JPH06262043A - Preparation of hollow fiber membrane type fluid treating apparatus - Google Patents

Preparation of hollow fiber membrane type fluid treating apparatus

Info

Publication number
JPH06262043A
JPH06262043A JP16199291A JP16199291A JPH06262043A JP H06262043 A JPH06262043 A JP H06262043A JP 16199291 A JP16199291 A JP 16199291A JP 16199291 A JP16199291 A JP 16199291A JP H06262043 A JPH06262043 A JP H06262043A
Authority
JP
Japan
Prior art keywords
resin
hollow fiber
fiber membrane
liquid surface
partition wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16199291A
Other languages
Japanese (ja)
Inventor
Hirotomo Morita
浩智 森田
Masatomi Sasaki
正富 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP16199291A priority Critical patent/JPH06262043A/en
Publication of JPH06262043A publication Critical patent/JPH06262043A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a liq. flow smoothly along the curved face of a partition wall and to suppress unnecessary turbulent flow when the liq. flows into the opening or the end part or each hollow fiber membrane by a method wherein the partition wall of the face being brought into contact with blood is smoothly formed and the partition wall face is formed into a curved face. CONSTITUTION:A bundle 3 of hollow fiber membrane consisting of a lot of hollow fiber membranes 2 is placed in a housing 1 and under this condition, the end of the bundle 3 is brought into contact with the liq. surface of the first liq. resin 11 or is immersed in the liq. Then, the liq. surface of the first liq. resin 11 is formed into a curved face and after this resin is cured, the second resin 12 for forming a partition wall is poured into between each end parts of the hollow fiber membranes 2 and between the end part and the housing 1 and it is cured. A partition wall 4 is formed along the first resin 11 and the end part of the hollow fiber bundle 3 is fixed on the housing 1 and the cured first resin is removed from the partition wall 4. Blood flowing along the end face of the partition wall becomes a smooth flow.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えば人工腎臓、人工
肺等の中空糸膜型人工臓器やドナーフェレーシス等とし
て用いられる中空糸膜型流体処理装置の製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a hollow fiber membrane type fluid treatment device used as a hollow fiber membrane type artificial organ such as an artificial kidney or an artificial lung, or donor pheresis.

【0002】[0002]

【従来の技術】従来、中空糸膜型流体処理装置、例えば
人工腎臓は、血液流入部および血液流出部がそれぞれ設
けられたハウジング内に、多数の中空糸膜からなる中空
糸膜束を収容してなる。そしてその端部の各中空糸膜間
および中空糸膜とハウジングとの間にウレタン系樹脂等
の隔壁形成用樹脂(ポッティング剤)を注入し、これを
固化させてなる隔壁により中空糸膜束の端部をハウジン
グに固定するとともに、隔壁を中空糸膜束の端部と一緒
に、刃物等を用いて機械的に切断して各中空糸膜の端部
を開口させていた。ゆえに、血液流入部から流入した血
液が各中空糸膜の端部の開口より流入し、各中空糸膜内
を通過して血液流出部に至るようになっている。
2. Description of the Related Art Conventionally, a hollow fiber membrane type fluid treatment device, for example, an artificial kidney, contains a hollow fiber membrane bundle composed of a large number of hollow fiber membranes in a housing provided with a blood inflow portion and a blood outflow portion. It becomes. Then, a partition wall forming resin (potting agent) such as urethane resin is injected between the hollow fiber membranes at the ends and between the hollow fiber membranes and the housing, and the partition walls formed by solidifying the resin are used to form the hollow fiber membrane bundle. The end portion is fixed to the housing, and the partition wall, together with the end portion of the hollow fiber membrane bundle, is mechanically cut using a blade or the like to open the end portion of each hollow fiber membrane. Therefore, the blood that has flowed in from the blood inflow portion flows in from the opening at the end of each hollow fiber membrane, passes through each hollow fiber membrane, and reaches the blood outflow portion.

【0003】[0003]

【発明が解決しようとする課題】このような人工腎臓に
あっては、血液が血液流入部から各中空糸膜の端部の開
口に流入する際に、中空糸膜内に円滑に流入せずに、血
液に乱流が発生し、また隔壁の血液接触面では血栓が形
成され易い等の問題があった。
In such an artificial kidney, when the blood flows from the blood inflow part into the openings at the end of each hollow fiber membrane, it does not flow smoothly into the hollow fiber membrane. In addition, there is a problem that turbulence is generated in blood, and a thrombus is easily formed on the blood contact surface of the partition wall.

【0004】そこで、上記問題は隔壁の端面が刃物等を
用いた機械的な切断によって、隔壁端面全体、特に中空
糸膜の開口に隣接する隔壁の端面が微細な凹凸を有する
粗面となり、この粗面が隔壁の端面に沿って流れる血液
の円滑な流れを阻害することに起因していることを見い
だした。
Therefore, the problem is that the end face of the partition wall becomes a rough surface having fine irregularities on the whole end face of the partition wall, particularly the end face of the partition wall adjacent to the opening of the hollow fiber membrane, by mechanical cutting using a knife or the like. It was found that the rough surface is due to obstructing the smooth flow of blood flowing along the end surface of the partition wall.

【0005】本発明はかかる問題点に鑑みてなされたも
ので、血液と接触する面の隔壁を滑らかに形成し、且つ
中空糸膜の開口への流れを円滑にするように前記隔壁面
を湾曲面に形成した中空糸膜型流体処理装置の製造方法
を提供することを目的とする。
The present invention has been made in view of the above problems, and forms a smooth partition wall on the surface that comes into contact with blood, and curves the partition surface so as to smooth the flow to the opening of the hollow fiber membrane. An object is to provide a method for manufacturing a hollow fiber membrane type fluid treatment device formed on a surface.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るために、本発明は、ハウジング内に、多数の中空糸膜
からなる中空糸膜束を収容する工程と、前記中空糸膜束
の端部を液状の第1の樹脂の液表面に接触させるか、あ
るいは液中に浸漬する工程と、前記第1の樹脂の液面を
湾曲状に形成する工程と、前記第1の樹脂を固化させる
工程と、前記中空糸膜の各端部同士の間および中空糸膜
の各端部と前記ハウジングとの間に隔壁形成用の第2の
樹脂を注入して固化させ、前記固化した第1の樹脂に沿
って隔壁を形成するとともに前記中空糸膜束の端部を前
記ハウジングに固定する工程と、前記固化した第1の樹
脂を、前記隔壁から取り除く工程とからなる中空糸膜型
流体処理装置の製造方法によって構成した。
In order to achieve such an object, the present invention comprises a step of accommodating a hollow fiber membrane bundle composed of a large number of hollow fiber membranes in a housing, and the hollow fiber membrane bundle. A step of bringing the end portion into contact with the liquid surface of the liquid first resin or immersing it in the liquid; a step of forming the liquid surface of the first resin into a curved shape; and a step of solidifying the first resin. And a second partition forming resin is injected between the respective ends of the hollow fiber membrane and between the respective ends of the hollow fiber membrane and the housing to solidify the solidified first resin. Hollow fiber membrane type fluid treatment comprising a step of forming a partition wall along the resin and fixing an end portion of the hollow fiber membrane bundle to the housing, and a step of removing the solidified first resin from the partition wall. It is configured by the method of manufacturing the device.

【0007】前記第1の樹脂の液面を湾曲状に形成する
工程は、前記中空糸膜外表面と前記第1の樹脂の液面に
よって形成される空間を加圧して液面を湾曲状に形成す
ることが好ましい。また、前記第1の樹脂の液面を湾曲
状に形成する工程は、前記第1の樹脂を前記中空糸膜内
に吸引することにより、第1の樹脂の液面を下げて湾曲
状に形成することが好ましい。さらに、前記第1の樹脂
の液面を湾曲状に形成する工程は、前記第1の樹脂が入
った容器から前記第1の樹脂を抜き取ることにより、第
1の樹脂の液面を下げて湾曲状に形成することが好まし
い。または、前記第1の樹脂の液面を湾曲状に形成する
工程は、前記第1の樹脂を体積変化の大きな樹脂によっ
て構成することにより、前記樹脂の体積収縮により、第
1の樹脂の液面を下げて湾曲状に形成することが好まし
い。
In the step of forming the liquid surface of the first resin in a curved shape, the space formed by the outer surface of the hollow fiber membrane and the liquid surface of the first resin is pressed to make the liquid surface curved. It is preferably formed. In the step of forming the liquid surface of the first resin in a curved shape, the liquid surface of the first resin is lowered to form a curved shape by sucking the first resin into the hollow fiber membrane. Preferably. Further, in the step of forming the liquid surface of the first resin in a curved shape, the liquid surface of the first resin is lowered and curved by extracting the first resin from the container containing the first resin. It is preferably formed into a shape. Alternatively, in the step of forming the liquid surface of the first resin in a curved shape, the liquid level of the first resin is reduced by the volume contraction of the resin by configuring the first resin with a resin having a large volume change. Is preferably lowered to form a curved shape.

【0008】前記第1の樹脂の液面を湾曲状に形成する
工程は、前記第1の樹脂の下層に有する物質の体積変化
により、第1の樹脂の液面を下げて湾曲状に形成するこ
とが好ましい。
In the step of forming the liquid surface of the first resin in a curved shape, the liquid surface of the first resin is lowered and formed in a curved shape due to the volume change of the substance contained in the lower layer of the first resin. It is preferable.

【0009】さらに、前記中空糸膜束の端部を液状の第
1の樹脂の液表面に接触させるかあるいは液中に浸漬す
る前に、各中空糸膜の端部をあらかじめ撥水性樹脂によ
りコーテイングすることが好ましい。また、前記第1の
樹脂は、流動性が相違する低流動性樹脂からなる上層と
高流動性樹脂からなる下層からなることが好ましい。
Furthermore, before the end of the hollow fiber membrane bundle is brought into contact with the liquid surface of the liquid first resin or immersed in the liquid, the end of each hollow fiber membrane is coated with a water-repellent resin in advance. Preferably. Further, it is preferable that the first resin comprises an upper layer made of a low fluidity resin having different fluidity and a lower layer made of a high fluidity resin.

【0010】[0010]

【作用】本発明の中空糸膜型液体処理装置の製造方法に
よれば、ハウジング内に、多数の中空糸膜からなる中空
糸膜束を収容した状態で、中空糸膜束の端部を液状の第
1の樹脂の液表面に接触させるか、あるいは液中に浸漬
し、その際、第1の樹脂の液面を湾曲状に形成する、す
なわち中空糸膜の各端部同士の間を湾曲面で連なるよう
に第1の樹脂を形成することにより、第1の樹脂を固化
させて、中空糸膜の各端部同士の間および中空糸膜の各
端部とハウジングとの間に隔壁形成用の第2の樹脂を注
入して固化させ、固化した第1の樹脂を固化した第2の
樹脂である隔壁から取り除いたときに、第2の樹脂でで
きた隔壁が第1の樹脂の凹状湾曲面を型取った凸状湾曲
面を形成するので、液体が各中空糸膜の端部の開口に流
入する際に、隔壁の凸状湾曲面に沿って中空糸膜内に円
滑に流入し、不要な乱流を抑制する。
According to the method for manufacturing a hollow fiber membrane type liquid treatment device of the present invention, the end portion of the hollow fiber membrane bundle is liquid-formed while the hollow fiber membrane bundle composed of a large number of hollow fiber membranes is accommodated in the housing. Of the first resin is brought into contact with the liquid surface of the first resin or is immersed in the liquid, and at that time, the liquid surface of the first resin is formed into a curved shape, that is, the end portions of the hollow fiber membrane are curved. By forming the first resin so as to be continuous in the plane, the first resin is solidified, and partition walls are formed between the respective end portions of the hollow fiber membrane and between the respective end portions of the hollow fiber membrane and the housing. When the second resin for injection is injected and solidified, and the solidified first resin is removed from the solidified second resin partition wall, the partition wall made of the second resin has a concave shape of the first resin. Since a convex curved surface is formed by modeling the curved surface, when the liquid flows into the opening at the end of each hollow fiber membrane, a partition wall is formed. Smoothly flow into the hollow fiber membrane along the convexly curved surface, it suppresses unnecessary turbulence.

【0011】[0011]

【発明の構成】以下、図面を参照しながら本発明である
中空糸膜型流体処理装置の製造方法を具体的に説明す
る。
BEST MODE FOR CARRYING OUT THE INVENTION A method for manufacturing a hollow fiber membrane type fluid treatment apparatus according to the present invention will be specifically described below with reference to the drawings.

【0012】本発明の中空糸膜型流体処理装置の製造方
法は、図1および図2に示すように、ハウジング1内
に、多数の中空糸膜2からなる中空糸膜束3を収容し、
その状態で中空糸膜束3の端部を液状の第1の樹脂11
の液表面(端面11a)に接触させるか、あるいは液中
に浸漬させる。その後、第1の樹脂11の液面を湾曲状
に形成させ、第1の樹脂11を固化させた後、中空糸膜
2の各端部同士の間および中空糸膜2の各端部とハウジ
ング1との間に隔壁形成用の第2の樹脂12を注入して
固化させ、固化した第1の樹脂11に沿って隔壁4を形
成するとともに中空糸膜束3の端部をハウジング1に固
定し、固化した第1の樹脂11を、隔壁4から取り除く
ことからなる。
In the method for manufacturing a hollow fiber membrane type fluid treatment device of the present invention, as shown in FIGS. 1 and 2, a hollow fiber membrane bundle 3 composed of a large number of hollow fiber membranes 2 is housed in a housing 1,
In this state, the end portion of the hollow fiber membrane bundle 3 is attached to the liquid first resin 11
The liquid surface (end face 11a) is contacted or immersed in the liquid. After that, the liquid surface of the first resin 11 is formed into a curved shape, and the first resin 11 is solidified. Then, the hollow fiber membrane 2 is provided between the end portions of the hollow fiber membrane 2 and between the end portions of the hollow fiber membrane 2 and the housing. The second resin 12 for forming the partition wall is injected into and solidified between the partition wall 1 and the partition wall 1, and the partition wall 4 is formed along the solidified first resin 11 and the end of the hollow fiber membrane bundle 3 is fixed to the housing 1. Then, the solidified first resin 11 is removed from the partition wall 4.

【0013】中空糸膜束3はハウジング1内に所定長突
出させて収容させてもよいし(図1(a)参照)、ハウ
ジング1の端部と中空糸膜束3の端部をそろえて収容し
てもよい。
The hollow fiber membrane bundle 3 may be housed by projecting into the housing 1 by a predetermined length (see FIG. 1A), or the end portion of the housing 1 and the end portion of the hollow fiber membrane bundle 3 may be aligned. May be accommodated.

【0014】中空糸膜束3の端部を液状の第1の樹脂1
1の液表面に接触させるか、あるいは液中に浸漬させる
程度としては、本装置の大きさにもよるが、第1の樹脂
が各中空糸膜2の内部に、その下端面から0〜3cm、
好ましくは0〜1cm入り込むようにするのが好まし
い。
The end portion of the hollow fiber membrane bundle 3 is connected to the liquid first resin 1
The degree of contact with the liquid surface of No. 1 or immersion in the liquid depends on the size of this device, but the first resin is inside the hollow fiber membranes 2 and 0 to 3 cm from the lower end surface thereof. ,
It is preferable that the distance is 0 to 1 cm.

【0015】第1の樹脂11としては、隔壁形成用の第
2の樹脂12と接着性の低いものを用いることが好まし
く、これにより固化した第1の樹脂11を固化した第2
の樹脂12である隔壁4から容易に剥離させることが可
能となる。また、第1の樹脂11と隔壁4との剥離を容
易にするために、第1の樹脂11の第2の樹脂12接触
面に、フッ素系、シリコーン系等の離型剤を使用するこ
とも可能である。第1の樹脂として例えば、ポリエチレ
ン、ポリプロピレン、エチレンビニルアルコールなどの
熱可塑性樹脂が用いられる。
As the first resin 11, it is preferable to use one having a low adhesiveness to the second resin 12 for forming the partition wall, and the second resin obtained by solidifying the first resin 11 solidified by this
It is possible to easily separate the resin 12 from the partition wall 4. Further, in order to facilitate the peeling of the first resin 11 and the partition wall 4, a release agent such as a fluorine-based or silicone-based release agent may be used on the contact surface of the first resin 11 with the second resin 12. It is possible. As the first resin, for example, a thermoplastic resin such as polyethylene, polypropylene, or ethylene vinyl alcohol is used.

【0016】さらに、第1の樹脂11は溶融状態にて流
動性の異なる2層からなることが好ましい。この2層は
上層、すなわち中空糸膜1と接触する層としては低流動
性樹脂からなり、具体的には低密度ポリエチレン[メル
トフローインデックス(MI):0.2〜4.0g/1
0min]のシート状物である。それに対して下層とし
ては、高流動性樹脂からなり、具体的には高密度ポリエ
チレン[MI:10〜50g/10min]である。
Further, the first resin 11 is preferably composed of two layers having different fluidities in a molten state. The two layers are made of a low-fluidity resin as an upper layer, that is, a layer in contact with the hollow fiber membrane 1, specifically, low-density polyethylene [melt flow index (MI): 0.2 to 4.0 g / 1].
0 min] sheet-like material. On the other hand, the lower layer is made of a high-fluidity resin, specifically, high-density polyethylene [MI: 10 to 50 g / 10 min].

【0017】また、中空糸膜束3を液状の第1の樹脂1
1の液層中に浸漬する前に、各中空糸膜2の端部をあら
かじめ撥水性樹脂によりコーティングすることが好まし
い。これにより、固化した第1の樹脂11の、隔壁4に
対しての剥離が極めて容易かつ完全になり、中空糸膜の
端部の剛直性、耐熱性を増大させ、中空糸膜束端部を揃
えるためのカッティング時の変形及び溶融したポリエチ
レン樹脂と接触したときのはねあがり、折れ曲がり等を
防止できる。さらに中空糸膜がセルロース等の親水性の
場合、この撥水性樹脂をコーティングすることにより、
第2の樹脂の注入固化による隔壁を形成する際に中空糸
膜からの水の溶出を防ぎ、隔壁がポリウレタンである場
合はその水によるポリウレタンの発泡、クラックを防止
することができる。さらに中空糸膜が該装置に流通する
液体に対して膨潤性を示す場合では、中空糸膜内部に流
通する液体によって膨潤することを抑制し、膨潤によっ
て生じる流路の狭窄を防止できる。
Further, the hollow fiber membrane bundle 3 is replaced with the liquid first resin 1
It is preferable to coat the end of each hollow fiber membrane 2 with a water-repellent resin in advance before dipping it in the liquid layer 1. As a result, the solidified first resin 11 is extremely easily and completely peeled from the partition wall 4, and the rigidity and heat resistance of the end portion of the hollow fiber membrane are increased, and the hollow fiber membrane bundle end portion is removed. It is possible to prevent deformation at the time of cutting for aligning and bounce, bending, etc. at the time of contact with molten polyethylene resin. Furthermore, when the hollow fiber membrane is hydrophilic such as cellulose, by coating with this water-repellent resin,
When the partition wall is formed by injecting and solidifying the second resin, the elution of water from the hollow fiber membrane can be prevented, and when the partition wall is polyurethane, the foaming and cracking of the polyurethane due to the water can be prevented. Further, when the hollow fiber membrane exhibits swelling properties with respect to the liquid flowing through the device, it is possible to prevent the liquid flowing inside the hollow fiber membrane from swelling and prevent narrowing of the flow channel caused by the swelling.

【0018】このような撥水性樹脂としては、固化した
時に剛直性を有し、中空糸膜および隔壁形成用の第2の
樹脂、例えばポリウレタン樹脂と良好な接着性を有し、
さらに溶出物等の少なく、溶媒に可溶なものが好まし
く、例えば、ポリウレタン、エチレン−ビニルアルコー
ル共重合体、ポリアクリレート、ポリメタクリレートで
ある。さらに具体的には、0.05〜20w/v%、セ
グメント化ポリウレタンであるペレセン(商品名:ダウ
・ケミカル株式会社製)の場合では、0.05〜5.0
w/v%、好ましくは1.0〜2.0w/v%の溶液
(溶媒はTHF,DMF等)を用いる。コーティング幅
のバラツキを抑えるための圧縮空気の圧力としては、
0.1〜3.0kg/cm、好ましくは0.5〜1.
5kg/cmである。
Such a water-repellent resin has rigidity when solidified and has good adhesiveness with the second resin for forming the hollow fiber membrane and the partition wall, for example, polyurethane resin,
Further, those which have a small amount of eluted substances and are soluble in a solvent are preferable, and examples thereof include polyurethane, ethylene-vinyl alcohol copolymer, polyacrylate and polymethacrylate. More specifically, 0.05 to 20 w / v%, 0.05 to 5.0 in the case of Peresene (trade name: manufactured by Dow Chemical Co., Ltd.), which is a segmented polyurethane.
A w / v% solution, preferably 1.0 to 2.0 w / v% solution (the solvent is THF, DMF, etc.) is used. As the pressure of compressed air to suppress the variation in coating width,
0.1 to 3.0 kg / cm 2 , preferably 0.5 to 1.
It is 5 kg / cm 2 .

【0019】撥水性樹脂のコーティングについての具体
的な操作の一例としては、中空糸膜束の片側端部を圧縮
空気を導入できるような円筒形の外筒(例えば50ミリ
リットルシリンジ外筒)に固定し、外筒から中空糸膜束
を10cmほど露出させ、その中空糸膜束の回りをポリ
エチレンシートにてくるみ、さらにポリエチレンシート
より2cm程中空糸膜束端部を出しておく。そして上記
セグメント化ポリウレタンを1.0w/v%含むTHF
溶液を調整する。中空糸膜束を固定した外筒の中空糸膜
束の出ていない端部より1.0kg/cmで空気を流
し、そのままで中空糸膜束端部をポリエチレンシートが
浸漬する深さまで前記溶液に浸漬し、約3秒間保持す
る。中空糸膜束を前記溶液から引き上げ、中空糸膜束内
に含まれる過剰な前記溶液をペーパータオル等にて吸い
取らせ除去する。このとき、中空糸膜束に巻いてあるポ
リエチレンシートをすばやく中空糸膜束端部に合わせる
ようにして引き上げ、コーテイング幅のバラツキを抑え
る。過剰な前記溶液を除去した後、中空糸膜束端部に空
気を吹き付け、充分分散させた後、60℃オーブンで1
時間乾燥させることによって、コーティングが完了す
る。
As an example of a specific operation for coating the water-repellent resin, one end of the hollow fiber membrane bundle is fixed to a cylindrical outer cylinder (for example, 50 ml syringe outer cylinder) into which compressed air can be introduced. Then, the hollow fiber membrane bundle is exposed by about 10 cm from the outer cylinder, the polyethylene sheet is brought around the hollow fiber membrane bundle, and the end portion of the hollow fiber membrane bundle is extended by about 2 cm from the polyethylene sheet. And THF containing 1.0 w / v% of the above segmented polyurethane
Prepare the solution. Air is flown at 1.0 kg / cm 2 from the end of the outer cylinder to which the hollow fiber membrane bundle is not fixed, at the end where the hollow fiber membrane bundle is not exposed, and the above-mentioned solution is added to the depth at which the end of the hollow fiber membrane bundle is immersed in the polyethylene sheet. And soak for about 3 seconds. The hollow fiber membrane bundle is pulled up from the solution, and the excess solution contained in the hollow fiber membrane bundle is absorbed and removed with a paper towel or the like. At this time, the polyethylene sheet wound around the hollow fiber membrane bundle is quickly pulled up so as to be aligned with the end portion of the hollow fiber membrane bundle, and variations in the coating width are suppressed. After removing the excess solution, air is blown to the end of the bundle of hollow fiber membranes to sufficiently disperse them, and then the mixture is placed in an oven at 60 ° C. for 1 hour.
The coating is completed by drying for a period of time.

【0020】図1(a)に示すように、流動性を有する
第1の樹脂11は容器10に充填して用いられるが、第
1の樹脂11が溶融状態で使用する場合には、容器10
には第1の樹脂11の溶融状態を維持したり、固化時間
を調整するための加温・冷却機構を備えることが好まし
い。
As shown in FIG. 1 (a), the first resin 11 having fluidity is used by filling it in the container 10. However, when the first resin 11 is used in a molten state, the container 10 is used.
It is preferable to provide a heating / cooling mechanism for maintaining the molten state of the first resin 11 and adjusting the solidification time.

【0021】第1の樹脂11の液面を湾曲状に形成させ
る方法として、図1(b)において示す例では、中空糸
膜2外表面と第1の樹脂11の液面によって形成される
空間を加圧して液面を湾曲状に形成する方法である。こ
れは、ハウジング1に設けられた流出入口6より中空糸
膜2外表面と第1の樹脂11の液面によって形成される
空間を矢印のごとく気体で加圧することによって、中空
糸膜2内に第1の樹脂11が入り込み、第1の樹脂11
の液面を下げることで中空糸膜2端部の各間に凹状の湾
曲面が形成される。加圧するための気体としては、圧縮
空気、窒素ガス、アルゴンガスなどの不活性圧縮気体が
用いられる。ハウジング内部の圧力は第1の樹脂の流動
性や温度によっても異なるが、0〜100mmHg、好
ましくは5〜30mmHgである。なお、第1の樹脂を
低流動性樹脂の上層と高流動性樹脂の下層とし、上層の
低流動性樹脂をMI:0.8〜1.0の低密度ポリエチ
レンを使用した場合は、温度180〜200度において
10〜20mmHgが好ましい。
As a method of forming the liquid surface of the first resin 11 in a curved shape, in the example shown in FIG. 1B, a space formed by the outer surface of the hollow fiber membrane 2 and the liquid surface of the first resin 11 Is applied to form a curved liquid surface. This is because the space formed by the outer surface of the hollow fiber membrane 2 and the liquid surface of the first resin 11 from the outflow port 6 provided in the housing 1 is pressurized with gas as shown by the arrow, so that The first resin 11 enters the first resin 11
By lowering the liquid surface of, the concave curved surface is formed between the end portions of the hollow fiber membrane 2. As the gas for pressurizing, an inert compressed gas such as compressed air, nitrogen gas or argon gas is used. The pressure inside the housing is 0 to 100 mmHg, preferably 5 to 30 mmHg, although it varies depending on the fluidity and temperature of the first resin. When the first resin is the upper layer of the low fluidity resin and the lower layer of the high fluidity resin, and the low fluidity resin of the upper layer is low density polyethylene with MI: 0.8 to 1.0, the temperature is 180 10 to 20 mmHg is preferable at -200 degrees.

【0022】第1の樹脂11が固化した後は、図2
(a)に示すように、流出入口6より各中空糸膜2間お
よび中空糸膜2とハウジング1との間に流動状態の隔壁
形成用の第2の樹脂12を注入して、所定の厚さになる
まで充填し、固化させて隔壁4を形成させるとともに中
空糸膜2の端部をハウジング1に固定する。第2の樹脂
12を注入して充填させる工程は、公知の遠心ポッティ
ングの技術が用いられうる。第2の樹脂としては、当該
流体処理装置を使用する際に第2の樹脂が流体に直接触
れることを考えると、流体が血液である場合は特に血液
適合性の良好な樹脂を選択することが望ましく、さらに
前述した第1の樹脂11との剥離が容易であるものが好
ましい。具体例としては、ウレタン系樹脂、シリコーン
系樹脂、エポキシ系樹脂等が挙げられる。
After the first resin 11 is solidified, as shown in FIG.
As shown in (a), the second resin 12 for forming partition walls in a fluid state is injected from the outflow port 6 between the hollow fiber membranes 2 and between the hollow fiber membranes 2 and the housing 1 to a predetermined thickness. The hollow fiber membrane 2 is fixed to the housing 1 at the same time as it is filled and solidified to form the partition wall 4. A well-known centrifugal potting technique can be used for the step of injecting and filling the second resin 12. Considering that the second resin comes into direct contact with the fluid when the fluid treatment device is used, it is possible to select a resin having particularly good blood compatibility when the fluid is blood. It is desirable, and it is preferable that it is easily peeled off from the first resin 11 described above. Specific examples include urethane resins, silicone resins, epoxy resins and the like.

【0023】さらに、固化した第1の樹脂11を隔壁4
から取り除くことによって、図2(b)に示すように、
各中空糸膜2間および中空糸膜2とハウジング1との間
に固定された隔壁4の端面4aには表面が滑らかで湾曲
面9が形成される。
Further, the solidified first resin 11 is applied to the partition wall 4
As shown in FIG. 2 (b),
A curved surface 9 is formed on the end surface 4a of the partition wall 4 fixed between the hollow fiber membranes 2 and between the hollow fiber membranes 2 and the housing 1.

【0024】次に、第1の樹脂11の液面を湾曲状に形
成させる方法としては、図3に示すように、第1の樹脂
11を中空糸膜2内に図中矢印の方向に吸引することに
より、第1の樹脂の液面を下げて湾曲状に形成する方法
がある。中空糸膜2内部の減圧度は用いる第1の樹脂1
1の材質や温度によっても異なるが、−5〜−760m
mHg、好ましくは−10〜−300mmHgである。
なお、第1の樹脂を低流動性樹脂の上層と高流動性樹脂
の下層とし、上層の低流動性樹脂をMI:0.8〜1.
0の低密度ポリエチレンを使用した場合は、温度180
〜200度において−50〜−150mmHgが好まし
い。
Next, as a method for forming the liquid surface of the first resin 11 in a curved shape, as shown in FIG. 3, the first resin 11 is sucked into the hollow fiber membrane 2 in the direction of the arrow in the figure. By doing so, there is a method of lowering the liquid surface of the first resin to form a curved shape. The degree of pressure reduction inside the hollow fiber membrane 1 is the first resin 1 used.
Depending on the material and temperature of No. 1, -5 to -760m
mHg, preferably -10 to -300 mmHg.
The first resin was used as the upper layer of the low-fluidity resin and the lower layer of the high-fluidity resin, and the low-fluidity resin of the upper layer was MI: 0.8-1.
When low density polyethylene of 0 is used, the temperature is 180
At −200 degrees, −50 to −150 mmHg is preferable.

【0025】第1の樹脂11の液面11aを湾曲状に形
成させる他の方法としては、図4(a)(b)に示すよ
うに、第1の樹脂11の液面11aを湾曲状に形成する
工程は、中空糸膜2の端部を液状の第1の樹脂11の液
表面に接触させるかあるいは液中に浸漬する際に、第1
の樹脂11が入った容器10から第1の樹脂11を抜き
取ることにより、第1の樹脂11の液面11aを下げて
湾曲状に形成する方法がある。すなわち、第1の樹脂1
1の液面11aを中空糸膜2の端部と完全に接触させた
後、5mm以下、好ましくは0.5〜1.5mm液面1
1aを下げるために第1の樹脂11を容器流出入口10
aより抜き取る。抜き取る量としては容器10の第1の
樹脂液面表面積によるが、容器10の内径が40mmの
円筒形状である場合は、0.6〜1.8ミリリットルが
好ましい。
As another method of forming the liquid surface 11a of the first resin 11 in a curved shape, as shown in FIGS. 4A and 4B, the liquid surface 11a of the first resin 11 is formed in a curved shape. The step of forming the hollow fiber membrane 1 is such that when the end portion of the hollow fiber membrane 2 is brought into contact with the liquid surface of the liquid first resin 11 or immersed in the liquid, the first
There is a method in which the liquid surface 11a of the first resin 11 is lowered to form a curved shape by extracting the first resin 11 from the container 10 containing the resin 11 described above. That is, the first resin 1
After completely contacting the liquid surface 11a of No. 1 with the end of the hollow fiber membrane 2, the liquid surface 1 is 5 mm or less, preferably 0.5 to 1.5 mm.
In order to lower 1a, the first resin 11 is added to the container outflow port 10
Remove from a. The amount to be withdrawn depends on the first resin liquid surface area of the container 10, but when the container 10 has a cylindrical shape with an inner diameter of 40 mm, 0.6 to 1.8 ml is preferable.

【0026】さらに、第1の樹脂11の液面11aを湾
曲状に形成させる他の方法としては、図5に示すよう
に、第1の樹脂11を体積変化の大きな樹脂によって構
成することにより、第1の樹脂の体積収縮により、第1
の樹脂11の液面11aを下げて湾曲状に形成すること
が挙げられる。この場合の第1の樹脂11として用いら
れる樹脂は、射出成形収縮率の大きな樹脂、例えば比較
的低融点で結晶性の高い樹脂として、高密度ポリエチレ
ン、ポリプロピレン、ポリアセタール樹脂、ポリアミド
樹脂などが挙げられる。収縮により液面を下げ、湾曲面
を形成させるためには、第1の樹脂表面に中空糸膜端部
を完全に接触させた後、5mm以下、好ましくは0.5
〜1.5mm液面を下げることが望ましい。一定の収縮
率の場合、下がる巾は樹脂量に依存しているが、容器1
0の形状が内40mmの円筒形状で、深さ10mmの場
合、射出成形収縮率が1〜5%、好ましくは3〜5%の
ものを用いることが可能である。
As another method of forming the liquid surface 11a of the first resin 11 in a curved shape, as shown in FIG. 5, the first resin 11 is made of a resin having a large volume change. Due to the volume shrinkage of the first resin,
The liquid surface 11a of the resin 11 may be lowered to form a curved shape. The resin used as the first resin 11 in this case is a resin having a large injection molding shrinkage ratio, for example, a resin having a relatively low melting point and high crystallinity, such as high-density polyethylene, polypropylene, polyacetal resin, or polyamide resin. . In order to lower the liquid level by contraction and form a curved surface, after the end of the hollow fiber membrane is brought into complete contact with the first resin surface, 5 mm or less, preferably 0.5
It is desirable to lower the liquid level by ~ 1.5 mm. For a given shrinkage, the width of the drop depends on the amount of resin.
When the shape of 0 is a cylindrical shape having an inner diameter of 40 mm and a depth of 10 mm, it is possible to use an injection molding shrinkage factor of 1 to 5%, preferably 3 to 5%.

【0027】また、第1の樹脂11の液面11aを湾曲
状に形成させるには、図6に示すように、第1の樹脂1
1の下層に有する物質50の体積変化により、第1の樹
脂の液面を下げて湾曲状に形成する方法がある。第1の
樹脂11の下層に有する物質50としては、空気等の気
体が挙げられ、容器10の流出入口10aから気体50
を第1の樹脂11の下層に流入させて、第1の樹脂と中
空糸膜2の端部を接触させる(図6(a))。その後、
流入させた気体50を流出入口10aより流出させる、
すなわち体積変化させて、液面11aを下げて湾曲面1
1aが形成される。空気等の気体の注入により、第1の
樹脂11の液面11aを上昇させ、中空糸膜2端部と完
全かつ均一に接触させるためには、第1の樹脂11の液
面11aを0〜10mm、好ましくは0.5〜3.0m
m上げる必要がある。そのための注入する気体の量は、
第1の樹脂11の量、容器10の形状、内容積等に依存
しているが、容器10の内径が40mmの円筒形の場
合、気体が空気においては0.2〜1.2ミリリットル
注入することが好ましい。注入された空気は、溶融した
第1の樹脂と接触し、加熱され膨張する。冷却時にはこ
の分だけ収縮するので、そのままでも冷却時に液面が下
がり、湾曲面は形成される。さらに液面の下げ幅を大き
くし、湾曲面を大きくする場合は冷却時に空気を抜くこ
とにより調整される。この場合は0〜1.0ミリリット
ルの量抜くのが好ましい。
To form the liquid surface 11a of the first resin 11 in a curved shape, as shown in FIG.
There is a method of lowering the liquid level of the first resin to form a curved shape by changing the volume of the substance 50 in the lower layer of No. 1. Examples of the substance 50 included in the lower layer of the first resin 11 include gas such as air, and the gas 50 from the outflow port 10a of the container 10 can be used.
To flow into the lower layer of the first resin 11 to bring the first resin and the end of the hollow fiber membrane 2 into contact with each other (FIG. 6A). afterwards,
The inflowing gas 50 flows out from the outflow port 10a,
That is, by changing the volume, the liquid surface 11a is lowered to lower the curved surface 1.
1a is formed. In order to raise the liquid surface 11a of the first resin 11 by injecting a gas such as air to bring the liquid surface 11a of the first resin 11 into contact with the end portion of the hollow fiber membrane 2 completely and uniformly, 10 mm, preferably 0.5-3.0 m
It is necessary to raise m. The amount of gas injected for that is
Depending on the amount of the first resin 11, the shape of the container 10, the internal volume, etc., when the container 10 has a cylindrical shape with an inner diameter of 40 mm, 0.2 to 1.2 ml of gas is injected in air. It is preferable. The injected air comes into contact with the molten first resin, and is heated and expanded. Since it shrinks by this amount during cooling, the liquid surface drops and the curved surface is formed during cooling as it is. Further, in the case of increasing the lowering width of the liquid surface and increasing the curved surface, it is adjusted by bleeding air during cooling. In this case, it is preferable to remove the amount of 0 to 1.0 ml.

【0028】[0028]

【実施例】以下、本発明の中空糸膜型流体処理装置の製
造方法を該流体処理装置として人工腎臓の製造方法の実
施例として説明する。
EXAMPLES A method for producing a hollow fiber membrane type fluid treatment device of the present invention will be described below as an example of a method for producing an artificial kidney as the fluid treatment device.

【0029】(実施例1:加圧)セラミックスヒーター
(100V−40W)を組み込んだ容器10に相当する
ヒーターカップにポリエチレン樹脂(低密度ポリエチレ
ン:MI=20g/10分)4.0gを入れ。セラミッ
クスヒーターを加熱してポリエチレン樹脂を溶融状態に
し、高流動性樹脂層を形成した。また、中空糸膜束(約
7100本)の端部をきれいに切り揃え、その一方の端
部を接着剤等で目止めし、ハウジングに対して各中空糸
膜の目止めをしていない他方の端部の開口の位置を合わ
せるようにして、ハウジングに収納する。さらに目止め
をした側をハウジング内の密閉性が保持できるようにキ
ャップを固定する。この状態で、オーブン内で60℃の
予備加熱を10分間行った。前記ヒーターカップ内のポ
リエチレン樹脂の温度が180〜200℃に達した時、
この上に0.05mmの厚さのポリエチレンシート(低
密度ポリエチレン:MI=0.8g/10分)を載せ、
これを低流動性樹脂層を上層にし、前記高流動性樹脂層
を下層にして、2層からなる第1の樹脂を形成した。続
いて予備加熱した中空糸膜束の収納されているハウジン
グの透析液ポートの一方に圧縮気体導入チューブを、他
方の透析液ポートには圧力計を取り付けた。この状態
で、ハウジングを中空糸膜束と一緒にヒーターカップに
セットし、中空糸膜束端部を溶融状態のポリエチレン樹
脂液層表面と接触させ、ヒーターカップの底板を2mm
程上昇させて、各中空糸膜の開口部をポリエチレン樹脂
液面に完全に接触させた。
(Example 1: Pressurization) 4.0 g of polyethylene resin (low density polyethylene: MI = 20 g / 10 minutes) was put in a heater cup corresponding to a container 10 incorporating a ceramics heater (100V-40W). The ceramic heater was heated to melt the polyethylene resin to form a highly fluid resin layer. In addition, the end portions of the bundle of hollow fiber membranes (about 7100 pieces) are neatly cut and aligned, one end portion of which is sealed with an adhesive or the like, and the other of the hollow fiber membranes which is not sealed to the housing. The end openings should be aligned and placed in the housing. Further, the cap is fixed so that the sealed side can maintain the airtightness inside the housing. In this state, preheating at 60 ° C. was performed for 10 minutes in the oven. When the temperature of the polyethylene resin in the heater cup reaches 180 to 200 ° C,
On top of this, put a 0.05 mm thick polyethylene sheet (low density polyethylene: MI = 0.8 g / 10 min),
A low fluid resin layer was used as an upper layer and a high fluid resin layer was used as a lower layer to form a first resin having two layers. Subsequently, a compressed gas introduction tube was attached to one of the dialysate ports of the housing containing the preheated hollow fiber membrane bundle, and a pressure gauge was attached to the other dialysate port. In this state, the housing together with the hollow fiber membrane bundle is set in the heater cup, the end of the hollow fiber membrane bundle is brought into contact with the surface of the molten polyethylene resin liquid layer, and the bottom plate of the heater cup is set to 2 mm.
The hollow fiber membrane was lifted up to the point where the opening of each hollow fiber membrane was brought into complete contact with the liquid surface of the polyethylene resin.

【0030】次に、圧縮気体導入チューブより、ハウジ
ング内が12〜15mmHgになるように空気を導入
し、1分間保持する。この後ヒーターカップに100ミ
リリットル/minで冷却水を流し、ポリエチレン樹脂
液層を冷却した。空気圧を保持したまま5分間冷却し、
ポリエチレン樹脂層が固化したら、ハウジングとともに
固化したポリエチレン樹脂をヒーターカップより外し
た。
Next, air is introduced from the compressed gas introduction tube so that the inside of the housing becomes 12 to 15 mmHg, and is held for 1 minute. After this, cooling water was flown into the heater cup at 100 ml / min to cool the polyethylene resin liquid layer. Cool for 5 minutes while maintaining air pressure,
When the polyethylene resin layer solidified, the polyethylene resin solidified together with the housing was removed from the heater cup.

【0031】この状態で隔壁形成用の第2の樹脂とし
て、ポリウレタン樹脂等の接着剤を用いて中空糸膜束を
ハウジングに遠心操作により接着固定し、ポリウレタン
樹脂が硬化したら、第1の樹脂であるポリエチレン樹脂
を剥離してポッテイング面を形成した。
In this state, as a second resin for forming partition walls, the hollow fiber membrane bundle is adhered and fixed to the housing by an adhesive using an adhesive such as a polyurethane resin, and when the polyurethane resin is cured, the first resin is used. A polyethylene resin was peeled off to form a potting surface.

【0032】(実施例2:吸引)低流動性樹脂層を上層
にし、前記高流動性樹脂層を下層にして、2層からなる
第1の樹脂を形成するところまでは実施例1と同様であ
り、その後、予備加熱した中空糸膜束をハウジングとと
もにヒーターカップにセットし、中空糸膜束に取り付け
たシリコーンチューブをアスピレータの吸引チューブに
連結する。またもう一方の中空糸膜束端部を溶融状態の
ポリエチレン液層表面と接触させ、ヒーターカップの底
板を2mm程上昇させて、各中空糸膜の開口部をポリエ
チレン樹脂液面に完全に接触させた。アスピレータを作
動させ、中空糸膜内部を約−100mmHgに減圧し、
30秒間保持し、溶融したポリエチレン状態でを中空糸
膜内部に吸い上がらせた。この後、減圧を保持したまま
冷却水を流してポリエチレン樹脂を冷却した。5分間程
度冷却してポリエチレン樹脂が固化したら、ハウジング
とともに固化したポリエチレン樹脂をヒーターカップか
ら外し、後は実施例1と同様の操作を行った。
(Example 2: Suction) The same procedure as in Example 1 was performed until the low-fluidity resin layer was used as the upper layer and the high-fluidity resin layer was used as the lower layer to form the first resin consisting of two layers. Then, after that, the preheated hollow fiber membrane bundle is set together with the housing in the heater cup, and the silicone tube attached to the hollow fiber membrane bundle is connected to the suction tube of the aspirator. The other end of the hollow fiber membrane bundle is brought into contact with the surface of the molten polyethylene liquid layer, and the bottom plate of the heater cup is raised by about 2 mm so that the openings of each hollow fiber membrane are brought into complete contact with the polyethylene resin liquid surface. It was Operate the aspirator, reduce the pressure inside the hollow fiber membrane to approximately -100 mmHg,
It was held for 30 seconds, and the molten polyethylene was sucked up inside the hollow fiber membrane. Then, while maintaining the reduced pressure, cooling water was flown to cool the polyethylene resin. After the polyethylene resin was solidified by cooling for about 5 minutes, the solidified polyethylene resin was removed from the heater cup together with the housing, and the same operation as in Example 1 was performed thereafter.

【0033】なお、本方法では、中空糸膜束のアスピレ
ータに連結する方法として、シリコーンチューブと用い
たが、片側を先に別手段にて隔壁が形成されている場合
には、血液ポート等の中空糸膜内部と密に連通する手段
を用いてアスピレータ等の吸引チューブと連結してもよ
い。
In this method, a silicone tube was used as a method for connecting the hollow fiber membrane bundle to the aspirator. However, when a partition is formed by another means with one side first, a blood port or the like is used. You may connect with a suction tube, such as an aspirator, using the means which communicates closely inside the hollow fiber membrane.

【0034】(実施例3:PE排出)低流動性樹脂層を
上層にし、前記高流動性樹脂層を下層にして、2層から
なる第1の樹脂を形成するところまでは実施例1と同様
であり、その後、予備加熱した中空糸膜束をハウジング
とともにヒーターカップにセットし、中空糸膜束端部を
溶融状態のポリエチレン液層表面と接触させ、ヒーター
カップの底板を2mm程上昇させて、各中空糸膜の開口
部をポリエチレン樹脂液面に完全に接触させた。この状
態を30秒間保持した後、ヒーターカップ側面に設けら
れた流出入口にヒーターを巻き、180℃に加熱した樹
脂溶液吸引管を取り付け、ヒーターカップ内部のポリエ
チレン樹脂を0.8ミリリットル抜き取り、直ちにヒー
ターカップに冷却水を100ミリリットル/minで流
し、ポリエチレン樹脂を冷却し、以下は実施例1と同様
の操作を行った。
(Example 3: PE discharge) Same as in Example 1 up to the point of forming the first resin consisting of two layers with the low fluidity resin layer as the upper layer and the high fluidity resin layer as the lower layer. After that, the preheated hollow fiber membrane bundle was set in the heater cup together with the housing, the end of the hollow fiber membrane bundle was brought into contact with the surface of the polyethylene liquid layer in a molten state, and the bottom plate of the heater cup was raised by about 2 mm, The opening of each hollow fiber membrane was brought into complete contact with the polyethylene resin liquid surface. After holding this state for 30 seconds, wind a heater around the outflow inlet provided on the side of the heater cup, attach a resin solution suction tube heated to 180 ° C, remove 0.8 ml of polyethylene resin inside the heater cup, and immediately heat the heater. Cooling water was poured into the cup at 100 ml / min to cool the polyethylene resin, and the same operation as in Example 1 was performed below.

【0035】(実施例4:PE収縮)セラミックスヒー
ター(100V−40W)を組み込んだ容器10に相当
するヒーターカップに射出成形収縮率3.0%の高密度
ポリエチレン樹脂10gを入れ、セラミックスヒーター
を加熱して溶融状態にする。さらにその上に低密度ポリ
エチレン樹脂(MI=20g/10分)1.0gを入
れ、これも溶融状態にして、高収縮率樹脂層(下層)と
高流動性樹脂層(上層)の2層構造とする。
(Example 4: PE shrinkage) 10 g of high-density polyethylene resin having a shrinkage ratio of injection molding of 3.0% was placed in a heater cup corresponding to a container 10 incorporating a ceramics heater (100V-40W), and the ceramics heater was heated. And put it in a molten state. Furthermore, 1.0 g of low-density polyethylene resin (MI = 20 g / 10 minutes) was put on it, and this was also made into a molten state to have a two-layer structure of a high shrinkage resin layer (lower layer) and a highly fluid resin layer (upper layer). And

【0036】次に、中空糸膜束の端部をきれいに切り揃
え、その一方の端部を接着剤等で目止めし、ハウジング
に対して各中空糸膜の目止めをしていない他方の端部の
開口の位置を合わせるようにして、ハウジングに収納
し、オーブン内で60℃の予備加熱を10分間行った。
ヒーターカップ内の前記ポリエチレン樹脂の温度が18
0〜200℃に達した時、この上に0.05mmの厚さ
のポリエチレンシート(低密度ポリエチレン:MI=
0.8g/10分)を載せ、この低流動性樹脂層を最上
層にし、計3層からなる第1の樹脂を形成した。その
後、予備加熱した中空糸膜束をハウジングとともにヒー
ターカップにセットし、中空糸膜束端部を溶融状態のポ
リエチレン液層表面と接触させ、ヒーターカップの底板
を2mm程上昇させて、各中空糸膜の開口部をポリエチ
レン樹脂液面に完全に接触させた。この状態を30秒間
保持した後、ヒーターカップに冷却水を100ミリリッ
トル/minで流し、高収縮率樹脂層を含む3層を冷却
した。このとき、この高収縮率樹脂が固化する際の体積
の収縮で、3層の樹脂層の体積が収縮し、中空糸膜と接
触していた樹脂面が下がり、湾曲面を形成した。以下は
他の実施例と同様の操作を行い、湾曲状の表面を持つ隔
壁が形成された。
Next, the end portions of the hollow fiber membrane bundle are cut and aligned neatly, one end portion of which is sealed with an adhesive or the like, and the other end of each hollow fiber membrane which has not been sealed with respect to the housing. It was housed in a housing so that the openings of the parts were aligned and preheated at 60 ° C. for 10 minutes in an oven.
The temperature of the polyethylene resin in the heater cup is 18
When the temperature reaches 0 to 200 ° C., a polyethylene sheet with a thickness of 0.05 mm (low density polyethylene: MI =
0.8 g / 10 minutes), and the low-fluidity resin layer was used as the uppermost layer to form a first resin consisting of a total of 3 layers. After that, the preheated hollow fiber membrane bundle was set in the heater cup together with the housing, the end of the hollow fiber membrane bundle was brought into contact with the surface of the polyethylene liquid layer in the molten state, and the bottom plate of the heater cup was raised by about 2 mm, The opening of the membrane was brought into full contact with the polyethylene resin liquid surface. After maintaining this state for 30 seconds, cooling water was flown into the heater cup at 100 ml / min to cool the three layers including the high shrinkage resin layer. At this time, the volume of the three resin layers contracted due to the volume contraction when the high-shrinkage resin solidified, and the resin surface in contact with the hollow fiber membrane was lowered to form a curved surface. Thereafter, the same operations as those in the other examples were performed to form partition walls having a curved surface.

【0037】(実施例5:空気注入)セラミックスヒー
ター(100V−40W)を組み込んだ容器10に相当
するヒーターカップにの底の部分に空気注入穴を開けて
おき、ステンレスパイプを取り付けておく。このヒータ
ーカップにセルロース、ポリエステル、ポリアミド、な
どの200℃では溶融せず、かつ柔軟性を発揮できる樹
脂等でできたシートを敷き、その上にポリエチレン樹脂
(低密度ポリエチレン樹脂:MI=20g/10分)
4.0gを入れ。セラミックスヒーターを加熱し、ポリ
エチレン樹脂を溶融状態にし、高流動性樹脂層を形成し
た。次に、中空糸膜束の端部をきれいに切り揃え、その
一方の端部を接着剤等で目止めし、ハウジングに対して
各中空糸膜の目止めをしていない他方の端部の開口の位
置を合わせるようにして、ハウジングに収納し、オーブ
ン内で60℃の予備加熱を10分間行った。ヒーターカ
ップ内の前記ポリエチレン樹脂の温度が180〜200
℃に達した時、この上に0.05mmの厚さのポリエチ
レンシート(低密度ポリエチレン:MI=0.8g/1
0分)を載せ、これを低流動性樹脂層として上層にし、
前記高流動性樹脂層を下層にして、2層からなる第1の
樹脂を形成した。
(Embodiment 5: Air injection) An air injection hole is opened in the bottom portion of a heater cup corresponding to a container 10 incorporating a ceramics heater (100V-40W), and a stainless pipe is attached. A sheet made of a resin, such as cellulose, polyester, or polyamide, which does not melt at 200 ° C. and exhibits flexibility is laid on this heater cup, and a polyethylene resin (low density polyethylene resin: MI = 20 g / 10 Minutes)
Put 4.0g. The ceramics heater was heated to melt the polyethylene resin to form a highly fluid resin layer. Next, cut the ends of the bundle of hollow fiber membranes neatly, seal one end of the bundle with an adhesive, etc., and open the other end of the hollow fiber membrane that has not been sealed to the housing. Then, they were housed in a housing so as to be aligned with each other, and preheated at 60 ° C. in an oven for 10 minutes. The temperature of the polyethylene resin in the heater cup is 180 to 200
When the temperature reaches ℃, a 0.05 mm thick polyethylene sheet (low density polyethylene: MI = 0.8 g / 1
0 min), and this is used as a low fluidity resin layer as an upper layer,
The first resin consisting of two layers was formed with the high-fluidity resin layer as a lower layer.

【0038】その後、予備加熱した中空糸膜束をハウジ
ングとともにヒーターカップにセットし、中空糸膜束端
部を溶融状態のポリエチレン液層表面と接触させ、次に
ヒーターカップ底板に取り付けられたステンレスパイプ
により空気を1.0ミリリットル注入し、ポリエチレン
樹脂液面を上昇させ、中空糸膜開口部とポリエチレン上
昇液面と完全に接触させた。この状態を30秒間保持し
た後、ヒーターカップに冷却水を100ミリリットル/
minで流し、ポリエチレン樹脂層を冷却した。このと
き注入した空気も冷却され、体積が収縮し、ポリエチレ
ン樹脂液面が下がる。注入した空気を抜くことにより、
ポリエチレン樹脂液面を下げてもよい。このようにして
中空糸膜と接触していた樹脂面が下がり、湾曲面を形成
した。以下は他の実施例と同様の操作を行い、湾曲状の
表面を持つ隔壁が形成された。
Then, the preheated hollow fiber membrane bundle is set in a heater cup together with the housing, the end of the hollow fiber membrane bundle is brought into contact with the surface of the molten polyethylene liquid layer, and then the stainless pipe attached to the heater cup bottom plate. Then, 1.0 ml of air was injected to raise the liquid level of the polyethylene resin, and the hollow fiber membrane opening portion was brought into complete contact with the liquid level of the raised polyethylene. After maintaining this state for 30 seconds, 100 ml of cooling water /
The polyethylene resin layer was cooled by pouring at min. The air injected at this time is also cooled, the volume shrinks, and the polyethylene resin liquid level drops. By removing the injected air,
The polyethylene resin liquid level may be lowered. In this way, the resin surface that was in contact with the hollow fiber membrane was lowered and a curved surface was formed. Thereafter, the same operations as those in the other examples were performed to form partition walls having a curved surface.

【0039】(試験例)雑種成犬(体重:12〜15k
g)4頭を用い体外循環実験を行った。その実験設備を
第7図に示す。全身麻酔下市神経、分枝血管および周囲
の組織を損傷しないように注意しながら、右(左)総勁
動脈を剥離した。さらに生食を満たした留置カテーテル
を挿入し、結紮固定した。この様にして準備された犬に
ついて、実施例1および隔壁をスライスすることによっ
て中空糸膜を開口させる従来の方法(比較例)で得られ
た膜表面積0.8mを有するダイアライザーを用い
て、実施回路を準備した。すなわち、第7図に示すよう
に、犬の動脈に回路50、犬の静脈に回路90を連結し
た。ダイアライザー100のイン側にマノメーター6
0、アウト側にマノメーター70を配した。ダイアライ
ザー100の透析液出入口と透析装置200とは、チュ
ーブ110,120で連結した。この様にして構成され
た回路及びダイアライザーは、生食1リットルでプライ
ミング洗浄した。
(Test example) Mixed breed dog (weight: 12 to 15 k)
g) An extracorporeal circulation experiment was carried out using 4 animals. The experimental equipment is shown in FIG. Under general anesthesia, the right (left) common carotid artery was dissected, taking care not to damage the nerve, branch vessels and surrounding tissues. Further, an indwelling catheter filled with saline was inserted and ligated and fixed. With respect to the dog thus prepared, using a dialyzer having a membrane surface area of 0.8 m 2 obtained by the conventional method (comparative example) in which the hollow fiber membrane is opened by slicing the partition wall in Example 1, An implementation circuit was prepared. That is, as shown in FIG. 7, the circuit 50 was connected to the dog artery and the circuit 90 was connected to the dog vein. Manometer 6 on the inside of the dialyzer 100
A manometer 70 was placed on the 0 and OUT sides. The dialysate inlet / outlet of the dialyzer 100 and the dialyzer 200 were connected by the tubes 110 and 120. The circuit and dialyzer thus constructed were prime washed with 1 liter of saline.

【0040】体外循環実験は血液量150ミリリットル
/min、透析液量500ミリリットル/min(39
℃)に設定して行った。実験条件としてヘパリン等の抗
凝固剤の投与は行わず、2時間循環してダイアライザー
前後の圧力差の変化を経時的に測定を行った。その結果
得られたダイアライザー前後の圧力差の変化を第8図に
示す。比較例で得られたダイアライザーは、40分前後
で圧力差が著しく上昇して(500mmHg以上)、循
環不能になるのに対し、実施例1で得られたダイアライ
ザーは、ゆるやかな圧力差の上昇にとどまり、抗血栓性
の向上が認められた。
The extracorporeal circulation experiment was conducted with a blood volume of 150 ml / min and a dialysate volume of 500 ml / min (39
℃) was set. As an experimental condition, administration of an anticoagulant such as heparin was not carried out, and the change in pressure difference before and after the dialyzer was measured over time while circulating for 2 hours. The resulting change in pressure difference before and after the dialyzer is shown in FIG. In the dialyzer obtained in the comparative example, the pressure difference increased remarkably (about 500 mmHg) in about 40 minutes and the circulation became impossible, whereas in the dialyzer obtained in Example 1, the pressure difference gradually increased. It remained, and improvement of antithrombotic property was recognized.

【0041】[0041]

【発明の効果】本発明の中空糸膜型流体処理装置の製造
方法ハウジング内に、多数の中空糸膜からなる中空糸膜
束を収容する工程と、前記中空糸膜束の端部を液状の第
1の樹脂の液表面に接触させるか、あるいは液中に浸漬
する工程と、前記第1の樹脂の液面を湾曲状に形成する
工程と、前記第1の樹脂を固化させる工程と、前記中空
糸膜の各端部同士の間および中空糸膜の各端部と前記ハ
ウジングとの間に隔壁形成用の第2の樹脂を注入して固
化させ、前記固化した第1の樹脂に沿って隔壁を形成す
るとともに前記中空糸膜束の端部を前記ハウジングに固
定する工程と、前記固化した第1の樹脂を、前記隔壁か
ら取り除く工程とからなるものなので、第2の樹脂でで
きた隔壁が第1の樹脂の湾曲面を型取った湾曲面を形成
するので、液体が各中空糸膜の端部の開口に流入する際
に、隔壁の湾曲面に沿って中空糸膜内に円滑に流入し、
不要な乱流を抑制する。
EFFECTS OF THE INVENTION A method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention, a step of accommodating a hollow fiber membrane bundle composed of a large number of hollow fiber membranes in a housing, and an end portion of the hollow fiber membrane bundle is in a liquid state Contacting the liquid surface of the first resin or immersing it in the liquid; forming the liquid surface of the first resin into a curved shape; solidifying the first resin; A second resin for partition wall formation is injected and solidified between the respective ends of the hollow fiber membranes and between the respective ends of the hollow fiber membranes and the housing, and along the solidified first resin. Since a partition is formed and a step of fixing the end of the hollow fiber membrane bundle to the housing and a step of removing the solidified first resin from the partition, the partition made of the second resin is used. Forms a curved surface that is the same as the curved surface of the first resin. When entering the open end of the hollow fiber membranes, and smoothly flows into the hollow fiber membrane along the curved surface of the partition wall,
Suppress unnecessary turbulence.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図2】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 2 is a sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図3】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 3 is a cross-sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図4】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 4 is a sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図5】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 5 is a sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図6】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 6 is a cross-sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図7】本発明の製造方法によって製造されたダイアラ
イザーを評価する実験回路図。
FIG. 7 is an experimental circuit diagram for evaluating a dialyzer manufactured by the manufacturing method of the present invention.

【図7】本発明の製造方法によって製造されたダイアラ
イザーを評価したグラフ。
FIG. 7 is a graph evaluating the dialyzer manufactured by the manufacturing method of the present invention.

【符号の説明】[Explanation of symbols]

1 ハウジング 2 中空糸膜 3 中空糸膜束 4 隔壁 4a 端面 6 流出入口 9 湾曲面 10 容器 10a 容器流出入口 11 第1の樹脂 11a 第1の樹脂の端面 12 第2の樹脂 1 Housing 2 Hollow Fiber Membrane 3 Hollow Fiber Membrane Bundle 4 Partition 4a End Surface 6 Outflow Inlet 9 Curved Surface 10 Container 10a Container Outflow Inlet 11 First Resin 11a End Surface of First Resin 12 Second Resin

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年4月11日[Submission date] April 11, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図2】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 2 is a sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図3】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 3 is a cross-sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図4】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 4 is a sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図5】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 5 is a sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図6】本発明に係る中空糸膜型流体処理装置の製造方
法の一実施例を示す断面図。
FIG. 6 is a cross-sectional view showing an embodiment of a method for manufacturing a hollow fiber membrane type fluid treatment device according to the present invention.

【図7】本発明の製造方法によって製造されたダイアラ
イザーを評価する実験回路図。
FIG. 7 is an experimental circuit diagram for evaluating a dialyzer manufactured by the manufacturing method of the present invention.

【図】本発明の製造方法によって製造されたダイアラ
イザーを評価したグラフ。
FIG. 8 is a graph evaluating the dialyzer manufactured by the manufacturing method of the present invention.

【符号の説明】 1 ハウジング 2 中空糸膜 3 中空糸膜束 4 隔壁 4a 端面 6 流出入口 9 湾曲面 10 容器 10a 容器流出入口 11 第1の樹脂 11a 第1の樹脂の端面 12 第2の樹脂[Description of Reference Signs] 1 housing 2 hollow fiber membrane 3 hollow fiber membrane bundle 4 partition wall 4a end face 6 outflow inlet 9 curved surface 10 container 10a container outflow inlet 11 first resin 11a end face of first resin 12 second resin

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】ハウジング内に、多数の中空糸膜からなる
中空糸膜束を収容する工程と、前記中空糸膜束の端部を
液状の第1の樹脂の液表面に接触させるか、あるいは液
中に浸漬する工程と、前記第1の樹脂の液面を湾曲状に
形成する工程と、前記第1の樹脂を固化させる工程と、
前記中空糸膜の各端部同士の間および中空糸膜の各端部
と前記ハウジングとの間に隔壁形成用の第2の樹脂を注
入して固化させ、前記固化した第1の樹脂に沿って隔壁
を形成するとともに前記中空糸膜束の端部を前記ハウジ
ングに固定する工程と、前記固化した第1の樹脂を前記
隔壁から取り除く工程とからなることを特徴とする中空
糸膜型流体処理装置の製造方法。
1. A step of accommodating a hollow fiber membrane bundle composed of a large number of hollow fiber membranes in a housing, and bringing an end portion of the hollow fiber membrane bundle into contact with a liquid surface of a liquid first resin, or A step of immersing in a liquid, a step of forming a liquid surface of the first resin into a curved shape, and a step of solidifying the first resin,
A second resin for partition wall formation is injected between the respective ends of the hollow fiber membranes and between the respective ends of the hollow fiber membranes and the housing to be solidified, and along the solidified first resin. Forming a partition wall and fixing the end portion of the hollow fiber membrane bundle to the housing, and removing the solidified first resin from the partition wall, a hollow fiber membrane type fluid treatment. Device manufacturing method.
【請求項2】前記第1の樹脂の液面を湾曲状に形成する
工程は、前記中空糸膜外表面と前記第1の樹脂の液面に
よって形成される空間を加圧して液面を湾曲状に形成す
る請求項1記載の中空糸膜型流体処理装置の製造方法。
2. The step of forming the liquid surface of the first resin in a curved shape bends the liquid surface by pressurizing the space formed by the outer surface of the hollow fiber membrane and the liquid surface of the first resin. The method for manufacturing a hollow fiber membrane type fluid treatment device according to claim 1, wherein the hollow fiber membrane type fluid treatment device is formed into a shape.
【請求項3】前記第1の樹脂の液面を湾曲状に形成する
工程は、前記第1の樹脂を前記中空糸膜内に吸引するこ
とにより、第1の樹脂の液面を下げて湾曲状に形成する
請求項1記載の中空糸膜型流体処理装置の製造方法。
3. The step of forming the liquid surface of the first resin into a curved shape lowers the liquid surface of the first resin by bending the liquid surface of the first resin by sucking the first resin into the hollow fiber membrane. The method for manufacturing a hollow fiber membrane type fluid treatment device according to claim 1, wherein the hollow fiber membrane type fluid treatment device is formed into a shape.
【請求項4】前記第1の樹脂の液面を湾曲状に形成する
工程は、前記第1の樹脂が入った容器から前記第1の樹
脂を抜き取ることにより、第1の樹脂の液面を下げて湾
曲状に形成する請求項1記載の中空糸膜型流体処理装置
の製造方法。
4. The step of forming the liquid surface of the first resin in a curved shape removes the first resin from the container containing the first resin to form the liquid surface of the first resin. The method for manufacturing a hollow fiber membrane type fluid treatment device according to claim 1, wherein the hollow fiber membrane type fluid treatment device is formed by lowering it to be curved.
【請求項5】前記第1の樹脂の液面を湾曲状に形成する
工程は、前記第1の樹脂を体積変化の大きな樹脂によっ
て構成することにより、前記樹脂の体積収縮により第1
の樹脂の液面を下げて湾曲状に形成する請求項1記載の
中空糸膜型流体処理装置の製造方法。
5. The step of forming the liquid surface of the first resin into a curved shape comprises forming the first resin with a resin having a large volume change, so that the volume shrinkage of the first resin
2. The method for manufacturing a hollow fiber membrane type fluid treatment device according to claim 1, wherein the liquid level of the resin is lowered to form a curved shape.
【請求項6】前記第1の樹脂の液面を湾曲状に形成する
工程は、前記第1の樹脂をの下層に有する物質の体積変
化により、第1の樹脂の液面を下げて湾曲状に形成する
請求項1記載の中空糸膜型流体処理装置の製造方法。
6. The step of forming the liquid surface of the first resin into a curved shape lowers the liquid surface of the first resin due to a volume change of a substance having the first resin in a lower layer. The method for manufacturing a hollow fiber membrane type fluid treatment device according to claim 1, wherein
JP16199291A 1991-04-08 1991-04-08 Preparation of hollow fiber membrane type fluid treating apparatus Pending JPH06262043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16199291A JPH06262043A (en) 1991-04-08 1991-04-08 Preparation of hollow fiber membrane type fluid treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16199291A JPH06262043A (en) 1991-04-08 1991-04-08 Preparation of hollow fiber membrane type fluid treating apparatus

Publications (1)

Publication Number Publication Date
JPH06262043A true JPH06262043A (en) 1994-09-20

Family

ID=15745980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16199291A Pending JPH06262043A (en) 1991-04-08 1991-04-08 Preparation of hollow fiber membrane type fluid treating apparatus

Country Status (1)

Country Link
JP (1) JPH06262043A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158047A1 (en) * 1999-03-05 2001-11-28 Mitsubishi Rayon Co., Ltd. Carriers having biological substance
JP2006288866A (en) * 2005-04-13 2006-10-26 Toyobo Co Ltd Method for coating hollow-fiber hemocatharsis membrane with surface modifier, surface modifier coated hollow-fiber hemocatharsis membrane and surface modifier coated hollow-fiber hemocatharsis appliance
JP2007061671A (en) * 2005-08-29 2007-03-15 Nok Corp Hollow fiber membrane module and its manufacturing method
EP3620228A1 (en) * 2018-09-04 2020-03-11 Gambro Lundia AB Process for making a filtration and/or diffusion device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1158047A1 (en) * 1999-03-05 2001-11-28 Mitsubishi Rayon Co., Ltd. Carriers having biological substance
EP1158047A4 (en) * 1999-03-05 2002-11-13 Mitsubishi Rayon Co Carriers having biological substance
JP2006288866A (en) * 2005-04-13 2006-10-26 Toyobo Co Ltd Method for coating hollow-fiber hemocatharsis membrane with surface modifier, surface modifier coated hollow-fiber hemocatharsis membrane and surface modifier coated hollow-fiber hemocatharsis appliance
JP2007061671A (en) * 2005-08-29 2007-03-15 Nok Corp Hollow fiber membrane module and its manufacturing method
JP4631608B2 (en) * 2005-08-29 2011-02-16 Nok株式会社 Hollow fiber membrane module and manufacturing method thereof
EP3620228A1 (en) * 2018-09-04 2020-03-11 Gambro Lundia AB Process for making a filtration and/or diffusion device
WO2020048948A1 (en) 2018-09-04 2020-03-12 Gambro Lundia Ab Process for making a filtration and/or diffusion device
CN112654416A (en) * 2018-09-04 2021-04-13 甘布罗伦迪亚股份公司 Method for producing a filtration and/or diffusion device
CN112654416B (en) * 2018-09-04 2022-12-06 甘布罗伦迪亚股份公司 Method for producing a filtration and/or diffusion device

Similar Documents

Publication Publication Date Title
CA1340585C (en) Medical instrument and method for fabricating same
AU784825B2 (en) A placental blood collection line including a rinsing bag
EP2576026A1 (en) Microfabricated artificial lung assist device, and methods of use and manufacture thereof
JPH09504205A (en) Blood oxygenation system and container and method of manufacturing the same
JPS5928971A (en) Hollow yarn type mass transfer apparatus and production thereof
US7094348B2 (en) Dialyzer and method for manufacturing the same
US20040094466A1 (en) Method for manufacturing hollow fiber membranes
JP2502924B2 (en) Exchanger manufacturing method
JPH06262043A (en) Preparation of hollow fiber membrane type fluid treating apparatus
JP2000210539A (en) Body fluid treatment device, hollow fiber membrane assembly and production of body fluid treatment device
JPH04309359A (en) Production of hollow yarn membrane type fluic treating device
WO2007113494A1 (en) Method of producing a multi-layer self-sealing graft
JPH04309360A (en) Hollow yarn membrane type fluid treating device and its production
JPH03123562A (en) Hollow fiber type fluid treatment apparatus and preparation thereof
JPS5957661A (en) Hollow yarn type artificial lung
JP2000210538A (en) Method for producing body fluid treatment device and body fluid treatment device
JPS6031743A (en) Blood bypassing tube
JPS6264372A (en) Membrane type artificial lung
JPS5955256A (en) Hollow yarn type artificial lung
JP3499002B2 (en) Hollow fiber membrane type blood processing apparatus and blood processing apparatus
JPH049423B2 (en)
WO2023210559A1 (en) Connection device
JP3025973B2 (en) Liquid treatment equipment
JP3360995B2 (en) Artificial heart lung device and oxygenator with blood reservoir
JPH0298363A (en) Hollow fiber type artificial lung