JPH06261548A - Unbalance compensator for three phase/two phase converter - Google Patents

Unbalance compensator for three phase/two phase converter

Info

Publication number
JPH06261548A
JPH06261548A JP5047605A JP4760593A JPH06261548A JP H06261548 A JPH06261548 A JP H06261548A JP 5047605 A JP5047605 A JP 5047605A JP 4760593 A JP4760593 A JP 4760593A JP H06261548 A JPH06261548 A JP H06261548A
Authority
JP
Japan
Prior art keywords
power
phase
circuit
current
harmonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5047605A
Other languages
Japanese (ja)
Other versions
JP2828863B2 (en
Inventor
Yoshifumi Mochinaga
芳文 持永
Taiji Hisamizu
泰司 久水
Masatoshi Takeda
正俊 竹田
Takeshi Miyashita
武司 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Mitsubishi Electric Corp
Original Assignee
Railway Technical Research Institute
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Mitsubishi Electric Corp filed Critical Railway Technical Research Institute
Priority to JP5047605A priority Critical patent/JP2828863B2/en
Publication of JPH06261548A publication Critical patent/JPH06261548A/en
Application granted granted Critical
Publication of JP2828863B2 publication Critical patent/JP2828863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Ac-Ac Conversion (AREA)

Abstract

PURPOSE:To obtain an unbalance compensator capable of suppressing harmonic current by comprising a converter control circuit which controls a both power converter on the basis of command signals from a power interchange control circuit, a reactive power compensation circuit, and a harmonic circuit. CONSTITUTION:A power converter 10 communicates power in both directions between AC power of an M connection power source circuit on the secondary side of a Scott connection transformer 2 and DC power of a DC intermediate circuit, and a power converter 11 between AC power of a T connection power source circuit and DC power of the DC intermediate circuit. A power interchange control circuit 15, a DC voltage control circuit 16, a reactive power compensation circuit 17, and a harmonic compensation circuit 18 output command signals complying with control targets, which are synthesized in a batch by a current command operational circuit 19, so that the power converters 10,11 undergo on-off switching control through a current control circuit 20 and a PWM control circuit 21 on the basis of the command signal. As a result, two-phase side active power becomes equal, and simultaneously reactive power and harmonic current are compensated to provide a complete equalization of current.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、例えば交流電気鉄道
のき電回路に設置され特にその1次側3相交流電圧の不
平衡を補償する3相/2相変換装置用不平衡補償装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an unbalance compensator for a three-phase / two-phase converter installed in, for example, a feeder circuit of an AC electric railway, and particularly for compensating an unbalance of a primary three-phase AC voltage. It is a thing.

【0002】[0002]

【従来の技術】図7は例えば昭和62年電気・情報関連
学会連合大会で発表された従来の3相交流電圧不平衡補
償機能を備えた3相/2相変換装置を示す構成図であ
る。図において、1は3相交流電源、2はその1次側が
3相交流電源1に接続された3相/2相変換用変圧器と
してのスコット結線変圧器、3および4はスコット結線
変圧器2の2次側各巻線に接続されたそれぞれ第1およ
び第2の単相交流負荷としてのM座負荷およびT座負
荷、5および6はその直流側が直流リアクトル7を介し
て互いに接続され、交流側がそれぞれ搬送波除去用のろ
波器8および9を介してそれぞれM座負荷3およびT座
負荷4に接続された単相自励式電流形の第1および第2
の電力変換器、5a〜5d、6a〜6dはそれぞれ電力
変換器5および6を構成するスイッチング素子である。
2. Description of the Related Art FIG. 7 is a block diagram showing a conventional three-phase / two-phase converter having a three-phase AC voltage unbalance compensating function, which was announced at a joint conference of the Institute of Electrical and Information Engineers, 1987. In the figure, 1 is a 3-phase AC power supply, 2 is a Scott connection transformer as a 3-phase / 2-phase conversion transformer whose primary side is connected to the 3-phase AC power supply 1, and 3 and 4 are Scott connection transformers 2. The M-side load and the T-side load 5 and 6 as the first and second single-phase AC loads respectively connected to the secondary side windings of the DC side are connected to each other via the DC reactor 7, and the AC side is First and second single-phase self-excited current sources connected to the M-seat load 3 and the T-seat load 4 via filters 8 and 9 for removing carrier waves, respectively.
The power converters 5a to 5d and 6a to 6d are switching elements constituting the power converters 5 and 6, respectively.

【0003】次に動作について説明する。スコット結線
変圧器2は3相交流電源1をM座電源およびT座電源の
2相に変換するが、単相交流負荷であるM座負荷3およ
びT座負荷4の各無効電力成分が零で、かつそれぞれの
有効電力成分が等しいとき3相交流電源1の3相電圧、
電流が平衡する。この原理を活用して2次側のM座とT
座との間で相互に有効電力を融通し、1次側の3相交流
電圧の不平衡を補償している。以下、先ず、この電力融
通の原理について説明する。
Next, the operation will be described. The Scott connection transformer 2 converts the three-phase AC power supply 1 into two phases, that is, an M-seat power supply and a T-seat power supply, but the reactive power components of the M-seat load 3 and the T-seat load 4, which are single-phase AC loads, are zero. , And when the respective active power components are equal, the three-phase voltage of the three-phase AC power supply 1,
The current is balanced. Utilizing this principle, M seat and T on the secondary side
Active power is mutually exchanged with the seat to compensate for imbalance of the three-phase AC voltage on the primary side. Hereinafter, first, the principle of this power interchange will be described.

【0004】電力変換器5,6間の直流リアクトル7に
は常に一定の直流電流を流しておく。そして、M座負荷
3およびT座負荷4の軽重を比較して、軽い方は電力変
換器へ電力を供給し重い方は電力変換器から電力を取り
出すように制御する。即ち、今、M座負荷3の有効電力
をPLM、T座負荷4の有効電力をPLTとすると、PLM
LTより大きい場合、電力変換器6はT座電源から(P
LM−PLT)/2の電力を取り込み、直流リアクトル7を
介して電力変換器5にその電力を供給する。電力変換器
5は電力変換器6から(PLM−PLT)/2の電力を受け
取り、この電力をM座電源へ供給する。
A constant DC current is always supplied to the DC reactor 7 between the power converters 5 and 6. Then, the weight of the M seat load 3 and the weight of the T seat load 4 are compared, and the lighter one is controlled to supply power to the power converter and the heavier one to extract power from the power converter. That is, now, effective power P LM of M seat load 3, when the active power of T seat load 4 and P LT, if P LM is greater than P LT, the power converter 6 from T seat power supply (P
LM -P LT) / 2 uptake power and supplies the electric power to the power converter 5 through a DC reactor 7. Receiving power converter 5 from the power converter 6 of power (P LM -P LT) / 2 , and supplies the electric power to the M seat power.

【0005】このとき、M座電源が3相交流電源1から
取り込む電力は、 PLM−(PLM−PLT)/2=(PLM+PLT)/2・・・
・・(1) また、T座電源が3相交流電源1から取り込む電力は、 PLM+(PLM−PLT)/2=(PLM+PLT)/2・・・
・・(2) となり、スコット結線変圧器2から見たそれぞれM座お
よびT座にかかる負荷電力は等しくなる。この結果、ス
コット結線変圧器2の1次側の3相電流も平衡する。
[0005] At this time, the power M seat power captures the three-phase AC power source 1, P LM - (P LM -P LT) / 2 = (P LM + P LT) / 2 ···
... (1) The power of T seat power captures the three-phase AC power source 1, P LM + (P LM -P LT) / 2 = (P LM + P LT) / 2 ···
.. (2), and the load power applied to the M seat and the T seat viewed from the Scott connection transformer 2 becomes equal. As a result, the three-phase current on the primary side of the Scott connection transformer 2 is also balanced.

【0006】次に、無効電力補償については、M座負荷
3およびT座負荷4の無効電力をそれぞれQLM,QLT
表し、これらが遅れ力率の無効電力とすれば、電圧に対
し90゜位相の遅れた電流を取り込んでいる訳であるか
ら、電力変換器5および6により電圧に対し90゜位相
の進んだ交流電流に変換してそれぞれM座負荷3および
T座負荷4に供給すれば、3相交流電源1から見た無効
電力は打ち消され有効電力のみとなって力率が改善され
るとともに3相電圧の平衡化もより安全となる。
Next, regarding the reactive power compensation, the reactive powers of the M-seat load 3 and the T-seat load 4 are represented as Q LM and Q LT , respectively. Since the current having a phase delay is taken in, the power converters 5 and 6 convert the AC current having a phase advance of 90 degrees with respect to the voltage and supply it to the M seat load 3 and the T seat load 4, respectively. For example, the reactive power seen from the three-phase AC power supply 1 is canceled out and only the active power is recovered, the power factor is improved, and the three-phase voltage is balanced more safely.

【0007】[0007]

【発明が解決しようとする課題】従来の3相/2相変換
装置用不平衡補償装置は以上のように構成されているの
で、有効電力融通と無効電力補償の制御により、3相電
圧の平衡化および力率改善についてはその機能を発揮す
るが、交流電気車の運転により発生する高調波電流に対
しては考慮されておらず、有害な高調波電流が3相交流
電源に流出するという問題点があった。
Since the conventional unbalance compensator for a three-phase / two-phase converter is configured as described above, it is possible to balance the three-phase voltage by controlling active power interchange and reactive power compensation. Although it performs its function to improve the power factor and improve the power factor, it does not take into consideration the harmonic current generated by the operation of the AC electric vehicle, and the harmful harmonic current flows out to the three-phase AC power source. There was a point.

【0008】この発明は以上のような問題点を解消する
ためになされたもので、従来からの電力変換器を活用し
て高調波電流の抑制も可能となる3相/2相変換装置用
不平衡補償装置を得ることを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and a conventional three-phase / 2-phase converter for a three-phase / two-phase converter which can suppress a harmonic current by utilizing a conventional power converter. The purpose is to obtain a balance compensator.

【0009】[0009]

【課題を解決するための手段】この発明に係る3相/2
相変換装置用不平衡補償装置は、両単相交流負荷の有効
電力を比較し両電力変換器を介してその交流側相互間で
有効電力を融通することにより変換用変圧器から見た2
次側各相有効電力が等しくなるよう指令信号を発生する
電力融通制御回路、第1および第2の単相交流負荷の無
効電力を求めそれぞれ第1および第2の電力変換器で上
記無効電力を補償するよう指令信号を発生する無効電力
補償回路、上記第1および第2の単相交流負荷の高調波
電流を求めそれぞれ上記第1および第2の電力変換器で
上記高調波電流を補償するよう指令信号を発生する高調
波補償回路、および上記電力融通制御回路と無効電力補
償回路と高調波補償回路とからの指令信号に基づき上記
両電力変換器を制御する変換器制御回路を備えたもので
ある。
Three phases / 2 according to the present invention
The unbalance compensator for the phase converter sees from the transformer for conversion by comparing the active powers of the two single-phase AC loads and sharing the active power between the AC sides through the two power converters.
A power interchange control circuit that generates a command signal so that the active powers on the secondary side are equal to each other, and the reactive powers of the first and second single-phase AC loads are calculated to obtain the reactive powers by the first and second power converters, respectively. A reactive power compensating circuit that generates a command signal to perform compensation, finds harmonic currents of the first and second single-phase AC loads, and compensates the harmonic currents by the first and second power converters, respectively. A harmonic compensation circuit that generates a command signal, and a converter control circuit that controls both the power converters based on the command signals from the power interchange control circuit, the reactive power compensation circuit, and the harmonic compensation circuit. is there.

【0010】また、上記で無効電力および高調波電流
は、3相/2相変換用変圧器1次側の3相交流電圧と各
単相交流負荷の電流との検出信号、または上記変圧器の
1次側3相交流電圧と2次側各単相交流電圧との検出信
号から求めることができる。
Further, in the above, the reactive power and the harmonic current are detected signals of the three-phase / two-phase conversion transformer primary side three-phase AC voltage and the current of each single-phase AC load, or the above-mentioned transformer. It can be obtained from detection signals of the primary side three-phase AC voltage and the secondary side single-phase AC voltages.

【0011】[0011]

【作用】この発明に係る3相/2相変換装置用不平衡補
償装置においては、その両電力変換器が2相両相の有効
電力が等しくなるよう有効電力を融通制御し、また、各
単相交流負荷の無効電力および高調波電流を打ち消す補
償制御の動作を行う。
In the unbalance compensator for a three-phase / two-phase converter according to the present invention, both of the power converters control the active power so that the active powers of the two-phase and the two-phase are equal, and each of the single power converters is controlled. Performs compensation control operation to cancel the reactive power and harmonic current of the phase AC load.

【0012】[0012]

【実施例】実施例1.図1はこの発明の実施例1による
3相/2相変換装置用不平衡補償装置を示す構成図であ
る。図において、1〜4は従来と同一のもので説明を省
略する。10および11はその直流側が直流コンデンサ
12と共に互いに接続され交流側がそれぞれM座負荷3
およびT座負荷4に接続された第1および第2の電力変
換器で、ここでは後述する高調波電流出力制御にも適し
たいわゆるPWM制御の単相自励式電圧形の電力変換器
を採用している。そして、電力変換器10はそれぞれG
TOサイリスタ10b、10d、10f、10hおよび
各GTOサイリスタと逆並列接続されたダイオード10
a、10c、10e、10gから構成され、電力変換器
11はそれぞれGTOサイリスタ11b、11d、11
f、11hおよびダイオード11a、11c、11e、
11gから構成されている。
EXAMPLES Example 1. 1 is a block diagram showing an unbalance compensator for a 3-phase / 2-phase converter according to a first embodiment of the present invention. In the figure, 1 to 4 are the same as the conventional ones and their explanations are omitted. 10 and 11 are connected to each other on the DC side together with the DC capacitor 12 and are connected to the M side load 3 on the AC side, respectively.
And the first and second power converters connected to the T-seat load 4, here, so-called PWM-controlled single-phase self-exciting voltage type power converters that are also suitable for the harmonic current output control described later are adopted. ing. Then, the power converters 10 are respectively G
TO thyristor 10b, 10d, 10f, 10h and diode 10 connected in anti-parallel with each GTO thyristor
Power converter 11 includes GTO thyristors 11b, 11d, and 11a, 10c, 10e, and 10g, respectively.
f, 11h and diodes 11a, 11c, 11e,
It is composed of 11 g.

【0013】13および14はそれぞれM座電源および
T座電源の電圧を検出する電圧検出器である。34およ
び35はそれぞれM座電源およびT座電源の電流を検出
する電流検出器、36および37はそれぞれ電力変換器
10および11の出力電流を検出する電流検出器であ
る。
Reference numerals 13 and 14 are voltage detectors for detecting the voltages of the M and T seat power sources, respectively. Reference numerals 34 and 35 are current detectors for detecting the currents of the M and T seat power supplies, respectively, and 36 and 37 are current detectors for detecting the output currents of the power converters 10 and 11, respectively.

【0014】15はM座とT座との相互間で有効電力の
授受を制御する電力融通制御回路、16〜21は電力変
換器10の制御回路で、16は直流電圧制御回路、17
は無効電力補償回路、18は高調波補償回路、19は以
上15〜18の制御回路の出力信号に基づき電力変換器
10の出力電流指令を演算し、後述する20,21とと
もに変換器制御回路を構成する電流指令演算回路、20
はこの電流指令演算回路19の出力を指令として電力変
換器10の出力電流制御を行う電流制御回路、21は電
流制御回路20からの信号に基づき電力変換器10のG
TOサイリスタのスイッチング制御を行うPWM制御回
路である。また、22〜27は電力変換器11の制御回
路で、それぞれ既述した16〜21に相当するものであ
る。
Reference numeral 15 is a power interchange control circuit for controlling the transfer of active power between the M seat and the T seat, 16 to 21 are control circuits for the power converter 10, 16 is a DC voltage control circuit, and 17 is a control circuit.
Is a reactive power compensating circuit, 18 is a harmonic compensating circuit, 19 is an output current command of the power converter 10 based on the output signals of the control circuits 15 to 18, and a converter control circuit is provided together with 20, 21 described later. Comprising current command calculation circuit, 20
Is a current control circuit that controls the output current of the power converter 10 using the output of the current command calculation circuit 19 as a command, and 21 is a G of the power converter 10 based on a signal from the current control circuit 20.
It is a PWM control circuit that performs switching control of the TO thyristor. Further, 22 to 27 are control circuits of the power converter 11, which correspond to the above-mentioned 16 to 21, respectively.

【0015】次に動作について説明する。図1で示した
電力変換器10は、スコット結線変圧器2の2次側のM
座電源回路の交流電力と直流コンデンサ12から構成さ
れる直流中間回路の直流電力との間で双方向の電力授受
を行う機能をもち、また電力変換器11は、同様にスコ
ット結線変圧器2の2次側のT座電源回路の交流電力と
上記直流中間回路の直流電力との間で双方向の電力授受
を行う機能をもち、M座電源回路とT座電源回路との間
の有効電力の授受を直流中間回路を介して行うことがで
きる。
Next, the operation will be described. The power converter 10 shown in FIG. 1 is the secondary side M of the Scott connection transformer 2.
The power converter 11 has a function of bidirectionally exchanging power between the AC power of the DC power supply circuit and the DC power of the DC intermediate circuit composed of the DC capacitor 12, and the power converter 11 of the Scott connection transformer 2 similarly. It has a function of bidirectional power transfer between the AC power of the T-seat power supply circuit on the secondary side and the DC power of the DC intermediate circuit, and the effective power of the M-seat power supply circuit and the T-seat power supply circuit is exchanged. The transfer can be done via a DC intermediate circuit.

【0016】直流中間回路の電圧を直流電圧制御回路1
6および22で常に一定に制御した状態で、M座負荷3
およびT座負荷4の電力を比較し、負荷の少ない方の電
源回路に接続された電力変換器はこの電源回路から有効
電力を取り込み、直流中間回路に電力を供給し、負荷の
多い方の電源回路に接続された電力変換器は直流中間回
路から有効電力を取り込み、この電源回路に電力を供給
する。この結果、M座電源回路およびT座電源回路の有
効電力を等しくすることができ、スコット結線変圧器1
次側の3相交流電源1の3相電流は少なくともその有効
分は平衡する。以上は、主として電力融通制御回路15
の制御動作によって達成される。
The voltage of the DC intermediate circuit is set to the DC voltage control circuit 1
M seat load 3 with constant control at 6 and 22
And the power of the T-seat load 4 are compared, and the power converter connected to the power supply circuit with the smaller load takes in the active power from this power supply circuit and supplies the power to the DC intermediate circuit, and the power supply with the larger load. A power converter connected to the circuit takes active power from the DC intermediate circuit and supplies power to this power circuit. As a result, the active powers of the M-seat power supply circuit and the T-seat power supply circuit can be equalized, and the Scott connection transformer 1
At least the effective portion of the three-phase current of the three-phase AC power supply 1 on the secondary side is balanced. The above is mainly the power interchange control circuit 15
It is achieved by the control operation of.

【0017】次に、M座負荷3およびT座負荷4の無効
電力および高調波電流の補償は、M座電源側およびT座
電源側それぞれ独立して電力変換器10および11によ
り行うことができる。図2はこの無効電力補償回路およ
び高調波補償回路の内部構成を示すもので、電力変換器
10と11においては同じ構成であるので以下電力変換
器10についてのみ説明する。
Next, the reactive power and harmonic current of the M-seat load 3 and the T-seat load 4 can be compensated by the power converters 10 and 11 independently of the M-seat power supply side and the T-seat power supply side, respectively. . FIG. 2 shows the internal configuration of the reactive power compensating circuit and the harmonic compensating circuit. Since the power converters 10 and 11 have the same configuration, only the power converter 10 will be described below.

【0018】図2において、28は負荷電流検出回路
で、ACCT等の電流検出器34および36からのM座
電源電流および電力変換器10の出力電流の検出値を入
力し、M座負荷3の電流を求める。なお、M座負荷3の
電流を直接検出できる場合はその検出値を用いても差し
支えない。また、29は電圧同期回路で電圧検出器13
からのM座電源電圧の検出値を入力し、この電圧に同期
したSIN信号およびCOS信号を発生する。
In FIG. 2, reference numeral 28 denotes a load current detection circuit, which inputs the detected values of the M seat power source current and the output current of the power converter 10 from the current detectors 34 and 36 such as ACCT, and inputs the detected value of the M seat load 3. Find the current. If the current of the M seat load 3 can be directly detected, the detected value may be used. Further, 29 is a voltage synchronizing circuit, which is a voltage detector 13
The detected value of the M seat power supply voltage from is input and the SIN signal and the COS signal synchronized with this voltage are generated.

【0019】負荷電流検出回路28および電圧同期回路
29の出力信号はそれぞれ有効分演算回路30および無
効分演算回路31に入力され、ここでM座負荷電流の有
効成分および無効成分が演算される。32はHPF(ハ
イパスフィルタ)からなる高調波検出回路で、有効分演
算回路30および無効分演算回路31の出力信号から高
調波成分を抽出して補償対象の高調波電流信号を出力す
る。有効分演算回路30および無効分演算回路31の演
算過程で電流の基本波成分が直流となっているので、高
調波検出回路32における高調波成分の抽出が確実高精
度になされる。33はLPF(ローパスフィルタ)から
なる無効電力検出回路で、無効分演算回路31の出力信
号から無効成分を抽出して補償対象の無効電力信号を出
力する。この場合も、無効分演算回路31の演算過程で
電流の基本波成分が直流となっているので無効電力検出
回路33における基本波無効成分の抽出が確実高精度に
なされる。なお、上記では負荷電流を入力して一旦有効
分無効分演算を行った後高調波電流を検出するようにし
たが、負荷電流からHPFで直接高調波分を抽出検出す
るようにしてもよい。
The output signals of the load current detection circuit 28 and the voltage synchronization circuit 29 are input to the effective component arithmetic circuit 30 and the reactive component arithmetic circuit 31, respectively, where the effective and ineffective components of the M seat load current are calculated. Reference numeral 32 denotes a harmonic wave detection circuit including an HPF (high-pass filter), which extracts a harmonic wave component from output signals of the effective component calculation circuit 30 and the reactive component calculation circuit 31 and outputs a harmonic current signal to be compensated. Since the fundamental wave component of the current is DC in the process of calculation by the effective component calculation circuit 30 and the reactive component calculation circuit 31, the harmonic component extraction by the harmonic detection circuit 32 is surely performed with high accuracy. Reference numeral 33 is a reactive power detection circuit including an LPF (low pass filter), which extracts a reactive component from the output signal of the reactive component calculation circuit 31 and outputs a reactive power signal to be compensated. Also in this case, since the fundamental wave component of the current is DC in the process of calculation by the reactive component calculation circuit 31, the extraction of the fundamental wave reactive component in the reactive power detection circuit 33 is surely performed with high accuracy. In the above description, the harmonic current is detected after inputting the load current and once performing the effective / reactive component calculation. However, the HPF may be directly extracted and detected by the HPF from the load current.

【0020】図1に戻り、電力融通制御回路15,直流
電圧制御回路16,無効電力補償回路17および高調波
補償回路18はそれぞれの制御目標に合致した指令信号
を出力するが、これらの信号は電流指令演算回路19で
一括統合されその指令信号に基づき電流制御回路20お
よびPWM制御回路21を経て電力変換器10の各GT
Oサイリスタ10b等のオンオフスイッチング制御がな
される。
Returning to FIG. 1, the power interchange control circuit 15, the DC voltage control circuit 16, the reactive power compensating circuit 17 and the harmonic compensating circuit 18 output command signals which match their respective control targets. Each of the GTs of the power converter 10 is integrated by the current command calculation circuit 19 through the current control circuit 20 and the PWM control circuit 21 based on the command signal.
ON / OFF switching control of the O thyristor 10b and the like is performed.

【0021】以上、M座電源回路における無効電力およ
び高調波電流の補償について説明したがT座電源回路に
おいても同様であり、両回路で無効電力を零として3相
交流電源1の出力を力率1にすることができる。同時
に、両電源回路において電気車負荷電流に含まれる高調
波分を補償して3相交流電源1への高調波電流の流出を
防ぎ電源電圧の高調波歪を低減することができ、3相電
圧、電流の完全な平衡化が得られる。
The compensation of the reactive power and the harmonic current in the M seat power supply circuit has been described above, but the same applies to the T seat power supply circuit, in which the reactive power is zero in both circuits and the output of the three-phase AC power supply 1 is the power factor. It can be 1. At the same time, in both power supply circuits, the harmonic components contained in the electric vehicle load current can be compensated to prevent the harmonic current from flowing out to the three-phase AC power supply 1 and reduce the harmonic distortion of the power supply voltage. , A perfect balance of current is obtained.

【0022】実施例2.図3はこの発明の実施例2によ
る3相/2相変換装置用不平衡補償装置を示す構成図で
ある。先の実施例1では電圧検出器13によりM座電源
電圧を検出し、また、電圧検出器14によりT座電源電
圧を検出して電力変換器10および11の同期電源とし
たのに対し、この実施例2においては、スコット結線変
圧器2の1次側に3相電圧検出器38を設けてこの検出
値を同期電源としている。即ち、図4に示すように、電
圧同期回路29は3相電圧検出器38からの3相電源電
圧の検出値を入力し、これから有効分、無効分演算に必
要な信号を作成する。この場合、3相電圧間の位相ずれ
がなく、かつ検出対象電圧の歪も少ないので、より正確
な同期電源が得られ、電力変換器10および11による
補償特性がより高精度となる。
Example 2. 3 is a block diagram showing an unbalance compensator for a three-phase / two-phase converter according to a second embodiment of the present invention. In the first embodiment, the M detector power supply voltage is detected by the voltage detector 13 and the T seat power supply voltage is detected by the voltage detector 14 to be used as the synchronous power supply for the power converters 10 and 11. In the second embodiment, a three-phase voltage detector 38 is provided on the primary side of the Scott connection transformer 2 and the detected value is used as a synchronous power supply. That is, as shown in FIG. 4, the voltage synchronization circuit 29 inputs the detected value of the three-phase power supply voltage from the three-phase voltage detector 38, and creates a signal necessary for the effective / ineffective component calculation from this. In this case, since there is no phase shift between the three-phase voltages and the distortion of the voltage to be detected is small, a more accurate synchronous power supply can be obtained, and the compensation characteristics of the power converters 10 and 11 are more accurate.

【0023】実施例3.図5はこの発明の実施例3によ
る3相/2相変換装置用不平衡補償装置を示す構成図で
ある。ここでは、電圧検出器13によりM座電源電圧
を、電圧検出器14によりT座電源電圧を検出し、これ
ら検出値と3相電圧検出器38の検出値とから補償すべ
き無効電力指令および高調波電流指令を求めている。即
ち、図6に示すように、電圧変動検出回路39はM座電
源電圧の検出値と3相電源電圧の検出値とを入力し、予
め記憶しているスコット結線変圧器2のインピーダンス
特性データを基にM座電源電流を求めその出力信号と電
圧同期回路29からの同期信号とから無効電力検出回路
33が無効電力指令を発生する。また、電圧ひずみ検出
回路40はM座電源電圧の検出値と3相電源電圧の検出
値との差から電圧ひずみを検出し、更に高調波検出回路
32が高調波電流指令を発生する。前掲実施例ではM座
電源回路およびT座電源回路に挿入されていた電流検出
器34および35は、一般に機器が大形化し、新たに設
置するのは容易でないが、この実施例3ではこれら電流
検出器34、35が不要となるので、設備がその分簡単
になるという利点がある。
Example 3. 5 is a block diagram showing an unbalance compensator for a 3-phase / 2-phase converter according to a third embodiment of the present invention. Here, the M detector power supply voltage is detected by the voltage detector 13, and the T seat power supply voltage is detected by the voltage detector 14, and the reactive power command and the harmonic to be compensated are detected from these detected values and the detected values of the three-phase voltage detector 38. Seeking a wave current command. That is, as shown in FIG. 6, the voltage fluctuation detection circuit 39 inputs the detected value of the M-spot power supply voltage and the detected value of the three-phase power supply voltage, and stores the previously stored impedance characteristic data of the Scott connection transformer 2. Based on the M seat power source current, the reactive power detection circuit 33 generates a reactive power command from the output signal thereof and the synchronizing signal from the voltage synchronizing circuit 29. Further, the voltage distortion detection circuit 40 detects voltage distortion from the difference between the detected value of the M seat power supply voltage and the detected value of the three-phase power supply voltage, and the harmonic detection circuit 32 further generates a harmonic current command. Although the current detectors 34 and 35 inserted into the M-seat power supply circuit and the T-seat power supply circuit in the above-described embodiment are generally large in size and are not easy to install newly, these currents are not included in the third embodiment. Since the detectors 34 and 35 are not required, there is an advantage that the equipment is simplified accordingly.

【0024】実施例4.なお、上記各実施例では、電力
変換器10,11としてGTOサイリスタをスイッチン
グ素子とする単相自励式電圧形のものとしたが、スイッ
チング素子としてパワートランジスタ、IGBT、パワ
ーMOSFETその他の自己消弧形半導体素子を用いて
もこの発明は上記したと同様の効果を奏する。また、電
力変換器のタイプとして、必ずしもPWM制御電圧形の
ものに限られるものではなく、補償対象とする高調波の
周波数範囲によっては電流形変換器も使用することがで
きる。更に、上記各実施例では3相/2相変換用変圧器
としてスコット結線変圧器2を使用した場合について説
明したが、同様の機能をもつ例えば変形ウッドブリッジ
結線変圧器等を使用してもよい。
Example 4. In each of the above-described embodiments, the power converters 10 and 11 are of the single-phase self-excited voltage type using GTO thyristors as switching elements. However, power transistors, IGBTs, power MOSFETs, and other self-extinguishing types are used as switching elements. Even if a semiconductor element is used, the present invention has the same effect as described above. Further, the type of the power converter is not necessarily limited to the PWM control voltage type, and a current type converter may be used depending on the frequency range of the harmonic wave to be compensated. Further, in each of the above embodiments, the case where the Scott connection transformer 2 is used as the three-phase / two-phase conversion transformer has been described, but a modified Woodbridge connection transformer or the like having the same function may be used. .

【0025】[0025]

【発明の効果】この発明は以上のように、電力融通制御
回路、無効電力補償回路に加えて高調波補償回路を備
え、これら回路からの指令信号に基づき両電力変換器を
制御するようにしたので、2相側の有効電力が均等とな
り、同時に無効電力および高調波電流が補償される。従
って、3相交流電源電流の不平衡が確実になくなり、3
相交流電源から見た力率も1に改善されその電圧の歪も
なくなる。
As described above, the present invention is provided with a harmonic compensating circuit in addition to a power accommodation control circuit and a reactive power compensating circuit, and controls both power converters based on a command signal from these circuits. Therefore, the active power on the two-phase side becomes equal, and at the same time, the reactive power and the harmonic current are compensated. Therefore, the unbalance of the three-phase AC power supply current is surely eliminated, and
The power factor seen from the phase alternating current power supply is also improved to 1, and the distortion of the voltage is also eliminated.

【0026】また、無効電力、高調波電流を求めるのに
3相交流電圧の検出値を使用するようにした場合は、検
出誤差が低くなり、補償電流の精度が向上する。
Further, when the detected values of the three-phase AC voltage are used to obtain the reactive power and the harmonic current, the detection error is reduced and the accuracy of the compensation current is improved.

【0027】更に、無効電力、高調波電流を3相/2相
変換用変圧器の1次側3相交流電圧と2次側単相交流電
圧との検出値から求めるようにすれば、変圧器2次側回
路に電流検出器を挿入する必要がなく、設備がその分簡
単となる。
Furthermore, if the reactive power and the harmonic current are obtained from the detected values of the primary side three-phase AC voltage and the secondary side single-phase AC voltage of the three-phase / two-phase conversion transformer, the transformer can be obtained. There is no need to insert a current detector in the secondary side circuit, and the equipment is simplified accordingly.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1による3相/2相変換装置
用不平衡補償装置を示す構成図である。
FIG. 1 is a configuration diagram showing an unbalance compensator for a three-phase / two-phase converter according to a first embodiment of the present invention.

【図2】図1の無効電力補償回路および高調波補償回路
の内部構成を示す図である。
FIG. 2 is a diagram showing an internal configuration of a reactive power compensation circuit and a harmonic compensation circuit of FIG.

【図3】この発明の実施例2による3相/2相変換装置
用不平衡補償装置を示す構成図である。
FIG. 3 is a configuration diagram showing an unbalance compensator for a three-phase / two-phase converter according to a second embodiment of the present invention.

【図4】図3の無効電力補償回路および高調波補償回路
の内部構成を示す図である。
FIG. 4 is a diagram showing an internal configuration of a reactive power compensation circuit and a harmonic compensation circuit of FIG.

【図5】この発明の実施例3による3相/2相変換装置
用不平衡補償装置を示す構成図である。
FIG. 5 is a configuration diagram showing an unbalance compensator for a 3-phase / 2-phase converter according to a third embodiment of the present invention.

【図6】図5の無効電力補償回路および高調波補償回路
の内部構成を示す図である。
6 is a diagram showing internal configurations of a reactive power compensation circuit and a harmonic compensation circuit of FIG.

【図7】従来の3相/2相変換装置用不平衡補償装置を
示す構成図である。
FIG. 7 is a configuration diagram showing a conventional unbalance compensator for a 3-phase / 2-phase converter.

【符号の説明】[Explanation of symbols]

1 3相交流電源 2 スコット結線変圧器 3 M座負荷 4 T座負荷 10,11 電力変換器 12 直流コンデンサ 13,14 電圧検出器 15 電力融通制御回路 17,23 無効電力補償回路 18,24 高調波補償回路 19,25 電流指令演算回路 34〜37 電流検出器 38 3相電圧検出器 1 3 Phase AC Power Supply 2 Scott Connection Transformer 3 M Seat Load 4 T Seat Load 10,11 Power Converter 12 DC Capacitor 13, 14 Voltage Detector 15 Power Interchange Control Circuit 17,23 Reactive Power Compensation Circuit 18,24 Harmonics Compensation circuit 19,25 Current command calculation circuit 34-37 Current detector 38 Three-phase voltage detector

───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹田 正俊 神戸市兵庫区和田崎町1丁目1番2号 三 菱電機株式会社神戸製作所内 (72)発明者 宮下 武司 神戸市兵庫区和田崎町1丁目1番2号 三 菱電機株式会社神戸製作所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Masatoshi Takeda Inventor Masatoshi Takeda 1-2-1, Wadasaki-cho, Hyogo-ku, Kobe Sanryo Electric Co., Ltd. Kobe Works (72) Takeshi Miyashita Wadazaki-cho, Hyogo-ku, Kobe 1 Chome 1-2 Sanrishi Electric Co., Ltd. Kobe Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1次側が3相交流電源に接続され2次側
がそれぞれ第1と第2の単相交流負荷に接続された3相
/2相変換用変圧器、直流側が互いに接続され交流側が
それぞれ上記第1および第2の単相交流負荷に接続され
た第1および第2の電力変換器、上記両単相交流負荷の
有効電力を比較し上記両電力変換器を介してその交流側
相互間で有効電力を融通することにより上記変換用変圧
器から見た2次側各相有効電力が等しくなるよう指令信
号を発生する電力融通制御回路、上記第1および第2の
単相交流負荷の無効電力を求めそれぞれ上記第1および
第2の電力変換器で上記無効電力を補償するよう指令信
号を発生する無効電力補償回路、上記第1および第2の
単相交流負荷の高調波電流を求めそれぞれ上記第1およ
び第2の電力変換器で上記高調波電流を補償するよう指
令信号を発生する高調波補償回路、および上記電力融通
制御回路と無効電力補償回路と高調波補償回路とからの
指令信号に基づき上記両電力変換器を制御する変換器制
御回路を備えた3相/2相変換装置用不平衡補償装置。
1. A three-phase / two-phase conversion transformer, the primary side of which is connected to a three-phase AC power source and the secondary side of which is connected to first and second single-phase AC loads, respectively. The first and second power converters respectively connected to the first and second single-phase AC loads, and the active powers of the both single-phase AC loads are compared with each other, and the two AC converters are connected to each other via the two power converters. A power interchange control circuit that generates a command signal so that the active power of each secondary side viewed from the transformer for conversion becomes equal by accommodating the active power between the first and second single-phase AC loads. A reactive power compensating circuit for obtaining a reactive power and generating a command signal for compensating the reactive power by the first and second power converters, respectively, and a harmonic current of the first and second single-phase AC loads are obtained. The above first and second power converters, respectively , A harmonic compensating circuit for generating a command signal to compensate the harmonic current, and controlling both power converters based on command signals from the power interchange control circuit, reactive power compensating circuit and harmonic compensating circuit. An unbalance compensator for a three-phase / two-phase converter having a converter control circuit.
【請求項2】 3相/2相変換用変圧器1次側の3相交
流電圧と各単相交流負荷の電流とを検出し、これらから
無効電力および高調波電流を求めるようにしたことを特
徴とする請求項1記載の3相/2相変換装置用不平衡補
償装置。
2. A three-phase / two-phase conversion transformer primary-side three-phase AC voltage and current of each single-phase AC load are detected, and reactive power and harmonic current are obtained from them. The unbalance compensator for a three-phase / two-phase converter according to claim 1.
【請求項3】 3相/2相変換用変圧器の1次側3相交
流電圧と2次側各単相交流電圧とを検出し、これらから
無効電力および高調波電流を求めるようにしたことを特
徴とする請求項1記載の3相/2相変換装置用不平衡補
償装置。
3. A method for detecting reactive power and harmonic current from primary-side three-phase AC voltage and secondary-side single-phase AC voltage of a three-phase / two-phase conversion transformer, respectively. The unbalance compensator for a three-phase / two-phase converter according to claim 1.
JP5047605A 1993-03-09 1993-03-09 Unbalance compensator for 3-phase / 2-phase converter Expired - Lifetime JP2828863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5047605A JP2828863B2 (en) 1993-03-09 1993-03-09 Unbalance compensator for 3-phase / 2-phase converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5047605A JP2828863B2 (en) 1993-03-09 1993-03-09 Unbalance compensator for 3-phase / 2-phase converter

Publications (2)

Publication Number Publication Date
JPH06261548A true JPH06261548A (en) 1994-09-16
JP2828863B2 JP2828863B2 (en) 1998-11-25

Family

ID=12779876

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5047605A Expired - Lifetime JP2828863B2 (en) 1993-03-09 1993-03-09 Unbalance compensator for 3-phase / 2-phase converter

Country Status (1)

Country Link
JP (1) JP2828863B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061250A (en) * 2001-08-10 2003-02-28 Mitsubishi Electric Corp Voltage fluctuation compensator
CN100370671C (en) * 2006-03-24 2008-02-20 武汉大学 Active power filtering method and its device based on alpha-beta current component directly injection
JP2008120240A (en) * 2006-11-13 2008-05-29 Meidensha Corp Feeder voltage compensating device
CN100417011C (en) * 2006-07-07 2008-09-03 南京同步科技有限公司 High-voltage variable frequency speed regulating method and apparatus thereof based on alph-beta current component direct-filling
JP2009124823A (en) * 2007-11-13 2009-06-04 Toshiba Mitsubishi-Electric Industrial System Corp Controller of railway static power conditioner
CN102570476A (en) * 2011-12-31 2012-07-11 浙江大学 Repetitive-control-based method for controlling compensation current of DSTATCOM (Distribution Static Synchronous Compensator)
CN102738810A (en) * 2012-07-02 2012-10-17 株洲变流技术国家工程研究中心有限公司 Traction power supply system and method
CN103124074A (en) * 2013-03-14 2013-05-29 威凡智能电气高科技有限公司 Power quality compound compensation method
JP2013141365A (en) * 2012-01-05 2013-07-18 Toshiba Corp Inverter control device
CN103532153A (en) * 2013-10-28 2014-01-22 湖南大学 MMCC direct railway power compensator and control method thereof
JP2014083900A (en) * 2012-10-22 2014-05-12 Mitsubishi Electric Corp Control device of electric power supply system for electric railroad
US9912230B2 (en) 2015-09-08 2018-03-06 Lsis Co., Ltd. Static VAR compensator apparatus and operating method thereof
US9948176B2 (en) 2015-08-19 2018-04-17 Lsis Co., Ltd. Static VAR compensator apparatus and operating method thereof
CN108306317A (en) * 2018-05-02 2018-07-20 南京赫曦电气有限公司 A kind of power distribution network transformer electric energy quality synthesis compensation apparatus and its method
CN110021953A (en) * 2019-04-29 2019-07-16 合肥工业大学 The DC side voltage control method that flexibility multimode switchs when unbalanced source voltage
CN110749834A (en) * 2019-11-26 2020-02-04 广东电网有限责任公司 On-load test analysis method
CN111600319A (en) * 2020-03-05 2020-08-28 青岛鼎信通讯股份有限公司 Power electronic type distributed three-phase imbalance treatment method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061250A (en) * 2001-08-10 2003-02-28 Mitsubishi Electric Corp Voltage fluctuation compensator
CN100370671C (en) * 2006-03-24 2008-02-20 武汉大学 Active power filtering method and its device based on alpha-beta current component directly injection
CN100417011C (en) * 2006-07-07 2008-09-03 南京同步科技有限公司 High-voltage variable frequency speed regulating method and apparatus thereof based on alph-beta current component direct-filling
JP2008120240A (en) * 2006-11-13 2008-05-29 Meidensha Corp Feeder voltage compensating device
JP2009124823A (en) * 2007-11-13 2009-06-04 Toshiba Mitsubishi-Electric Industrial System Corp Controller of railway static power conditioner
CN102570476A (en) * 2011-12-31 2012-07-11 浙江大学 Repetitive-control-based method for controlling compensation current of DSTATCOM (Distribution Static Synchronous Compensator)
JP2013141365A (en) * 2012-01-05 2013-07-18 Toshiba Corp Inverter control device
CN102738810A (en) * 2012-07-02 2012-10-17 株洲变流技术国家工程研究中心有限公司 Traction power supply system and method
JP2014083900A (en) * 2012-10-22 2014-05-12 Mitsubishi Electric Corp Control device of electric power supply system for electric railroad
CN103124074A (en) * 2013-03-14 2013-05-29 威凡智能电气高科技有限公司 Power quality compound compensation method
CN103532153A (en) * 2013-10-28 2014-01-22 湖南大学 MMCC direct railway power compensator and control method thereof
US9948176B2 (en) 2015-08-19 2018-04-17 Lsis Co., Ltd. Static VAR compensator apparatus and operating method thereof
US9912230B2 (en) 2015-09-08 2018-03-06 Lsis Co., Ltd. Static VAR compensator apparatus and operating method thereof
CN108306317A (en) * 2018-05-02 2018-07-20 南京赫曦电气有限公司 A kind of power distribution network transformer electric energy quality synthesis compensation apparatus and its method
CN110021953A (en) * 2019-04-29 2019-07-16 合肥工业大学 The DC side voltage control method that flexibility multimode switchs when unbalanced source voltage
CN110749834A (en) * 2019-11-26 2020-02-04 广东电网有限责任公司 On-load test analysis method
CN111600319A (en) * 2020-03-05 2020-08-28 青岛鼎信通讯股份有限公司 Power electronic type distributed three-phase imbalance treatment method
CN111600319B (en) * 2020-03-05 2023-04-18 青岛鼎信通讯股份有限公司 Power electronic type distributed three-phase imbalance treatment method

Also Published As

Publication number Publication date
JP2828863B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
US8644037B2 (en) AC-AC converter with high frequency link
JP2828863B2 (en) Unbalance compensator for 3-phase / 2-phase converter
US5886888A (en) Voltage source type power converting apparatus
US5091839A (en) Method and apparatus for supplying voltage to a three-phase voltage system having a load-carrying neutral conductor with a pulse width modulated three phase invertor
US20040196677A1 (en) Cross current control for power converter systems and integrated magnetic choke assembly
US5177428A (en) Inverter control device capable of supressing dc magnetization in three-phase transformer
WO2016017517A1 (en) Power conversion device
US11909305B2 (en) AC-to-DC power converter which removed a common mode component form the output current
US5317500A (en) Active no-break power transfer control for a VSCF power generating system
US6424552B1 (en) Multiphase transformer having main and auxiliary transformers
JP3237983B2 (en) Multiple inverter device
JP2010088162A (en) Inverter device
US5657214A (en) Stepped waveform PWM inverter
JPH09135570A (en) Multiple rectifier
JPH07163153A (en) Control method for single-phase three-wire inverter
Lee et al. Control strategy of single-phase active front-end cascaded H-bridge under cell fault condition
JP2006020409A (en) Unbalance compensating apparatus and method, power supply circuit
JP3128742B2 (en) Power supply
JP2000037078A (en) Multilevel power converter
JPH07107744A (en) Power converter
JPH0728538B2 (en) PWM inverter control device
Tadakuma et al. Current response simulation in six-phase and twelve-phase cycloconverters
JP3221807B2 (en) Inverter parallel operation device
JP2754517B2 (en) 12 pulse rectification load harmonic compensation method
JPH01126704A (en) Direct current deviated magnetism suppressing device for transformer

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070918

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080918

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090918

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100918

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110918

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120918

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130918

Year of fee payment: 15

EXPY Cancellation because of completion of term