JPH06260187A - Matrix of fuel cell with phosphoric acid - Google Patents

Matrix of fuel cell with phosphoric acid

Info

Publication number
JPH06260187A
JPH06260187A JP5040322A JP4032293A JPH06260187A JP H06260187 A JPH06260187 A JP H06260187A JP 5040322 A JP5040322 A JP 5040322A JP 4032293 A JP4032293 A JP 4032293A JP H06260187 A JPH06260187 A JP H06260187A
Authority
JP
Japan
Prior art keywords
matrix
boron nitride
particle size
fuel cell
phosphoric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5040322A
Other languages
Japanese (ja)
Inventor
Hirobumi Enomoto
博文 榎本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5040322A priority Critical patent/JPH06260187A/en
Publication of JPH06260187A publication Critical patent/JPH06260187A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To enhance the electrolyte retention, internal resistance, and mechanical strength of a phosphoric acid type fuel cell matrix. CONSTITUTION:Scale-form boron nitride 1 having a means particle size between 0.1-1.0mum is uniformly mixed with cubic crystalline boron nitride 3 having a means particle size between 1-10mum, each of which should be contained no less than an amount 1/3 of the total weight. while the remainder consists of PTFE 2 which serves for enhancing the mutual bond. With this matrix produced, the scale-form boron nitride having smaller particle size enhances the electrolyte retaining performance and enables embodying in thin film structure to lead to maintaining the internal resistance low, while the cubic crystalline boron nitride having larger particle size heightens the mechanical strength of the matrix in thin film form to ensure prevention of crack initiation. Thus the performance required of a matrix can be enhanced synthetically by combination of two types of boron nitrogen in different forms, and the characteristics of the resultant phosphoric acid type fuel cell are improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燐酸形燃料電池の電解質
を保持するマトリックスに関する。
FIELD OF THE INVENTION The present invention relates to a matrix for holding an electrolyte of a phosphoric acid fuel cell.

【0002】[0002]

【従来の技術】一般に燐酸形燃料電池は、基板と触媒層
からなる二つのガス拡散電極(燃料ガス電極と空気電
極)の間にマトリックスを挟持し、マトリックスから供
給される電解質と、電極外部から拡散する燃料ガスと酸
化剤ガスとが触媒近傍で電気化学的に反応して、電気エ
ネルギーを得るものであり、マトリックスは、多孔質の
電気絶縁性を持つ薄いシート状に形成され、このマトリ
ックス内の空孔部を完全に満たすように電解質の燐酸が
保持されている。
2. Description of the Related Art Generally, in a phosphoric acid fuel cell, a matrix is sandwiched between two gas diffusion electrodes (fuel gas electrode and air electrode) consisting of a substrate and a catalyst layer, and an electrolyte supplied from the matrix and the outside of the electrodes are used. The diffusing fuel gas and oxidant gas electrochemically react in the vicinity of the catalyst to obtain electric energy, and the matrix is formed into a thin sheet having a porous electric insulation property. The electrolyte phosphoric acid is retained so as to completely fill the pores of the electrolyte.

【0003】マトリックスは、上記の電気化学的反応に
必要な電解質を保持して、ガス拡散電極への電解質の供
給を行なう役目のほかに、燃料ガスと酸化剤ガスとが直
接混合することのないように、これら反応ガスを互いに
分離しておくという重要な役割も果たしている。マトリ
ックスが燃料ガスと酸化剤ガスを分離する機能は、燃料
電池の高い効率を維持する上で、また燃料電池の安全運
転を保証する上でも極めて重要である。
The matrix holds the electrolyte necessary for the above-mentioned electrochemical reaction and supplies the electrolyte to the gas diffusion electrode, and the fuel gas and the oxidant gas are not directly mixed with each other. Thus, it also plays an important role of keeping these reaction gases separated from each other. The function of the matrix to separate the fuel gas and the oxidant gas is extremely important for maintaining the high efficiency of the fuel cell and for ensuring the safe operation of the fuel cell.

【0004】このようにマトリックスが、電解質を保持
することと、反応ガスを分離することの二つの役割を十
分に果たすためには、以下の性能を具備していなければ
ならない。 (1) 耐熱性 (2) 耐電解質腐食性 (3) 電気絶縁性 (4) 電解質保持性 (5) 低い内部抵抗 (6) 高い機械的強度
As described above, in order for the matrix to fulfill the dual roles of retaining the electrolyte and separating the reaction gas, it must have the following performances. (1) Heat resistance (2) Electrolytic corrosion resistance (3) Electrical insulation (4) Electrolyte retention (5) Low internal resistance (6) High mechanical strength

【0005】[0005]

【発明が解決しようとする課題】しかしながら、マトリ
ックスに以上の必要性能を付与するためには、次のよう
な問題がある。例えば、耐熱性,耐電解質腐食性,およ
び電気絶縁性に優れた窒化ほう素を用いてマトリックス
を形成するとき、さらに毛管吸引圧を増加して電解質保
持性を高めるために、窒化ほう素の粒子間の細孔径をよ
り小さくする必要がある。この場合、窒化ほう素の粒子
が小さい程、その細孔径を小さくすることができるの
で、0.1〜1.0μmの微細な径を持つ窒化ほう素を
用いて、内部抵抗を低くするため、マトリックスの厚さ
を100μm以下にすることも試行された。しかし、そ
の結果は窒化ほう素の粒子が小さいために、マトリック
スの作製時にひび割れが発生し、機械的強度が極めて低
下するという問題を生ずる。その原因は、窒化ほう素の
バインダーとして用いるポリテトラフロロエチレン(以
下、PTFEとする)の添加量が多すぎると、マトリッ
クスの撥水性が増して、電解質の保持力が低下するの
で、PTFEの添加量を抑えなければならないことにあ
る。
However, in order to give the above-mentioned required performance to the matrix, there are the following problems. For example, when forming a matrix using boron nitride, which has excellent heat resistance, electrolytic corrosion resistance, and electrical insulation, particles of boron nitride are added in order to further increase capillary suction pressure and electrolyte retention. It is necessary to make the pore size between them smaller. In this case, the smaller the particle size of boron nitride, the smaller the pore size. Therefore, boron nitride having a fine diameter of 0.1 to 1.0 μm is used to lower the internal resistance. Attempts have also been made to make the matrix thickness below 100 μm. However, as a result, since the particles of boron nitride are small, cracks occur during the production of the matrix, resulting in a problem of extremely low mechanical strength. The reason for this is that if the amount of polytetrafluoroethylene (hereinafter referred to as PTFE) used as a binder for boron nitride is too large, the water repellency of the matrix increases and the electrolyte retention decreases, so addition of PTFE There is a need to control the amount.

【0006】図2は、その様子を示すマトリックスの部
分模式断面図であり、図2において、鱗片状の窒化ほう
素1は0.1〜1.0μm径の微粒子であり、細か過ぎ
るために、バインダーのPTFE2が不足し、窒化ほう
素1の粒子が強固に結着されず、機械的強度を高めるこ
とができない。また、0.1〜1.0μm径の窒化ほう
素1は、通常鱗片状の微粒子であるから、図2に示す如
く、マトリックス形成の際、上下方向(厚さ方向)に重
なって層状に積層されてしまうので、電解質の燐酸を保
持するための空孔が連通する構造とはなり難く、電解質
を保持する部分の迷宮度が増加することにより、マトリ
ックスの内部抵抗を増大させる原因となる。
FIG. 2 is a partial schematic sectional view of the matrix showing this state. In FIG. 2, the scale-like boron nitride 1 is a fine particle having a diameter of 0.1 to 1.0 μm and is too fine. The binder PTFE2 is insufficient, the particles of boron nitride 1 are not firmly bound, and the mechanical strength cannot be increased. In addition, since boron nitride 1 having a diameter of 0.1 to 1.0 μm is usually scaly fine particles, as shown in FIG. 2, when forming a matrix, it is laminated in a vertical direction (thickness direction) to form a layered structure. Therefore, it is difficult to form a structure in which pores for holding phosphoric acid of the electrolyte communicate with each other, and the labyrinth of the portion holding the electrolyte increases, which causes an increase in internal resistance of the matrix.

【0007】図3もマトリックスの構成を示す部分模式
断面図である。図3では、PTFE2との結着を良くす
るため、1〜10μmの大きな粒子径を持つ立方晶の窒
化ほう素3を用いている。このようにすると図3に示す
如く、PTFE2の不足をなくすことはできるが、その
反面、厚さ100μm程度の薄いマトリックスを作製し
たとき、窒化ほう素3の粒子が大きいため、マトリック
ス内にピンホールを生ずるので、マトリックスの厚さを
200μm以上にしなければならない。したがって、こ
の場合は内部抵抗を低減させることができないという問
題を残す。
FIG. 3 is also a partial schematic sectional view showing the structure of the matrix. In FIG. 3, cubic boron nitride 3 having a large particle size of 1 to 10 μm is used in order to improve the binding with PTFE 2. By doing so, as shown in FIG. 3, the shortage of PTFE2 can be eliminated, but on the other hand, when a thin matrix with a thickness of about 100 μm is produced, the particles of boron nitride 3 are large, so that pinholes are formed in the matrix. Therefore, the thickness of the matrix must be 200 μm or more. Therefore, in this case, there remains a problem that the internal resistance cannot be reduced.

【0008】本発明は上述の点に鑑みてなされたもので
あり、その目的は、電解質保持性を向上し、内部抵抗を
低減するために薄膜とし、機械的強度も高い燐酸形燃料
電池のマトリックスを提供することにある。
The present invention has been made in view of the above points, and an object thereof is a matrix of a phosphoric acid fuel cell which is a thin film for improving electrolyte retention and reducing internal resistance and has high mechanical strength. To provide.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めに、本発明の燐酸形燃料電池のマトリックスは、平均
粒径が0.1〜1.0μmの鱗片状窒化ほう素と、平均
粒径が1〜10μmの立方晶窒化ほう素とをいずれも全
重量の1/3以上有し、残部がこれらの結着剤からなる
ものである。
In order to solve the above-mentioned problems, the matrix of the phosphoric acid fuel cell of the present invention comprises scaly boron nitride having an average particle size of 0.1 to 1.0 μm and an average particle size. The cubic boron nitride particles having a diameter of 1 to 10 μm are each contained in 1/3 or more of the total weight, and the balance consists of these binders.

【0010】[0010]

【作用】以上のように構成した本発明の燐酸形燃料電池
のマトリックスは、細かい粒径の鱗片状窒化ほう素粉末
と、粗い粒径の立方晶窒化ほう素粉末との形状の異なる
2種類の窒化ほう素粉末を均一に混合することにより、
立方晶窒化ほう素は結着剤と結合して機械的強度が向上
し、鱗片状窒化ほう素粉末のみ用いた場合のような空孔
部の低減と閉塞を防ぎ、また、立方晶窒化ほう素粉末の
み用いた場合のようにピンホールの発生を防止する。そ
の結果、マトリックスを薄膜として形成することが可能
となり、機械的強度の向上とともに内部抵抗を小さく
し、電解質保持性を高めることができる。
The matrix of the phosphoric acid fuel cell of the present invention constructed as described above is composed of two types of different shapes, that is, a flake boron nitride powder having a fine particle size and a cubic boron nitride powder having a coarse particle size. By uniformly mixing the boron nitride powder,
Cubic boron nitride is combined with a binder to improve the mechanical strength, and prevents the reduction and blockage of pores as in the case of using scaly boron nitride powder alone. Prevents pinhole formation as in the case of using only powder. As a result, the matrix can be formed as a thin film, the mechanical strength can be improved, the internal resistance can be reduced, and the electrolyte retention can be improved.

【0011】[0011]

【実施例】以下、本発明を実施例に基づき説明する。図
1は本発明による燐酸形燃料電池のマトリックスの部分
模式断面図を示し、図2,図3と共通する部分を同一符
号で表わしてある。図1が図2,図3と異なる点は、図
1では形状の異なる2種類の窒化ほう素の粉末を用い
て、細かい粒径の鱗片状の窒化ほう素1と、粗い粒径の
立方晶の窒化ほう素3との両者を、PTFE2により結
着したことにある。
EXAMPLES The present invention will be described below based on examples. FIG. 1 shows a partial schematic cross-sectional view of a matrix of a phosphoric acid fuel cell according to the present invention, and the portions common to FIGS. 2 and 3 are represented by the same reference numerals. The difference between FIG. 1 and FIGS. 2 and 3 is that in FIG. 1, two types of boron nitride powders having different shapes are used, and a scaly boron nitride 1 having a fine particle size and a cubic crystal having a coarse particle size are used. Both the boron nitride 3 and the boron nitride 3 are bonded by the PTFE 2.

【0012】本発明のマトリックスは、以下のようにし
て作製することができる。まず、メタノール、エタノー
ル、イソプロパノールなどの溶剤100mlに対し、平
均粒径が0.1〜1.0μm(例えば0.6μm)の鱗
片状窒化ほう素1の粉末と、平均粒径が1〜10μm
(例えば8μm)の立方晶窒化ほう素3の粉末とをそれ
ぞれ10g混ぜ、この混合粉末を超音波分散器を用いて
溶剤に分散させた後、さらにバインダーのPTFE2を
5〜20重量%相当添加し混合する。次に、この分散液
を遠心分離器により固形分と液体に分離し、このうちの
固形分を混練して、圧延ロールで厚さ100μmの薄膜
とした後、これを100℃以上で乾燥させる。
The matrix of the present invention can be manufactured as follows. First, in 100 ml of a solvent such as methanol, ethanol, isopropanol, etc., a powder of scaly boron nitride 1 having an average particle size of 0.1 to 1.0 μm (eg, 0.6 μm) and an average particle size of 1 to 10 μm
10 g of cubic boron nitride 3 powder (for example, 8 μm) was mixed with each other, the mixed powder was dispersed in a solvent using an ultrasonic disperser, and then 5 to 20 wt% of PTFE2 as a binder was further added. Mix. Next, this dispersion liquid is separated into a solid content and a liquid by a centrifuge, and the solid content is kneaded and made into a thin film having a thickness of 100 μm by a rolling roll, and then dried at 100 ° C. or higher.

【0013】かくして得られたマトリックスは、平均粒
径0.1〜1.0μmの鱗片状窒化ほう素1と、平均粒
径1〜10μmの立方晶窒化ほう素3とが均一に混合し
結着されたものとなり、平均粒径の小さい鱗片状窒化ほ
う素1が、電解質の保持性を向上させ、平均粒径の大き
い立方晶窒化ほう素3は機械的強度を高め、100μm
程度の薄膜とするのを可能にするとともに、薄膜状マト
リックスのひび割れを防止することができる。
The matrix thus obtained is composed of scaly boron nitride 1 having an average particle size of 0.1 to 1.0 μm and cubic boron nitride 3 having an average particle size of 1 to 10 μm, which are uniformly mixed and bound. The scaly boron nitride 1 having a small average particle size improves the electrolyte retention, and the cubic boron nitride 3 having a large average particle size increases the mechanical strength to 100 μm.
It is possible to form a thin film of a certain degree and prevent cracking of the thin film-like matrix.

【0014】なお、鱗片状窒化ほう素1と立方晶窒化ほ
う素3との混合量は、双方同量とすればよいが、上記の
効果を得るためには、鱗片状窒化ほう素1と立方晶窒化
ほう素3は、いずれもマトリックス全重量の1/3以上
含まれ、残部がPTFE2となるようにマトリックスを
構成することが必要である。このマトリックスを用いた
燐酸形燃料電池は、運転温度200℃、電流密度300
mA/cm2 のとき、内部抵抗による電圧損失を40〜
50mVにすることができた。因みに、図3の構造を持
つマトリックスは、厚さ200μmのとき、電池の電圧
損失は90mVであり、本発明の構造にすることによ
り、マトリックスの厚さも電圧損失もほぼ1/2にする
ことが可能である。
The scale-like boron nitride 1 and the cubic boron nitride 3 may be mixed in the same amount, but in order to obtain the above effect, the scale-like boron nitride 1 and the cubic boron nitride 3 are mixed. It is necessary to configure the matrix such that the crystalline boron nitride 3 is contained in 1/3 or more of the total weight of the matrix and the balance is PTFE 2. A phosphoric acid fuel cell using this matrix has an operating temperature of 200 ° C. and a current density of 300.
When the current is mA / cm 2, the voltage loss due to the internal resistance is 40-
It was possible to reach 50 mV. By the way, the matrix having the structure of FIG. 3 has a battery voltage loss of 90 mV when the thickness is 200 μm, and by adopting the structure of the present invention, the thickness and voltage loss of the matrix can be almost halved. It is possible.

【0015】[0015]

【発明の効果】燐酸形燃料電池のマトリックスは、その
構成部材である窒化ほう素の粒径の小さいものを用いる
と、電解質の保持力を保つためにバインダーの添加量を
抑えなければならないので、窒化ほう素同士が互いに結
着せず、窒化ほう素の粒径の大きいものを用いると、厚
さを増さなければならないなど、使用する窒化ほう素の
粒径の形状によって、電解質保持性、内部抵抗、機械的
強度などについては、十分な特性が得られなかったのに
対して、本発明のマトリックスは、粒径0.1〜1.0
μmの細かい鱗片状窒化ほう素と、粒径1〜10μmの
粗い立方晶窒化ほう素とを混合して、これら2種類の窒
化ほう素の持つ特徴をそれぞれに発揮するようにして、
PTFEによる互いの結着性を高めたものである。
As a matrix of a phosphoric acid fuel cell, if the constituent boron nitride having a small particle size is used, the amount of binder added must be suppressed in order to maintain the electrolyte retention. Depending on the shape of the boron nitride particle size used, electrolyte retention, internal retention, etc. may have to be increased if boron nitride particles that do not bind to each other and have a large particle size are used. Satisfactory properties such as resistance and mechanical strength were not obtained, whereas the matrix of the present invention had a particle size of 0.1 to 1.0.
Fine scaly boron nitride having a particle size of 1 μm and coarse cubic boron nitride having a particle size of 1 to 10 μm are mixed so that the characteristics of these two types of boron nitride can be exhibited respectively.
This is the one in which the mutual binding property of PTFE is enhanced.

【0016】その結果、粒径の小さい鱗片状窒化ほう素
は、電解質の保持性の向上と薄膜化を可能として内部抵
抗を低く維持し、粒径の大きい立方晶窒化ほう素は、薄
膜のマトリックスの機械的強度を高くし、ひび割れの発
生するのを防止するなど、2種類の形状の異なる窒化ほ
う素の組み合わせからそれぞれの特徴を活かし、マトリ
ックスの要求される特性が総合的に向上し、これを用い
た燐酸形燃料電池の特性を改善することができた。
As a result, the scaly boron nitride having a small particle size can improve the retention of the electrolyte and can be made into a thin film, and keep the internal resistance low, while the cubic boron nitride having a large particle size can form a thin film matrix. The combination of two types of boron nitride with different shapes has been utilized to improve the mechanical strength of the matrix and prevent the occurrence of cracks. It was possible to improve the characteristics of the phosphoric acid fuel cell using

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による燐酸形燃料電池のマトリックスの
部分模式断面図
FIG. 1 is a partial schematic sectional view of a matrix of a phosphoric acid fuel cell according to the present invention.

【図2】鱗片状窒化ほう素を用いた従来のマトリックス
の部分模式断面図
FIG. 2 is a partial schematic sectional view of a conventional matrix using scale-like boron nitride.

【図3】立方晶窒化ほう素を用いた従来のマトリックス
の部分模式断面図
FIG. 3 is a partial schematic cross-sectional view of a conventional matrix using cubic boron nitride.

【符号の説明】[Explanation of symbols]

1 鱗片状窒化ほう素 2 PTFE 3 立方晶窒化ほう素 1 Scale-like boron nitride 2 PTFE 3 Cubic boron nitride

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電極基板と触媒層からなる二つのガス拡散
電極の間に挟持され、電解質を保持する燐酸形燃料電池
のマトリックスであって、鱗片状の窒化ほう素と、立方
晶の窒化ほう素およびこれらの結着剤からなることを特
徴とする燐酸形燃料電池のマトリックス。
1. A matrix of a phosphoric acid fuel cell, which is sandwiched between two gas diffusion electrodes consisting of an electrode substrate and a catalyst layer, and holds an electrolyte, wherein a scaly boron nitride and a cubic nitriding method are used. A matrix of a phosphoric acid fuel cell, comprising a matrix and a binder thereof.
【請求項2】請求項1記載のマトリックスにおいて、鱗
片状の窒化ほう素の平均粒径は0.1〜1.0μmであ
り、立方晶の窒化ほう素の平均粒径は1〜10μmであ
ることを特徴とする燐酸形燃料電池のマトリックス。
2. The matrix according to claim 1, wherein the scaly boron nitride has an average particle size of 0.1 to 1.0 μm, and the cubic boron nitride has an average particle size of 1 to 10 μm. A matrix of a phosphoric acid fuel cell, which is characterized in that:
【請求項3】請求項1または2記載のマトリックスにお
いて、鱗片状の窒化ほう素と立方晶の窒化ほう素は、い
ずれも全重量の1/3以上を有し残部が結着剤からなる
ことを特徴とする燐酸形燃料電池のマトリックス。
3. The matrix according to claim 1 or 2, wherein the scale-like boron nitride and the cubic boron nitride each have 1/3 or more of the total weight and the balance is a binder. A matrix of a phosphoric acid fuel cell characterized by:
JP5040322A 1993-03-02 1993-03-02 Matrix of fuel cell with phosphoric acid Pending JPH06260187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5040322A JPH06260187A (en) 1993-03-02 1993-03-02 Matrix of fuel cell with phosphoric acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5040322A JPH06260187A (en) 1993-03-02 1993-03-02 Matrix of fuel cell with phosphoric acid

Publications (1)

Publication Number Publication Date
JPH06260187A true JPH06260187A (en) 1994-09-16

Family

ID=12577377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5040322A Pending JPH06260187A (en) 1993-03-02 1993-03-02 Matrix of fuel cell with phosphoric acid

Country Status (1)

Country Link
JP (1) JPH06260187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054559A (en) * 2007-08-28 2009-03-12 Hyundai Motor Co Ltd Polymer electrolyte membrane for fuel cell and fuel cell containing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090233144A1 (en) * 2007-08-27 2009-09-17 Hyundai Motor Company Polymer Electrolyte membrane with coating layer of anion binding agent and fuel cell using same
US8318376B2 (en) 2007-08-27 2012-11-27 Hyundai Motor Company Polymer electrolyte membrane with coating layer of anion binding agent and fuel cell using same
JP2009054559A (en) * 2007-08-28 2009-03-12 Hyundai Motor Co Ltd Polymer electrolyte membrane for fuel cell and fuel cell containing the same

Similar Documents

Publication Publication Date Title
KR101154315B1 (en) Electrode for polymer electrolyte membrane fuel cell and method for manufacturing membrane-electrode assembly using the same
US7226689B2 (en) Method of making a membrane electrode assembly for electrochemical fuel cells
US3935029A (en) Method of fabricating a carbon - polytetrafluoroethylene electrode - support
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
JPS6251165A (en) Improved acid fuel battery
JP3331703B2 (en) Fuel cell
US20060051655A1 (en) Fuel cell, electrode for fuel cell, and method producing them
JP4207120B2 (en) Catalytic electrode and electrochemical device
US11450861B2 (en) Anode catalyst layer for fuel cell and fuel cell using same
US6946214B2 (en) Manufacturing method of fuel cell electrode and fuel cell using thereof
US11621428B2 (en) Anode catalyst layer for fuel cell and fuel cell using same
JPH07326363A (en) Ion conductivity imparting electrode and jointing material for electrode and electrolyte and cell using the ion conductivity imparting electrode
JPH0722037A (en) Fuel cell and manufacture thereof
JP5094069B2 (en) Polymer electrolyte fuel cell and electronic device using the same
JP6727264B2 (en) Anode catalyst layer for fuel cell and fuel cell using the same
US11799093B2 (en) Catalyst electrode for fuel cell, manufacturing method thereof and a fuel cell comprising the catalyst electrode for fuel cell
JPH06260187A (en) Matrix of fuel cell with phosphoric acid
JPS6046515B2 (en) Method for manufacturing electrolyte retention matrix for fuel cells
JP2002216777A (en) Polymer electrolyte fuel cell
JP2006518272A (en) Improved PEM fuel cell electrocatalyst based on mixed carbon support
JPH02226659A (en) Electrode construction for fuel cell
JP3593947B2 (en) Method for producing catalyst layer and membrane / catalyst layer assembly of polymer electrolyte fuel cell
JPH0850899A (en) Cell for solid electrolyte fuel cell
JP4008221B2 (en) Method for producing electrode for polymer electrolyte fuel cell
JPH02170362A (en) Fuel battery