効果があり、例えば図
5に示すように、鉄損はMnの添加に伴って低下すること
が判明した。この理由は、Mn添加によって磁歪が小さく
なり、透磁率が向上することに起因するものと考えられ
る。かくして、Fe含有量が80%を超えても、鉄損改善効
果が大きくしかも磁束密度も高い組成範囲が見出された
のである。
Next, FIG. 4 shows the results of examining the saturation magnetization of the Fe-Si-B ternary alloy. As is clear from the figure, in the range of Fe: 75 to 80%, the magnetic flux density at B 10 is 1.4 to
1.5T is the limit, and to further improve the magnetic flux density
Although it is necessary to add a large amount of Fe in excess of 80%, it is expected from Fig. 2 that significant iron loss deterioration will occur in this region. However, according to the inventors' research on this point, the addition of Mn has an effect of diluting the magnetic moment of Fe, and as shown in FIG. 5, for example, iron loss decreases with the addition of Mn. found. It is considered that this is because the addition of Mn reduces the magnetostriction and improves the magnetic permeability. Thus, a composition range was found in which the iron loss improving effect was large and the magnetic flux density was high even when the Fe content exceeded 80%.

【0015】[0015]

【作用】以下、この発明において、合金の成分組成を前
記の範囲に限定した理由について説明する。 Fe:80超〜83% Feが80%以下では、より低い鉄損は得られるものの磁束
密度が劣り、一方83%を超えても、磁束密度の大幅な改
善は望めず、むしろ鉄損が大きく劣化する。
In the present invention, the reason why the alloy composition is limited to the above range will be described below. Fe: over 80% to 83% Fe less than 80% gives a lower iron loss but inferior magnetic flux density. On the other hand, even if it exceeds 83%, a significant improvement in magnetic flux density cannot be expected and rather iron loss increases. to degrade.

【0016】B:6〜11% Bが6%に満たないと作製したリボンが非晶質化せず、
鉄損が大幅に劣化し、一方11%を超えると、コスト面で
不利なだけでなく、Fe量が減少して磁束密度が低下す
る。なお、より好ましいB量は7〜9%である。
B: 6 to 11% If the content of B is less than 6%, the produced ribbon does not become amorphous,
If the iron loss is significantly deteriorated, on the other hand, if it exceeds 11%, not only is it disadvantageous in terms of cost, but the Fe content is reduced and the magnetic flux density is reduced. A more preferable amount of B is 7-9%.

【0017】Si:8〜13% Siが8%未満では、作製したリボンが非晶質化せず、鉄
損の大幅な劣化を招き、一方13%を超えると相対的にFe
量が減少して磁束密度の低下を招く。
Si: 8 to 13% When Si is less than 8%, the produced ribbon does not become amorphous and causes a large deterioration of iron loss, while when it exceeds 13%, Fe is relatively
As a result, the magnetic flux density is reduced and the magnetic flux density is reduced.

【0018】Mn:0.5 〜3% Mnは、酸化膜の改善による良質の絶縁被膜の形成という
観点から、少なくとも0.5 %を必要とするが、3%を超
えると飽和磁束密度の低下が無視できなくなるので、Mn
量は 0.5〜3%好ましくは 0.5〜2%の範囲にする必要
がある。なお、かようなMn添加によって、結晶化温度も
約5〜15℃上昇する。しかもかかる組成域における結晶
化温度は周辺の組成域よりも高く、従って熱安定性に関
して好ましいことが確認されている。
Mn: 0.5-3% Mn requires at least 0.5% from the viewpoint of forming a high-quality insulating film by improving the oxide film, but if it exceeds 3%, a decrease in saturation magnetic flux density cannot be ignored. So Mn
The amount should be in the range 0.5-3%, preferably 0.5-2%. The addition of Mn also raises the crystallization temperature by about 5 to 15 ° C. Moreover, it has been confirmed that the crystallization temperature in such a composition range is higher than that in the peripheral composition range, and therefore it is preferable in terms of thermal stability.

【0019】かくして、鉄損W13/50 ≦0.25 W/kg 、磁
束密度B10≧1.5 Tを満足し、しかも絶縁被膜処理性に
も優れた鉄系非晶質合金が、低コストの下に得られるの
である。
Thus, the iron-based amorphous alloy satisfying the iron loss W 13/50 ≤0.25 W / kg and the magnetic flux density B 10 ≥1.5 T and having excellent insulating coating processability can be manufactured at a low cost. You can get it.

【0020】ところで、発明者らはさらに、磁気特性を
損なうことなしに、熱安定性の一層の向上を図るべく、
種々の添加元素を模索したところ、Niの複合添加が極め
て有効であることの知見を得た。ここに、Niの添加量は
熱安定性の面から少なくとも 0.2%が必要である。しか
しながら、この発明の非晶質合金はトランスを主用途と
することから高い飽和磁束密度が要求されるところ、Ni
の多量添加は磁束密度低下をもたらすので、上限を2%
とした。また、かかるNi添加によって、結晶化温度も約
5〜40℃上昇することが確認されている。
By the way, the inventors have further aimed to further improve the thermal stability without impairing the magnetic properties,
As a result of searching various additive elements, it was found that the composite addition of Ni is extremely effective. Here, the added amount of Ni must be at least 0.2% from the viewpoint of thermal stability. However, since the amorphous alloy of the present invention is mainly used for a transformer, a high saturation magnetic flux density is required.
Addition of a large amount of Cu causes a decrease in magnetic flux density.
And It has been confirmed that the addition of Ni also raises the crystallization temperature by about 5 to 40 ° C.

【0021】[0021]

【実施例】表1に示すような種々の成分組成に溶製した
合金溶湯を、高速で回転する水冷式のCu−Be合金ロール
表面に射出し、厚み:25μm 、幅:100 mmの非晶質合金
薄帯を作製した。ついで湿式法によって厚み約:0.5 μ
m のクロム酸塩−コロイド状シリカ系の絶縁被膜を被成
した後、 380℃、1時間の磁場中焼鈍を施した。絶縁被
膜被成処理後の液はじき性及び磁場中焼鈍後の磁気特性
について調べた結果を、表1に示す。なお一部の試料に
ついては結晶化温度TX も測定し、その結果を表1に併
記した。
[Examples] Molten alloy melts having various compositional compositions as shown in Table 1 were injected onto the surface of a water-cooled Cu-Be alloy roll rotating at a high speed, and an amorphous material having a thickness of 25 µm and a width of 100 mm was formed. A fine alloy ribbon was prepared. Then, by wet method, thickness: 0.5 μ
After depositing a chromate-colloidal silica-based insulating coating of m 3, annealing was performed in a magnetic field at 380 ° C. for 1 hour. Table 1 shows the results of the examination of the liquid repellency after the insulating film forming treatment and the magnetic properties after the annealing in the magnetic field. The crystallization temperature T X was also measured for some samples, and the results are also shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、この発明に従う
非晶質合金はいずれも、磁束密度が高く、かつ鉄損が低
く、また熱的安定性にも優れ、しかも絶縁被膜処理性も
良好であった。
As is clear from Table 1, each of the amorphous alloys according to the present invention has a high magnetic flux density, a low iron loss, an excellent thermal stability, and a good insulating coating processability. there were.

【0024】[0024]

【発明の効果】かくしてこの発明によれば、Fe−B−Si
3元系非晶質合金につき、高磁束密度及び低鉄損を維持
し、しかもB量の効果的な低減によって低コスト化を実
現できるだけでなく、熱安定性及び絶縁被膜処理性の大
幅な向上も併せて達成することができる。
Thus, according to the present invention, Fe-B-Si
The ternary amorphous alloy maintains high magnetic flux density and low iron loss, and can not only realize low cost by effectively reducing B content, but also greatly improve thermal stability and insulating coating processability. Can be achieved together.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のFe−B−Si3元系合金におけるMn添加量
と磁束密度との関係を示したグラフである。
FIG. 1 is a graph showing the relationship between the amount of added Mn and the magnetic flux density in a conventional Fe-B-Si ternary alloy.

【図2】従来のFe−B−Si3元系合金における鉄損の組
成依存性を示した図である。
FIG. 2 is a diagram showing the composition dependence of iron loss in a conventional Fe-B-Si ternary alloy.

【図3】この発明に従うFe81Mn1B9Si9組成の非晶質合金
薄帯の表面近傍における各元素の深さ方向分布状況を示
した図である。
FIG. 3 is a diagram showing the distribution of elements in the depth direction in the vicinity of the surface of an amorphous alloy ribbon having a composition of Fe 81 Mn 1 B 9 Si 9 according to the present invention.

【図4】Fe−B−Si3元系合金における飽和磁化の組成
依存性を示した図である。
FIG. 4 is a diagram showing composition dependence of saturation magnetization in a Fe-B-Si ternary alloy.

【図5】この発明に従うFe−B−Si3元系合金のMn添加
による鉄損の変化を示したグラフである。
FIG. 5 is a graph showing changes in iron loss due to the addition of Mn in the Fe—B—Si ternary alloy according to the present invention.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】化学式:FeX Y SiZ Mna ここでX:80超〜83 at % Y:6〜11 at % Z:8〜13 at % a:0.5 〜3 at % で示される組成になり、かつ鉄損W13/50 ≦0.25 W/kg
、磁束密度B10≧1.5 Tを満足することを特徴とする
磁束密度が高く、絶縁被膜処理性に優れた低鉄損鉄系非
晶質合金。
1. A chemical formula: Fe X BY Si Z Mn a where X: more than 80 to 83 at% Y: 6 to 11 at% Z: 8 to 13 at% a: 0.5 to 3 at% And iron loss W 13/50 ≤ 0.25 W / kg
A low iron loss iron-based amorphous alloy having a high magnetic flux density and excellent processability for insulating coating, characterized by satisfying a magnetic flux density B 10 ≧ 1.5 T.
【請求項2】化学式:FeX Y SiZ Mna Nib ここでX:80超〜83 at % Y:6〜11 at % Z:8〜13 at % a:0.5 〜3 at % b:0.2 〜2 at % で示される組成になり、かつ鉄損W13/50 ≦0.25 W/kg
、磁束密度B10≧1.5 Tを満足することを特徴とする
磁束密度が高く、絶縁被膜処理性に優れた低鉄損鉄系非
晶質合金。
2. Chemical formula: Fe X BY Si Z Mn a Ni b where X: more than 80 to 83 at% Y: 6 to 11 at% Z: 8 to 13 at% a: 0.5 to 3 at% b: The composition is represented by 0.2 to 2 at%, and the iron loss W 13/50 ≤ 0.25 W / kg
A low iron loss iron-based amorphous alloy having a high magnetic flux density and excellent processability for insulating coating, characterized by satisfying a magnetic flux density B 10 ≧ 1.5 T.
JP05227193A 1993-03-12 1993-03-12 Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability Expired - Lifetime JP3366681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05227193A JP3366681B2 (en) 1993-03-12 1993-03-12 Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05227193A JP3366681B2 (en) 1993-03-12 1993-03-12 Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability

Publications (2)

Publication Number Publication Date
JPH06264197A true JPH06264197A (en) 1994-09-20
JP3366681B2 JP3366681B2 (en) 2003-01-14

Family

ID=12910120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05227193A Expired - Lifetime JP3366681B2 (en) 1993-03-12 1993-03-12 Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability

Country Status (1)

Country Link
JP (1) JP3366681B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09143640A (en) * 1995-11-21 1997-06-03 Kawasaki Steel Corp Wide amorphous alloy foil for power transformer iron core
US6416879B1 (en) 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
KR100358592B1 (en) * 1994-11-23 2003-01-29 가와사끼 세이데쓰 가부시키가이샤 Iron amorphous alloy with excellent magnetic properties and excellent fracture resistance and its manufacturing method
CN102909326A (en) * 2012-10-24 2013-02-06 安泰科技股份有限公司 Amorphous alloy strip with composition gradient and manufacturing method thereof
JP6294533B1 (en) * 2017-04-03 2018-03-14 住友電気工業株式会社 Manufacturing method of iron boride material and iron boride thin film material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100358592B1 (en) * 1994-11-23 2003-01-29 가와사끼 세이데쓰 가부시키가이샤 Iron amorphous alloy with excellent magnetic properties and excellent fracture resistance and its manufacturing method
JPH09143640A (en) * 1995-11-21 1997-06-03 Kawasaki Steel Corp Wide amorphous alloy foil for power transformer iron core
US6416879B1 (en) 2000-11-27 2002-07-09 Nippon Steel Corporation Fe-based amorphous alloy thin strip and core produced using the same
CN102909326A (en) * 2012-10-24 2013-02-06 安泰科技股份有限公司 Amorphous alloy strip with composition gradient and manufacturing method thereof
JP6294533B1 (en) * 2017-04-03 2018-03-14 住友電気工業株式会社 Manufacturing method of iron boride material and iron boride thin film material

Also Published As

Publication number Publication date
JP3366681B2 (en) 2003-01-14

Similar Documents

Publication Publication Date Title
JP4402960B2 (en) Fe-based amorphous alloy ribbon with excellent soft magnetic properties, iron core produced using the same, and master alloy for producing rapidly solidified ribbon used therefor
US7935196B2 (en) Soft magnetic ribbon, magnetic core, magnetic part and process for producing soft magnetic ribbon
JP2013060665A (en) Soft magnetic alloy, and magnetic component manufactured using the same
KR20090113314A (en) Iron-based soft magnetic alloy, thin ribbon of amorphous alloy, and magnetic part
KR20020041292A (en) Fe-BASED AMORPHOUS ALLOY THIN STRIP AND CORE PRODUCED USING THE SAME
JP5445891B2 (en) Soft magnetic ribbon, magnetic core, and magnetic parts
JP2007270271A (en) Soft magnetic alloy, its manufacturing method, and magnetic component
JP2008231534A5 (en)
JP3342767B2 (en) Fe-based soft magnetic alloy
JPH07331396A (en) Ferrous amorphous alloy excellent in magnetic property and embrittlement resistance and its production
JP3366681B2 (en) Low iron loss iron-based amorphous alloy with high magnetic flux density and excellent insulation coating processability
JP3434844B2 (en) Low iron loss, high magnetic flux density amorphous alloy
JP5645108B2 (en) Amorphous alloy ribbon and magnetic component having amorphous alloy ribbon
US20200291507A1 (en) Soft magnetic alloy and magnetic component
JP3124690B2 (en) Iron-based amorphous alloy excellent in magnetic properties and embrittlement resistance and method for producing the same
US4362581A (en) Magnetic alloy
JPS6335688B2 (en)
JP3500062B2 (en) Fe-based amorphous alloy ribbon with ultra-thin oxide layer
JP3208051B2 (en) Iron-based amorphous alloy with excellent thermal stability
JPH0742559B2 (en) Amorphous alloy ribbon for magnetic core with excellent space factor and method for producing the same
JPH08283919A (en) Iron-base amorphous alloy foil and its production
JP2908723B2 (en) Iron-based amorphous alloy ribbon for winding transformer
JP3233289B2 (en) Ultra-microcrystalline alloy ribbon and powder and magnetic core using the same
JPH0154422B2 (en)
JP4795900B2 (en) Fe-Ni permalloy alloy

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071101

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081101

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20091101

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101101

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111101

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 10

Free format text: PAYMENT UNTIL: 20121101

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20131101

EXPY Cancellation because of completion of term