JPH0626309A - Oil absorbing type heat cycle - Google Patents

Oil absorbing type heat cycle

Info

Publication number
JPH0626309A
JPH0626309A JP18140692A JP18140692A JPH0626309A JP H0626309 A JPH0626309 A JP H0626309A JP 18140692 A JP18140692 A JP 18140692A JP 18140692 A JP18140692 A JP 18140692A JP H0626309 A JPH0626309 A JP H0626309A
Authority
JP
Japan
Prior art keywords
boiling point
oil
condenser
medium
low boiling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18140692A
Other languages
Japanese (ja)
Other versions
JP3169441B2 (en
Inventor
Hiroyuki Sumitomo
博之 住友
Akira Horiguchi
章 堀口
Tatsuo Yamazaki
起男 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hisaka Works Ltd
Original Assignee
Hisaka Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisaka Works Ltd filed Critical Hisaka Works Ltd
Priority to JP18140692A priority Critical patent/JP3169441B2/en
Publication of JPH0626309A publication Critical patent/JPH0626309A/en
Application granted granted Critical
Publication of JP3169441B2 publication Critical patent/JP3169441B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To lower the vapor concentration of a low boiling point element accumulated in a condenser so as to improve the heat transfer performance of the condenser in a heat cycle using a mixed medium, formed of plural non- azeotropic elements, as an operating fluid. CONSTITUTION:Oil with solubility to a low boiling point element and with insolubility to a high boiling point element is fed into the medium circulating system 10 of a rotating machine (expansion machine) 4 forming a cycle. The low boiling point element is thereby absorbed into the oil to lower the vapor concentration of the low boiling point element flowing into a condenser 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、非共沸の2以上の成
分からなる混合媒体を作動流体として用いる熱サイクル
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a thermal cycle using a mixed medium composed of two or more nonazeotropic components as a working fluid.

【0002】[0002]

【従来の技術】非共沸の混合媒体を用いた熱回サイクル
の例としてヒートポンプやバイナリー発電システムが挙
げられる。図8に示されるバイナリー発電システムにつ
いて述べると、蒸発器(2)、蒸気機関(4)、凝縮器
(6)および媒体ポンプ(8)が直列に接続されて閉じ
た媒体循環系(10)を構成している。そして、その媒体
循環系(10)内を循環する作動流体は、まず蒸発器
(2)で熱源流体から熱を奪って蒸発し、発生した蒸気
は蒸気機関(4)に供給される。この蒸気は蒸気機関
(4)内で膨張して発電機(12)を駆動する仕事をす
る。蒸気機関(4)から排出された蒸気は凝縮器(6)
で冷却水に熱を奪われて凝縮する。凝縮液は循環ポンプ
(8)で再び蒸発器(2)に送られる。
2. Description of the Related Art A heat pump and a binary power generation system are examples of a thermal cycle using a non-azeotropic mixed medium. Referring to the binary power generation system shown in FIG. 8, the evaporator (2), the steam engine (4), the condenser (6) and the medium pump (8) are connected in series to form a closed medium circulation system (10). I am configuring. The working fluid circulating in the medium circulation system (10) first takes heat from the heat source fluid in the evaporator (2) to be evaporated, and the generated steam is supplied to the steam engine (4). This steam expands in the steam engine (4) and works to drive the generator (12). The steam discharged from the steam engine (4) is condensed by the condenser (6).
The heat is taken away by the cooling water and it condenses. The condensate is sent to the evaporator (2) again by the circulation pump (8).

【0003】[0003]

【発明が解決しようとする課題】混合媒体を作動流体と
して用いる場合、凝縮器(6)では高沸点成分蒸気が先
に凝縮し始めることから伝熱面近傍で低沸点成分蒸気濃
度が高くなり、熱移動と物質移動の妨げとなる。このた
め、凝縮器の伝熱性能が悪くなってシステム効率を低下
させるという問題がある。
When a mixed medium is used as the working fluid, the high boiling point component vapor starts to condense in the condenser (6) first, and the low boiling point component vapor concentration increases near the heat transfer surface. Interferes with heat and mass transfer. Therefore, there is a problem that the heat transfer performance of the condenser is deteriorated and the system efficiency is reduced.

【0004】そこで、この発明の目的は、非共沸の2以
上の成分からなる混合媒体を作動流体として用いる熱サ
イクルにおいて、凝縮器に蓄積される低沸点成分蒸気濃
度を低くして凝縮器の伝熱性能を向上させることにあ
る。
Therefore, an object of the present invention is to reduce the concentration of the low boiling point component vapor accumulated in the condenser in a heat cycle using a mixed medium composed of two or more non-azeotropic components as a working fluid, and It is to improve the heat transfer performance.

【0005】[0005]

【課題を解決するための手段】この発明は、サイクルを
構成する回転機の媒体循環系内に、低沸点成分に対して
溶解性を持ち高沸点成分に対して不溶性の油を給油する
ことを特徴とする。
SUMMARY OF THE INVENTION According to the present invention, an oil which is soluble in a low boiling point component and insoluble in a high boiling point component is supplied to a medium circulating system of a rotary machine constituting a cycle. Characterize.

【0006】[0006]

【作用】サイクルを構成する機器のうち給油を必要とす
る回転機への給油油種を上述のように選択することによ
って、潤滑油に低沸点成分が吸収され、凝縮器に多量の
低沸点成分が流入せず、したがって、凝縮器流入蒸気低
沸点成分濃度が下がり凝縮器に蓄積される低沸点成分濃
度が低くなる。
By selecting the type of lubricating oil to be supplied to the rotating machine that requires lubrication among the devices constituting the cycle as described above, the low boiling point component is absorbed in the lubricating oil and the large amount of low boiling point component is absorbed in the condenser. Does not flow in, and therefore the low-boiling-point component concentration of vapor entering the condenser decreases and the low-boiling-point component concentration accumulated in the condenser becomes low.

【0007】熱サイクルの中で回転機は必ず凝縮器の前
に位置する。回転機では、軸受、メカニカルシール冷
却、潤滑あるいはシール等の目的で給油が行われるが、
この油が媒体循環系内に流れ込む場合、低沸点成分に対
しては溶解性を持ち、高沸点成分に対しては不溶性であ
る種類の油を用いることにより、回転機を出た後のオイ
ルセパレータでは低沸点成分と油が混合し、油から分離
された蒸気は低沸点成分濃度の低いものとなる。この蒸
気はそのまま凝縮器で液化するが、その際、低沸点成分
蒸気濃度が低いため凝縮器伝熱面における熱移動と物質
移動の妨げとなる低沸点成分蒸気の濃度も低く、凝縮器
伝熱性能が改善される。
In the heat cycle, the rotating machine is always located in front of the condenser. In rotating machines, lubrication is performed for the purpose of bearing cooling, mechanical seal cooling, lubrication or sealing, etc.
When this oil flows into the medium circulation system, by using a type of oil that is soluble in low boiling point components and insoluble in high boiling point components, the oil separator after leaving the rotary machine Then, the low boiling point component and the oil are mixed, and the vapor separated from the oil has a low low boiling point component concentration. This vapor is liquefied in the condenser as it is, but at that time, the concentration of the low boiling point component vapor is low, so the concentration of the low boiling point component vapor that hinders heat transfer and mass transfer on the heat transfer surface of the condenser is also low, and Performance is improved.

【0008】一方、油に吸収されて混合した低沸点成分
は、一部が蒸発器に送られ、そこで加熱されて油から分
離する。したがって、蒸発器では低沸点成分蒸気濃度が
さらに高まり、蒸発圧力が上昇する。蒸発器出口で未蒸
発分として残った油は、ミストセパレータで比重分離に
より高濃度高沸点成分液から分離されて油循環系に戻さ
れる。
On the other hand, a part of the low boiling point component absorbed and mixed in the oil is sent to the evaporator, where it is heated and separated from the oil. Therefore, in the evaporator, the vapor concentration of the low boiling point component is further increased, and the evaporation pressure is increased. The oil remaining at the outlet of the evaporator as the non-evaporated portion is separated from the high-concentration high-boiling point component liquid by specific gravity separation in the mist separator and returned to the oil circulation system.

【0009】[0009]

【実施例】まず、図1に示されるバイナリーサイクルに
適用した実施例について説明すると、蒸発器(2)、膨
張機(4)、凝縮器(6)および媒体ポンプ(8)が直
列に接続されて閉じた媒体循環系(10)を構成してい
る。膨張機(4)は発電機のような負荷(12)と連結さ
れている。回転機に該当する膨張機(4)としては、蒸
気タービンやスクリュウエキスパンダ等の蒸気機関が含
まれる。蒸発器(2)と膨張機(4)の間にミストセパ
レータ(3)を設置し、ミストセパレータ(3)の気相
は膨張機(4)に、液相は蒸発器(2)の媒体通路入口
側に接続する。一方、膨張機(4)と凝縮器(6)との
間にオイルセパレータ(5)を設置し、オイルセパレー
タ(5)の気相を凝縮器(6)の媒体通路入口に接続
し、液相はオイルポンプ(14)に接続する。オイルポン
プ(14)の吐出側にはオイル加熱器(16)を設け、オイ
ル加熱器(16)の出側を分岐させて一方は弁(V1)を介
して膨張機(4)の内部に媒体と直接接するようにして
給油し、他方は弁(V2)を介して蒸発器(2)の媒体通
路入口側に接続する。なお、図示例の場合、膨張機
(4)への給油を、膨張機入り口側および膨張機内部の
3箇所で行なっている。
EXAMPLE First, an example applied to the binary cycle shown in FIG. 1 will be described. An evaporator (2), an expander (4), a condenser (6) and a medium pump (8) were connected in series. Constitutes a closed medium circulation system (10). The expander (4) is connected to a load (12) such as a generator. The expander (4) corresponding to a rotating machine includes a steam engine such as a steam turbine or a screw expander. A mist separator (3) is installed between the evaporator (2) and the expander (4), the gas phase of the mist separator (3) is in the expander (4), and the liquid phase is the medium passage of the evaporator (2). Connect to the entrance side. On the other hand, an oil separator (5) is installed between the expander (4) and the condenser (6), the gas phase of the oil separator (5) is connected to the medium passage inlet of the condenser (6), and the liquid phase is connected. Is connected to the oil pump (14). An oil heater (16) is provided on the discharge side of the oil pump (14), the outlet side of the oil heater (16) is branched, and one of them is placed inside the expander (4) via a valve (V 1 ). Oil is supplied so as to be in direct contact with the medium, and the other is connected to the medium passage inlet side of the evaporator (2) via a valve (V 2 ). In the illustrated example, oil is supplied to the expander (4) at three positions on the expander inlet side and inside the expander.

【0010】図2に示す変形例は、図1の実施例におい
てさらに吸収器(18)を設けたものである。この場合、
蒸発器(2)の出側のミストセパレータ(3)の気相を
膨張機(4)に接続し、液相を吸収器(18)の媒体通路
入口側に接続する。凝縮器(6)の媒体通路出口を凝縮
器用ドレンポット(22)に接続し、凝縮器用ドレンポッ
ト(22)の気相を吸収器(18)の媒体通路入口側に接続
するとともに液相を媒体ポンプ(8)に接続する。ま
た、吸収器(18)の媒体通路出口を吸収器用ドレンポッ
ト(24)に接続するとともに液相を媒体ポンプ(8)に
接続する。このようにすれば、蒸発器(2)の媒体通路
出口から低沸点成分濃度の低い蒸発残液が吸収器(18)
の媒体通路に導かれるため、この蒸発残液に凝縮器
(6)からの未凝縮蒸気を吸収させ、凝縮器(6)から
低沸点成分蒸気を排出することができる。したがって、
凝縮器(6)からの低沸点成分蒸気の排出が一層促進さ
れる。
In the modification shown in FIG. 2, an absorber (18) is further provided in the embodiment shown in FIG. in this case,
The vapor phase of the mist separator (3) on the outlet side of the evaporator (2) is connected to the expander (4), and the liquid phase is connected to the medium passage inlet side of the absorber (18). The medium passage outlet of the condenser (6) is connected to the condenser drain pot (22), the vapor phase of the condenser drain pot (22) is connected to the medium passage inlet side of the absorber (18), and the liquid phase is used as the medium. Connect to pump (8). Further, the medium passage outlet of the absorber (18) is connected to the absorber drain pot (24) and the liquid phase is connected to the medium pump (8). By doing so, the evaporation residual liquid having a low low boiling point component concentration is discharged from the medium passage outlet of the evaporator (2) to the absorber (18).
Since it is introduced to the medium passage of the above, the uncondensed vapor from the condenser (6) can be absorbed by this evaporation residual liquid, and the low boiling point component vapor can be discharged from the condenser (6). Therefore,
The discharge of the low boiling point component vapor from the condenser (6) is further promoted.

【0011】図3に示す冷凍サイクルに適用した実施例
の場合、媒体循環系(10’)は蒸発器(2)、圧縮機
(4’)、凝縮器(6)、膨張弁(9)で構成されてお
り、ミストセパレータ(3)の液相は、ポンプ(26)を
経て、吸収器(18)の媒体通路入口に接続されるととも
に、オイルセパレータ(5)の気相に接続されている。
この場合圧縮機(4’)が回転機に該当する。油系は、
オイルセパレータ(5)の液相から導かれた管路(28)
が途中で分岐し、一方は弁(V3)を介して圧縮機
(4’)の内部に媒体と直接接するようにして給油し、
他方は弁(V4)を介して膨張弁(9)と蒸発器(2)の
間に接続されている。
In the case of the embodiment applied to the refrigeration cycle shown in FIG. 3, the medium circulation system (10 ') includes an evaporator (2), a compressor (4'), a condenser (6) and an expansion valve (9). The liquid phase of the mist separator (3) is connected to the medium passage inlet of the absorber (18) via the pump (26) and to the gas phase of the oil separator (5). .
In this case, the compressor (4 ') corresponds to a rotating machine. The oil system is
Pipe line (28) led from the liquid phase of the oil separator (5)
There branched midway, one refueled in the contact inside directly with the medium of the valve (V 3) a through the compressor (4 '),
The other is connected via a valve (V 4 ) between the expansion valve (9) and the evaporator (2).

【0012】蒸発器(2)出口で高濃度低沸点媒体蒸気
が発生するが、その濃度は膨張機(4)または圧縮機
(4’)出口まで変化しない。油に対する各成分の媒体
溶解度は、温度が一定であることから温度−圧力−溶解
度曲線による各成分毎の特性と圧力によって決定され
る。ここで、圧力は分圧で考えるので、濃度が高いほど
分圧も高くなり、溶解度も高くなる。したがって、油種
の選定如何によっては低沸点成分を主体に油が吸収する
ことになる。この低沸点成分蒸気を吸収した油を蒸発器
(2)に送り、更に高濃度の低沸点媒体蒸気を発生させ
るのである。一方、蒸発器(2)では出口で高濃度の高
沸点媒体液が油と混合されて存在している。これを膨張
機(4)または圧縮機(4’)出口に送り減圧すれば多
くの高沸点媒体が油中から飛び出し、凝縮器(6)へ導
かれる。これにより凝縮器(6)に流入する蒸気の高沸
点媒体濃度が高くなるので、同一温度で凝縮が終了する
とすれば凝縮圧力は低下する。この凝縮圧力の低下によ
り、低沸点成分蒸気の排出による凝縮器伝熱性能の向上
と相俟って、システム効率が向上する。
High-concentration low-boiling-point medium vapor is generated at the outlet of the evaporator (2), but its concentration does not change up to the outlet of the expander (4) or the compressor (4 '). The medium solubility of each component in oil is determined by the characteristics and pressure of each component based on the temperature-pressure-solubility curve because the temperature is constant. Here, since the pressure is considered as a partial pressure, the higher the concentration, the higher the partial pressure and the higher the solubility. Therefore, depending on the selection of the oil type, the oil mainly absorbs the low boiling point component. The oil having absorbed the low boiling point component vapor is sent to the evaporator (2) to generate a high concentration low boiling point medium vapor. On the other hand, in the evaporator (2), a high-concentration high-boiling-point liquid medium is present mixed with oil at the outlet. When this is sent to the outlet of the expander (4) or the compressor (4 ′) to reduce the pressure, many high-boiling mediums jump out of the oil and are guided to the condenser (6). As a result, the concentration of the high-boiling-point medium in the vapor flowing into the condenser (6) increases, so that the condensation pressure decreases if the condensation ends at the same temperature. This decrease in the condensing pressure improves the system heat transfer efficiency in combination with the improvement of the heat transfer performance of the condenser by discharging the low boiling point component vapor.

【0013】特定の媒体とそれに対する油の例示として
図4の臨界溶解度曲線について説明すると、一つの容器
の中に油と媒体を入れたときに、ある温度で二層に分離
しているものとし、それぞれの層の媒体濃度を示したも
のが臨界溶解度曲線である。例えば、バーレルフリーズ
P−380(商品名)と冷媒R−22についてみると、
矢印で示すように温度50℃のときは媒体濃度98%の
層(下層)と37%の層(上層)が存在する。なお、図
5のように試作油8ZF017と冷媒R−123の場合
曲線が一つしかないというのは、下層がほぼ100%と
いうことを表している。バーレルフリーズと冷媒R−2
2との臨界溶解度曲線図を示す図6において、曲線より
上では∞の溶解度があり、液状の媒体があれば∞に解け
合うことを示している。図7の温度−圧力−溶解度曲線
は、一つの容器の中に油(試作油8ZF017)と媒体
(R−123)を入れたときに、ある温度(℃)、圧力
(Kg/cm2・G)で油中に存在する冷媒の濃度(wt.
%)を示したもので、蒸気層と液相の平衡状態を示して
いる。
As an example of the specific medium and the oil corresponding thereto, the critical solubility curve of FIG. 4 will be described. It is assumed that when the oil and the medium are put in one container, they are separated into two layers at a certain temperature. The critical solubility curve shows the medium concentration of each layer. For example, looking at Barrel Freeze P-380 (trade name) and Refrigerant R-22,
As shown by the arrow, when the temperature is 50 ° C., there are a layer having a medium concentration of 98% (lower layer) and a layer having a medium concentration of 37% (upper layer). The fact that there is only one curve for the prototype oil 8ZF017 and the refrigerant R-123 as shown in FIG. 5 means that the lower layer is almost 100%. Barrel Freeze and Refrigerant R-2
In FIG. 6 showing the critical solubility curve diagram with No. 2, there is a solubility of ∞ above the curve, and it is shown that if there is a liquid medium, it will dissolve into ∞. The temperature-pressure-solubility curve in Fig. 7 shows that when oil (prototype oil 8ZF017) and medium (R-123) were put in one container, a certain temperature (° C) and pressure (Kg / cm 2 · G) were measured. ), The concentration of the refrigerant present in the oil (wt.
%), Indicating the equilibrium state of the vapor phase and the liquid phase.

【0014】[0014]

【発明の効果】この発明は、非共沸の2以上の成分から
なる混合媒体を作動流体として用いる熱サイクルにおい
て、サイクルを構成する回転機の媒体循環系内に給油す
る油を、低沸点成分に対して溶解性を持ち、高沸点成分
に対して不溶性のものとしたから、潤滑油に低沸点成分
が吸収され、凝縮器に多量の低沸点成分が流入せず、し
たがって、凝縮器流入蒸気低沸点成分濃度が下がり凝縮
器に蓄積される低沸点成分濃度が低くなる。その結果、
伝熱面近傍における熱移動と物質移動の妨げとなる要素
が減少して凝縮器伝熱性能が向上し、システム効率が向
上する。
Industrial Applicability According to the present invention, in a heat cycle using a mixed medium composed of two or more non-azeotropic components as a working fluid, the oil to be fed into the medium circulation system of the rotary machine constituting the cycle is a low boiling point component. Since it has a high solubility and is insoluble in the high boiling point component, the low boiling point component is absorbed in the lubricating oil and a large amount of the low boiling point component does not flow into the condenser. The low boiling point component concentration decreases and the low boiling point component concentration accumulated in the condenser decreases. as a result,
The elements that hinder the heat transfer and mass transfer near the heat transfer surface are reduced, the heat transfer performance of the condenser is improved, and the system efficiency is improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】バイナリーサイクルに適用した実施例を示すブ
ロック線図である。
FIG. 1 is a block diagram showing an embodiment applied to a binary cycle.

【図2】図1の実施例の変形例を示すブロック線図であ
る。
FIG. 2 is a block diagram showing a modified example of the embodiment of FIG.

【図3】冷凍サイクルに適用した実施例を示すブロック
線図である。
FIG. 3 is a block diagram showing an embodiment applied to a refrigeration cycle.

【図4】バーレルフリーズP−380とR−22との臨
界溶解度曲線図である。
FIG. 4 is a diagram of critical solubility curves of Barrel Freeze P-380 and R-22.

【図5】バーレルフリーズP−220とR−123との
臨界溶解度曲線図である。
FIG. 5 is a diagram of critical solubility curves of Barrel Freeze P-220 and R-123.

【図6】バーレルフリーズP−220とR−123との
温度−圧力−溶解度曲線図である。
FIG. 6 is a temperature-pressure-solubility curve diagram of Barrel Freeze P-220 and R-123.

【図7】バーレルフリーズと冷媒R−22との臨界溶解
度曲線図である。
FIG. 7 is a diagram of critical solubility curves of Barrel Freeze and refrigerant R-22.

【図8】バイナリー発電システムのブロック線図であ
る。
FIG. 8 is a block diagram of a binary power generation system.

【符号の説明】[Explanation of symbols]

4 膨張機(回転機) 4’ 圧縮機(回転機) 6 凝縮器 4 Expander (rotating machine) 4'Compressor (rotating machine) 6 Condenser

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 非共沸の2以上の成分からなる混合媒体
を作動流体として用いる熱サイクルにおいて、サイクル
を構成する回転機の媒体循環系内に、低沸点成分に対し
て溶解性を持ち高沸点成分に対して不溶性の油を給油す
ることを特徴とする油吸収型熱サイクル。
1. In a thermal cycle in which a mixed medium composed of two or more non-azeotropic components is used as a working fluid, the medium circulating system of a rotating machine constituting the cycle has high solubility and high solubility for low boiling point components. An oil absorption type heat cycle characterized by supplying oil insoluble to a boiling point component.
JP18140692A 1992-07-09 1992-07-09 Oil absorption type heat cycle Expired - Fee Related JP3169441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18140692A JP3169441B2 (en) 1992-07-09 1992-07-09 Oil absorption type heat cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18140692A JP3169441B2 (en) 1992-07-09 1992-07-09 Oil absorption type heat cycle

Publications (2)

Publication Number Publication Date
JPH0626309A true JPH0626309A (en) 1994-02-01
JP3169441B2 JP3169441B2 (en) 2001-05-28

Family

ID=16100207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18140692A Expired - Fee Related JP3169441B2 (en) 1992-07-09 1992-07-09 Oil absorption type heat cycle

Country Status (1)

Country Link
JP (1) JP3169441B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145100A (en) * 2008-02-25 2008-06-26 Daikin Ind Ltd Refrigeration unit
JP2013532250A (en) * 2010-06-01 2013-08-15 エム アー エヌ トラック アンド バス アクチエンゲゼルシヤフト Method and apparatus for operating a steam cycle process with a lubricated expander
WO2014007148A1 (en) * 2012-07-02 2014-01-09 株式会社 豊田自動織機 Rankine cycle device
JP2014231820A (en) * 2013-05-30 2014-12-11 株式会社神戸製鋼所 Binary driving device
JP2016164379A (en) * 2015-03-06 2016-09-08 ヤンマー株式会社 Power generation device
JP2019511663A (en) * 2016-02-23 2019-04-25 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Gas expander and method of expanding gas

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145100A (en) * 2008-02-25 2008-06-26 Daikin Ind Ltd Refrigeration unit
JP2013532250A (en) * 2010-06-01 2013-08-15 エム アー エヌ トラック アンド バス アクチエンゲゼルシヤフト Method and apparatus for operating a steam cycle process with a lubricated expander
US9382816B2 (en) 2010-06-01 2016-07-05 Man Truck & Bus Ag Method and apparatus for operating a steam cycle process with a lubricated expander
WO2014007148A1 (en) * 2012-07-02 2014-01-09 株式会社 豊田自動織機 Rankine cycle device
JP2014231820A (en) * 2013-05-30 2014-12-11 株式会社神戸製鋼所 Binary driving device
JP2016164379A (en) * 2015-03-06 2016-09-08 ヤンマー株式会社 Power generation device
JP2019511663A (en) * 2016-02-23 2019-04-25 アトラス コプコ エアーパワー, ナームローゼ フェンノートシャップATLAS COPCO AIRPOWER, naamloze vennootschap Gas expander and method of expanding gas

Also Published As

Publication number Publication date
JP3169441B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
KR100623105B1 (en) Oil recovery and lubrication system for screw compressor refrigeration machine
JP4857335B2 (en) pump
RU2559656C2 (en) System and method of greasing of volumetric expansion machines
EP0286565A2 (en) Power cycle working with a mixture of substances
US6052997A (en) Reheat cycle for a sub-ambient turbine system
JPH0626309A (en) Oil absorbing type heat cycle
JP4301666B2 (en) Waste heat absorption refrigerator
JP2513936B2 (en) Low boiling medium system
JP2513939B2 (en) Low boiling medium system
DK161482B (en) HEAT PUMP
JPH04116346A (en) Condenser
JP2513937B2 (en) Non-azeotrope condenser
JP2004301345A (en) Ammonia absorption refrigerator
JP2513935B2 (en) Low boiling medium system
JP2513938B2 (en) Low boiling medium system
JP2551703B2 (en) Circulating method of working fluid in low boiling medium system
US1961785A (en) Heat cycle
US606326A (en) Absorption refrige-rating-machine
JPH08100608A (en) Mixed medium binary generating system
JP2520987B2 (en) Evaporator for non-azeotropic mixture
JP2513940B2 (en) Low boiling medium system
SU1702124A1 (en) Sorption refrigerating machine and its operation
RU2008577C1 (en) Refrigerating plant
JP4557468B2 (en) Absorption refrigerator
JPS6022253B2 (en) absorption refrigerator

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010206

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080316

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090316

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100316

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110316

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees