JPH0626143B2 - Electrolyte circulation type metal-halogen battery - Google Patents

Electrolyte circulation type metal-halogen battery

Info

Publication number
JPH0626143B2
JPH0626143B2 JP1043599A JP4359989A JPH0626143B2 JP H0626143 B2 JPH0626143 B2 JP H0626143B2 JP 1043599 A JP1043599 A JP 1043599A JP 4359989 A JP4359989 A JP 4359989A JP H0626143 B2 JPH0626143 B2 JP H0626143B2
Authority
JP
Japan
Prior art keywords
manifold
electrolytic solution
supply
battery
reaction tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1043599A
Other languages
Japanese (ja)
Other versions
JPH02223162A (en
Inventor
初男 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP1043599A priority Critical patent/JPH0626143B2/en
Publication of JPH02223162A publication Critical patent/JPH02223162A/en
Publication of JPH0626143B2 publication Critical patent/JPH0626143B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • H01M12/085Zinc-halogen cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/70Arrangements for stirring or circulating the electrolyte
    • H01M50/77Arrangements for stirring or circulating the electrolyte with external circulating path
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電解液循環式金属−ハロゲン電池、特に電池放
置期間中における漏洩電流の発生防止構造に関する。
TECHNICAL FIELD The present invention relates to an electrolyte circulating metal-halogen battery, and more particularly to a structure for preventing the generation of leakage current during the period of leaving the battery.

[従来の技術] フッ素、塩素、臭素等のハロゲンと、これより電気陰性
度の小さい金属との組合せから成る金属−ハロゲン電池
として、例えば亜鉛−臭素電池が知られている(例え
ば、電気学会雑誌第103巻8号−昭58年8月)。こ
の亜鉛−臭素電池は正極及び負極が設けられた反応槽内
において次式に示す基本的な電気化学反応が行われてい
る。
[Prior Art] For example, a zinc-bromine battery is known as a metal-halogen battery composed of a combination of a halogen such as fluorine, chlorine, or bromine and a metal having a lower electronegativity (for example, a journal of the Institute of Electrical Engineers of Japan). Vol. 103, No. 8-August 1983). In this zinc-bromine battery, a basic electrochemical reaction represented by the following formula is performed in a reaction tank provided with a positive electrode and a negative electrode.

この反応式からも明らかなように、充電時には負極上に
亜鉛Znが析出し、正極では臭素Brが生成されこの
Brは電解液中に溶解する。また、放電時には、負極
板上に析出された亜鉛Znが酸化されてZn2+となって
電解液中に溶解し、また電解液中の臭素Brは還元さ
れて臭素イオン2Brとなって電解液中に同様に溶解
する。
As is clear from this reaction formula, zinc Zn is deposited on the negative electrode during charging, bromine Br 2 is produced on the positive electrode, and this Br 2 is dissolved in the electrolytic solution. During discharge, zinc Zn deposited on the negative electrode plate is oxidized to become Zn 2+ and dissolved in the electrolytic solution, and bromine Br 2 in the electrolytic solution is reduced to bromine ion 2Br −. It also dissolves in the electrolyte.

ところで、このような亜鉛−臭素電池では、充電時に生
成される臭素Brの電解液中における濃度が充電時間
の経過とともに増大し該臭素Brが次第に負極側に拡
散していく。そして、該臭素Brは、負極側にて亜鉛
Znと反応して亜鉛イオンZn2+と臭素イオンBr
になり、自己放電を起してしまうため、この亜鉛−臭素
電池は、亜鉛イオンZn2+及び臭素イオンBrを透
過し臭素Brの透過を阻止する自己放電防止用のセパ
レータ膜を用い、反応槽を正極側反応槽と負極側反応槽
とに分離し、正極側から負極側への臭素Brの拡散を
防止している。
However, such zinc - In bromine battery, is said bromine Br 2 increases with the lapse of concentration charging time in the electrolytic solution of bromine Br 2 generated during charging will gradually diffuse to the negative electrode side. Then, the bromine Br 2 reacts with zinc Zn on the negative electrode side to react with zinc ions Zn 2+ and bromine ions Br −.
Therefore, this zinc-bromine battery uses a separator film for preventing self-discharge which permeates zinc ions Zn 2+ and bromine ions Br and blocks permeation of bromine Br 2 to prevent reaction. The tank is divided into a positive electrode side reaction tank and a negative electrode side reaction tank to prevent the diffusion of bromine Br 2 from the positive electrode side to the negative electrode side.

第3図には、このような原理を用いて形成された従来の
亜鉛−臭素電池が複数個積層された場合の断面図が示さ
れており、この電池は、反応槽10,…内の両側に正極
12,…及び負極14,…が設けられ、これらそれぞれ
の両電極12,14,…間で電解液16a,16bを介
して前記第1式の電気化学反応を行っている。
FIG. 3 shows a sectional view of a case where a plurality of conventional zinc-bromine batteries formed by using such a principle are stacked, and the batteries are provided on both sides in the reaction tanks 10 ,. Are provided with a positive electrode 12, ... And a negative electrode 14 ,. The electrochemical reaction of the first formula is performed between the respective electrodes 12, 14 ,.

前記における電解液16a,16bは、それぞれ供給側
共通マニホールド18,20から、供給側チャンネル2
2,…,24,…を経てそれぞれ反応槽10a,…,1
0b,…に供給され、更に、このようにして各反応槽1
0a,…,10b,…に供給された電解液は、排出側チ
ャンネル26,…,28,…を経て排出側共通マニホー
ルド30,32から排出され、これら共通マニホール
ド,チャンネル,反応槽の間で電解液循環経路を構成し
ている。
The electrolytes 16a and 16b in the above are supplied from the supply-side common manifolds 18 and 20, respectively, to the supply-side channel 2
2, ..., 24, ..., Reactor tanks 10a ,.
0b, ..., Further, in this way, each reaction tank 1
The electrolyte solution supplied to 0a, ..., 10b, ... Is discharged from the discharge side common manifolds 30, 32 via the discharge side channels 26 ,. It constitutes a liquid circulation path.

以上において、各セルは、それぞれ直列に接続されてい
るのに対し、電解液16a,16bのそれぞれの循環経
路は並列接続の状態になっていることから、各セルの入
口側及び出口側に微小電流の分流が生じ、分流損や充放
電電気量の不均衡、あるいは電着不良等の問題が生じて
いた。
In the above, the cells are connected in series, while the circulation paths of the electrolytic solutions 16a and 16b are in the parallel connection state, so that the inlet side and the outlet side of each cell are minute. The current is shunted to cause problems such as shunt loss, imbalance in charge / discharge electricity quantity, or electrodeposition failure.

すなわち、分流損とは、マニホールドやチャンネルでの
微小電流の分流による熱損失の発生をいい、充放電電気
量の不均衡とは、各セルから流出する微小電流の値が異
なることにより、各セルの電極を流れる電流値が相違
し、各セルにおける電着量の不均衡を生じることを言
い、更に電着不良とは、負極端部において僅かな分流が
生じても電流が端部に集中し、金属の電着不良が起るこ
とを言う。
That is, shunt loss refers to the generation of heat loss due to shunting of minute currents in the manifold or channel, and imbalance in the amount of charge / discharge electricity is due to the difference in the amount of minute currents flowing out from each cell, The difference in the current values flowing through the electrodes of the cells causes an imbalance in the amount of electrodeposition in each cell.In addition, poor electrodeposition means that even if a slight shunt occurs at the negative electrode end, the current concentrates at the end. , Says that electrodeposition failure of metal occurs.

このような微小電流による弊害を除去するために、例え
ば特開昭55−35499号公報によれば、マニホール
ド中に保護電流を流してマニホールド内の電位分布を各
セルの電位分布と一致させ、微小電流の発生をなくす趣
旨の提案がなされている。また、他の従来技術として、
電池充電状態で放置する際は反応槽から電解液を抜き取
る等の手段もとられている。
In order to eliminate the adverse effect caused by such a minute current, for example, according to Japanese Patent Laid-Open No. 55-35499, a protective current is made to flow in the manifold so that the potential distribution in the manifold matches the potential distribution of each cell. Proposals have been made to eliminate the generation of electric current. Also, as another conventional technique,
When the battery is left in a charged state, the electrolytic solution is taken out from the reaction tank.

しかしながら、前記保護電流を用いる手段では、常時そ
の保護電流によるエネルギーロスを生じることになり、
全体として電池効率が低下するという問題があった。
However, the means using the protection current always causes energy loss due to the protection current,
There is a problem that the battery efficiency is lowered as a whole.

また、反応槽から電解液を抜き取る手段では、抜き取っ
た電解液を貯蔵する分だけ電解液貯蔵槽を大きくしなけ
ればならず、エネルギー密度が低下すると共に、電池再
使用時に反応槽内のエア抜きが必要となるため、始動に
時間がかかるなどの問題があった。
Also, with the means for extracting the electrolytic solution from the reaction tank, the electrolytic solution storage tank must be made large enough to store the extracted electrolytic solution, which lowers the energy density and bleeds air from the reaction tank when the battery is reused. Therefore, there is a problem that it takes time to start.

こうした問題に対処するため、実願昭62−19640
0号公報では、電池が充電状態のまま放置される場合、
マニホールド内の電解液を電解液貯蔵槽へ強制還流させ
る手段を設け、これにより理論上漏洩電流が発生し得る
条件を排除することが可能である。
In order to deal with such problems, Japanese Patent Application No. Sho 62-19640
No. 0 publication discloses that when a battery is left in a charged state,
By providing a means for forcibly refluxing the electrolytic solution in the manifold to the electrolytic solution storage tank, it is possible to theoretically eliminate the condition that a leak current may occur.

[発明が解決しようとする課題] しかしながら、現実にはマニホールドの構造上、いかに
還流手段を設けてもその内部に滞留している電解液を完
全に除去することはできず、必ず多少の液溜りが残って
しまうという問題があった。
[Problems to be Solved by the Invention] However, in reality, due to the structure of the manifold, no matter how the reflux means is provided, it is not possible to completely remove the electrolytic solution that has accumulated therein, and it is necessary to make a slight accumulation of liquid. There was a problem that was left.

すなわち、第4図に示す如くこの種の電池における反応
槽はセパレータフレーム13と正極12、負極14が中
央電極部の表裏に、また外側部にフレーム付バイポーラ
電極とを交互に積層して成り、従って完成状態では単一
の長い管となるマニホールドはこの個々のフレームに形
成されている孔部されている孔部が繁ぎあわさって構成
されている。
That is, as shown in FIG. 4, the reaction tank in this type of battery is constituted by alternately stacking a separator frame 13, a positive electrode 12, and a negative electrode 14 on the front and back of the central electrode portion, and on the outer portion thereof a bipolar electrode with a frame. Therefore, in the completed state, the manifold, which is a single long tube, is formed by the perforated holes formed in the individual frames.

ここで、各フレームの積層組立時に各フレームのマニホ
ールド位置を同心状に完全一致されることは難しく、必
ず多少の位置ずれが生じてしまう。
Here, it is difficult to completely align the manifold positions of the respective frames concentrically at the time of stacking and assembling the respective frames, and a certain amount of misalignment always occurs.

この結果、第4図に示すように各フレーム毎のマニホー
ルド相互の位置ずれにより生じた凹凸の凹部Sに電解液
が残留してしまうので、空気流をマニホールド内に導入
してもマニホールド内表面から引っ込んだ部分に存在す
る残留電解液Esに対しては作用しない。そして、この
液溜りによって隣接するセル同士が導通し、電池放置期
間中の漏洩電流の発生を引き起してしまうというのが実
状であった。
As a result, as shown in FIG. 4, the electrolytic solution remains in the concave and convex concave portions S caused by the positional deviation between the manifolds for each frame. It does not act on the residual electrolytic solution Es existing in the recessed portion. Then, due to the liquid pool, the adjacent cells are electrically connected to each other, which causes the generation of leakage current during the battery leaving period.

本発明は上記従来の課題に鑑みてなされたものであり、
その目的は簡単な構成をもって電池放置期間中における
漏洩電流の発生を確実に回避可能な電解液循環式金属−
ハロゲン電池を提供することにある。
The present invention has been made in view of the above conventional problems,
The purpose of this is to use an electrolytic solution circulating metal that has a simple structure and can reliably avoid the generation of leakage current during the battery is left unused.
To provide a halogen battery.

[課題を解決するための手段] 上記目的を達成するために本発明は、セパレータ膜が装
着されたセパレータフレームと、表・裏面がそれぞれ正
・負極をなす電極部が装着された電極フレームとを複数
交互に積層することにより構成される複数のセルからな
る反応槽と、該反応槽に正および負極側電解液を循環さ
せるよう該反応槽に供給側配管および排出側配管を介し
て連通形成された電解液貯蔵槽と、を含み、前記反応槽
には、全セルを貫通する供給側共通マニホールド及び排
出側共通マニホールドと、各セパレータフレームの両面
で前記両マニホールドにそれぞれ連通する供給側チャン
ネルおよび排出側チャンネルと、が形成され、該各マニ
ホールドおよびチャンネルにより反応槽内における電解
液の循環経路が形成される電解液循環式金属−ハロゲン
電池において、前記各供給側配管および排出側配管上
に、その内部を流れる電解液の圧力に応じて自動的に該
配管内への空気導入/遮断を切替える空気導入弁を備
え、前記供給側共通マニホールドおよび排出側共通マニ
ホールドを各セパレータフレームの上端部近傍に形成
し、前記各供給側チャンネルおよび排出側チャンネルを
供給側共通マニホールドおよび排出側共通マニホールド
の上部でそれぞれ連通させ、マニホールド内に残留した
電解液が前記空気導入弁を介して該マニホールド内に導
入される空気により反応槽内の電解液と絶縁されること
により、充電状態での電池放置期間中における漏洩電流
の発生を防止することを特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides a separator frame having a separator film mounted thereon, and an electrode frame having electrode portions having positive and negative electrodes on the front and back surfaces, respectively. A reaction tank composed of a plurality of cells formed by alternately stacking a plurality of cells, and formed so as to communicate with the reaction tank via a supply side pipe and a discharge side pipe so as to circulate the positive and negative electrode side electrolytic solutions in the reaction tank. And a supply-side common manifold that penetrates all cells, and a supply-side channel and discharge that communicate with both manifolds on both sides of each separator frame. And a side channel, and an electrolytic solution circulation type gold in which a circulation path of the electrolytic solution in the reaction tank is formed by the respective manifolds and channels. In the genus-halogen battery, on each of the supply-side pipe and the discharge-side pipe, an air introduction valve that automatically switches air introduction / interruption into the pipe according to the pressure of the electrolytic solution flowing therein is provided. A supply side common manifold and a discharge side common manifold are formed in the vicinity of the upper end of each separator frame, and the respective supply side channels and discharge side channels are made to communicate with each other above the supply side common manifold and the discharge side common manifold. The remaining electrolytic solution is insulated from the electrolytic solution in the reaction tank by the air introduced into the manifold through the air introduction valve, thereby preventing the generation of leakage current during the battery leaving period in the charged state. It is characterized by

[作用] 以上の様に構成される本発明によればセパレータフレー
ムに形成された各チャンネルが対応するマニホールドに
対しその上部で連通している。
[Operation] According to the present invention configured as described above, each channel formed in the separator frame communicates with the corresponding manifold at the upper portion thereof.

従って、電池放置時にマニホールドへ空気導入弁から空
気を導入してその内部に滞留している電解液を反応槽へ
還流させた後、マニホールド内面等になお電解液が還流
せされずに残っていたとしても、これはマニホールドの
底部に若干量わだかまる程度に過ぎないため、マニホー
ルド上方に開口しているチャンネルを通って隣接するセ
ル相互が導通してしまうという不都合は生じることがな
い。
Therefore, after the air was introduced into the manifold from the air introduction valve when the battery was left to recirculate the electrolytic solution retained therein to the reaction tank, the electrolytic solution still remained on the inner surface of the manifold without being recirculated. In this case, however, this is only a slight amount at the bottom of the manifold, so that there is no inconvenience that adjacent cells are electrically connected to each other through the channel opened above the manifold.

また、本発明において空気導入手段としてその内部を流
通する電解液の圧力によって自動的に開閉する空気導入
弁が採用されているため、使用者が人為的に装置使用/
放置時にその都度切替作業を行う必要はない。
Further, in the present invention, since the air introduction valve which is automatically opened / closed by the pressure of the electrolytic solution flowing therein is employed as the air introduction means, the user artificially uses the device /
It is not necessary to perform switching work each time it is left unattended.

すなわち、本発明における空気導入弁は配管内に電解液
が流通しているときはその流体圧によって空気導入孔を
閉じ、流体圧が所定位置以外になると解放して空気を配
管内に導く。
That is, the air introduction valve in the present invention closes the air introduction hole by the fluid pressure of the electrolyte when the electrolyte is flowing in the piping, and releases it when the fluid pressure is not at a predetermined position to guide the air into the piping.

従って、電池放置時には電解液の循環は行われないの
で、自動的にこの空気導入弁が解放され、配管を通して
マニホールドへ残留電解液を還流させるために必要な空
気が送り込まれることになる。
Therefore, since the electrolytic solution is not circulated when the battery is left as it is, the air introduction valve is automatically opened, and the air necessary for refluxing the residual electrolytic solution is sent to the manifold through the pipe.

[実施例] 以下、図面に基き本発明の好適な実施例を説明する。[Embodiment] A preferred embodiment of the present invention will be described below with reference to the drawings.

第1図に本発明に係る電解液循環式金属−ハロゲン電池
における反応槽内のセル構造を示す。セパレータ40及
び電極42が交互に積層され、その周縁部に電解液の供
給側マニホールド40a、42a及び排出側マニホール
ド40b、42bが上端部近傍に形成され、複数のセル
が積層された時にこれらのマニホールドが繁ぎ合わされ
た単一の管路となって反応槽と電解液貯蔵層との間で電
解液を循環させる。
FIG. 1 shows the cell structure in the reaction tank of the electrolytic solution circulation type metal-halogen battery according to the present invention. The separators 40 and the electrodes 42 are alternately laminated, and the electrolyte supply side manifolds 40a, 42a and the discharge side manifolds 40b, 42b are formed in the vicinity of the upper end portions thereof, and when a plurality of cells are laminated, these manifolds are formed. To form a single conduit for circulating the electrolytic solution between the reaction tank and the electrolytic solution storage layer.

また、図において両マニホールド40a、42a−40
b、42b間には空気導入孔45が形成され、該空気導
入孔45へ空気を導入することによって電池を充電状態
のまま放置する際におけるマニホールド40a、40b
及び42a、42b内の残留電解液を貯蔵槽に還流させ
るよう構成されている。
Also, in the figure, both manifolds 40a, 42a-40
An air introducing hole 45 is formed between b and 42b, and manifolds 40a and 40b are used when the battery is left in a charged state by introducing air into the air introducing hole 45.
And 42a and 42b, the residual electrolytic solution is refluxed to the storage tank.

本発明に特徴的なことは、各マニホールド40a,42
a及び40b、42bと反応槽とを結ぶ供給側チャンネ
ル46a及び排出側チャンネル46bをマニホールド4
0a、42a及び40b、42bの上方で連通させたこ
とにある。同図(B)にこの部分の拡大図を示す。
A feature of the present invention is that each manifold 40a, 42
The supply side channel 46a and the discharge side channel 46b that connect a and 40b, 42b to the reaction tank are connected to the manifold 4
0a, 42a and 40b, 42b. An enlarged view of this portion is shown in FIG.

電池を充電状態で放置するとき、従来では空気導入孔4
5から圧縮空気を送り込むことによってマニホールド4
0a、40b及び42a、42b内の残留電解液を反応
槽内へ還流させることによって漏洩電流の発生防止を図
っていたが、マニホールド自体が各セルを構成するセパ
レータ及び電極に形成された孔部を繁ぎ合わせることに
よって形成されているものであるため、その凹部に溜っ
た電解液に対しては効果がなく、これによって漏洩電流
の完全な防止は不可能であるという問題があった。
When the battery is left in a charged state, the air introduction hole 4 is conventionally used.
Manifold 4 by sending compressed air from 5
Although the residual electrolyte solution in 0a, 40b and 42a, 42b was circulated back into the reaction tank to prevent the generation of leakage current, the manifold itself is provided with holes formed in the separator and the electrodes forming each cell. Since they are formed by stacking them together, they have no effect on the electrolytic solution accumulated in the recesses, and there is a problem that it is impossible to completely prevent leakage current.

これに対し、本発明では第1図(B)に示す如く、チャ
ンネル46はマニホールド40a、40b及び42a、
42bの上方で連通している。従って、電池放置時に空
気導入孔45から空気を送り込んで残留電解液を還流さ
せた後になお電解液の溜りがあったとしても、この残留
電解液は図のようにマニホールド40a、40b及び4
2a、42bの下端に集まっているので、上部に連通し
ているチャンネル46とは電気的に導通することがな
い。
On the other hand, in the present invention, as shown in FIG. 1 (B), the channel 46 includes the manifolds 40a, 40b and 42a,
It communicates above 42b. Therefore, even if there is still an accumulation of the electrolyte after the air is introduced from the air introduction hole 45 and the residual electrolyte is refluxed when the battery is left, the residual electrolyte is still left in the manifolds 40a, 40b and 4 as shown in the figure.
Since they are gathered at the lower ends of 2a and 42b, they are not electrically connected to the channel 46 communicating with the upper portion.

この結果、各セルはマニホールド40a、40b及び4
2a、42b内の残留電解液の有無にかかわらず電気的
に完全独立状態に保持され、液溜りを介しての漏洩電流
発生を確実に回避可能である。
As a result, each cell has manifolds 40a, 40b and 4
Regardless of the presence or absence of residual electrolytic solution in 2a and 42b, it is electrically maintained in a completely independent state, and it is possible to reliably avoid generation of leakage current through the liquid pool.

本発明におけるマニホールド40a、40b及び42
a、42bへの空気導入手段は、各電解液供給/排出用
配管途上に設けられ、管内を流通する液圧に依存して自
動開閉するチェック弁からなり、これによって作業者に
よる人為的なバルブの切換作業が不要となる。
Manifolds 40a, 40b and 42 in the present invention
The air introduction means to the a and 42b is provided in the middle of each pipe for supplying / discharging the electrolytic solution, and is composed of a check valve that automatically opens and closes depending on the liquid pressure flowing in the pipe, whereby an artificial valve by an operator. No need for switching work.

第2図において、各配管52は約15〜18mmの径を有
し、その管壁上にチェック弁50が装着されている。
In FIG. 2, each pipe 52 has a diameter of about 15 to 18 mm, and the check valve 50 is mounted on the pipe wall.

前述した如く、このチェック弁50は管内を流れる液圧
によって開閉作用を行い、フッ素ゴムなどからなる。
As described above, the check valve 50 is opened and closed by the hydraulic pressure flowing in the pipe and is made of fluororubber or the like.

従って、電池使用時には電解液貯蔵槽と反応槽との間で
絶え間なく電解液の循環が継続するのでチェック弁50
は液圧によって第3図の外側に向けて押圧される形とな
り、空気導入路54を閉止状態に保持する。
Therefore, when the battery is used, the electrolytic solution continuously circulates between the electrolytic solution storage tank and the reaction tank.
Is pressed by the hydraulic pressure toward the outside in FIG. 3, and holds the air introduction passage 54 in the closed state.

他方、電池放置時には電解液の循環作用が停止するの
で、管内圧が低下し、これによってチェック弁50は図
の右方向に移動してそれまで閉止していた空気導入路5
4を開き、ここから空気を前記マニホールド40a、4
0b及び42a、42bへ向けて送り込むことによって
その内部に残留している電解液を反応槽へ還流させるこ
とになる。
On the other hand, when the battery is left unattended, the circulating action of the electrolytic solution is stopped, so that the internal pressure of the pipe is lowered, whereby the check valve 50 moves to the right in the figure and is closed until then.
4 and open air from here to the manifolds 40a, 4
By sending it toward 0b and 42a, 42b, the electrolytic solution remaining therein is refluxed to the reaction tank.

従って、本発明によれば管内圧変化に依存して自動的に
開閉作用が果すチェック弁を空気導入手段として採用し
たので、作業者の人為的なバルブ切替作業は不要とな
り、著しく電池放置時の操作性を簡略化及び向上させる
ことが可能となる。
Therefore, according to the present invention, since the check valve that automatically opens and closes depending on the change in the pipe pressure is adopted as the air introduction means, the manual valve switching work by the operator becomes unnecessary, and it is possible to significantly remarkably leave the battery unattended. It is possible to simplify and improve operability.

[発明の効果] 以上説明したように本発明によれば、マニホールドの上
部にチャンネルを接続すると共に、空気導入手段として
管内により自動開閉する空気導入弁を使用したので、マ
ニホールド内に残留している電解液と各セルとを空気導
入弁を介して導入された空気を介して絶縁状態におくこ
とができ、漏洩電流の発生をほぼ完全に回避することを
実現できる。
[Effect of the Invention] As described above, according to the present invention, the channel is connected to the upper part of the manifold, and the air introduction valve that automatically opens and closes in the pipe is used as the air introduction means, so that it remains in the manifold. The electrolytic solution and each cell can be kept in an insulated state via the air introduced through the air introduction valve, and it is possible to realize the generation of leakage current almost completely.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明にかかる電解液循環式金属−ハロゲン電
池のセルの構成図、 第2図は本発明にかかる空気導入手段の構成図、 第3図は、従来の電池の構成図、 第4図は第3図の部分拡大図である。 40、42……マニホールド 44……空気導入口 46……チャンネル 50……空気導入弁 52……配管
FIG. 1 is a block diagram of a cell of an electrolytic solution circulation type metal-halogen battery according to the present invention, FIG. 2 is a block diagram of air introducing means according to the present invention, and FIG. 3 is a block diagram of a conventional battery, FIG. 4 is a partially enlarged view of FIG. 40, 42 ... Manifold 44 ... Air inlet 46 ... Channel 50 ... Air inlet valve 52 ... Piping

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】セパレータ膜が装着されたセパレータフレ
ームと、表・裏面がそれぞれ正・負極をなす電極部が装
着された電極フレームとを複数交互に積層することによ
り構成される複数のセルからなる反応槽と、 該反応槽に正および負極側電解液を循環させるよう該反
応槽に供給側配管および排出側配管を介して連通形成さ
れた電解液貯蔵槽と、を含み、 前記反応槽には、全セルを貫通する供給側共通マニホー
ルド及び排出側共通マニホールドと、各セパレータフレ
ームの両面で前記両マニホールドにそれぞれ連通する供
給側チャンネルおよび排出側チャンネルと、が形成さ
れ、該各マニホールドおよびチャンネルにより反応槽内
における電解液の循環経路が形成される電解液循環式金
属−ハロゲン電池において、 前記各供給側配管および排出側配管上に、その内部を流
れる電解液の圧力に応じて自動的に該各配管内への空気
導入/遮断を切替える空気導入弁を備え、 前記供給側共通マニホールドおよび排出側共通マニホー
ルドを各セパレータフレームの上端部近傍に形成し、 前記各供給側チャンネルおよび排出側チャンネルを供給
側共通マニホールドおよび排出側供給マニホールドの上
部でそれぞれ連通させ、 マニホールド内に残留した電解液が前記空気導入弁を介
して該マニホールド内に導入される空気により反応槽内
の電解液と絶縁されることにより、充電状態での電池放
置期間中における漏洩電流の発生を防止することを特徴
とする電解液循環式金属−ハロゲン電池。
1. A plurality of cells formed by alternately stacking a plurality of separator frames having separator membranes and a plurality of electrode frames having front and back surfaces respectively having positive and negative electrode portions mounted thereon. A reaction tank; and an electrolytic solution storage tank that is formed to communicate with the reaction tank via a supply side pipe and a discharge side pipe so as to circulate the positive and negative electrode side electrolytic solutions in the reaction tank. A common supply-side manifold and a common discharge-side manifold that penetrate all cells, and a supply-side channel and a discharge-side channel that communicate with both of the manifolds on both sides of each separator frame. In an electrolytic solution circulation type metal-halogen battery in which a circulating path of an electrolytic solution is formed in a tank, each of the supply side pipes and An air introduction valve is provided on the outlet side pipe, which automatically switches air introduction / shutoff into each of the pipes according to the pressure of the electrolytic solution flowing therein, and each of the supply side common manifold and the discharge side common manifold is provided. Formed in the vicinity of the upper end of the separator frame, the supply side channel and the discharge side channel are made to communicate with each other at the upper part of the supply side common manifold and the discharge side supply manifold, respectively, and the electrolytic solution remaining in the manifold is passed through the air introduction valve. Insulation from the electrolytic solution in the reaction tank by the air introduced into the manifold to prevent the generation of leakage current during the period in which the battery is left in a charged state. Halogen battery.
JP1043599A 1989-02-23 1989-02-23 Electrolyte circulation type metal-halogen battery Expired - Lifetime JPH0626143B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1043599A JPH0626143B2 (en) 1989-02-23 1989-02-23 Electrolyte circulation type metal-halogen battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1043599A JPH0626143B2 (en) 1989-02-23 1989-02-23 Electrolyte circulation type metal-halogen battery

Publications (2)

Publication Number Publication Date
JPH02223162A JPH02223162A (en) 1990-09-05
JPH0626143B2 true JPH0626143B2 (en) 1994-04-06

Family

ID=12668279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1043599A Expired - Lifetime JPH0626143B2 (en) 1989-02-23 1989-02-23 Electrolyte circulation type metal-halogen battery

Country Status (1)

Country Link
JP (1) JPH0626143B2 (en)

Also Published As

Publication number Publication date
JPH02223162A (en) 1990-09-05

Similar Documents

Publication Publication Date Title
US7199550B2 (en) Method of operating a secondary battery system having first and second tanks for reserving electrolytes
EP2617087B1 (en) Electrochemical cell system with a progressive oxygen evolving electrode / fuel electrode
US9478803B2 (en) Electrolyte flow configuration for a metal-halogen flow battery
US20120052340A1 (en) Electrolyte Flow Configuration for a Metal-Halogen Flow Battery
JPS6062064A (en) Liquid fuel cell
WO2014035020A1 (en) Manifold for redox flow battery for reducing shunt current and redox flow battery comprising same
JPH0626143B2 (en) Electrolyte circulation type metal-halogen battery
JP3507818B2 (en) Operating Redox Flow Battery
JPH0765871A (en) Electrolyte circulating type layer built secondary battery
JPS6235461A (en) Electrolyte circulation type secondary cell
JP3922905B2 (en) Redox flow battery
JP2853295B2 (en) Stacked secondary battery
JP2006012425A (en) Operation method of redox flow battery
JP3642660B2 (en) Secondary battery for power storage
JPH03147278A (en) Zinc-bromine battery
KR102007776B1 (en) Redox flow battery
KR102586856B1 (en) Bipolar Plate for Redox Flow Battery, stack and Redox Flow Battery using The Same
CN114944505B (en) Device for packaging flow battery
JPH05166550A (en) Electrolyte circulation type layered secondary battery
JP2513622Y2 (en) Electrolyte circulation type metal halogen battery
JP2002252020A (en) Redox flow battery
WO2021172607A1 (en) Zinc-bromine flow battery including conductive intermediate layer
JPH0548363Y2 (en)
KR20230165035A (en) Device and method for recovering electrolyte capacity of redox flow battery
JPH0467578A (en) Stacking structure for stacked electrolyte circulation type battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080813

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080827

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110905

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees