JPH06259741A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH06259741A
JPH06259741A JP6625293A JP6625293A JPH06259741A JP H06259741 A JPH06259741 A JP H06259741A JP 6625293 A JP6625293 A JP 6625293A JP 6625293 A JP6625293 A JP 6625293A JP H06259741 A JPH06259741 A JP H06259741A
Authority
JP
Japan
Prior art keywords
magnetic
film
recording medium
substrate
magnetic recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6625293A
Other languages
Japanese (ja)
Inventor
Masaharu Okudera
正晴 奥寺
Minoru Yamada
稔 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP6625293A priority Critical patent/JPH06259741A/en
Publication of JPH06259741A publication Critical patent/JPH06259741A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a magnetic recording medium having uniform magnetic characteristics by laminating a thin film inhibiting the induction of magnetic anisotropy and a magnetic film having isotropic magnetic properties on the surface of a substrate. CONSTITUTION:An Ni-P alloy film 2 is formed on an Al alloy substrate 1 by electroless plating and the surface of the substrate 1 is polished. A thin film 7 of Ti is then formed while heating the substrate 1 and an underlayer 3 of Cr and a magnetic film 4 of a CoCrTa or CoNiCa alloy are formed by bias sputtering. A protective layer 5 is further formed by sputtering. The magnetic recording medium having uniform magnetic characteristics is obtd. independently of marks of the polishing on the surface of the Ni-P alloy film 2 as a magnetic recording medium having high coercive force and capable of increasing recording density.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コンピュータ等の外部
記憶装置として用いられる磁気記録装置の磁気記録媒体
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic recording medium of a magnetic recording device used as an external storage device such as a computer.

【0002】[0002]

【従来の技術】近年、コンピュータ等の情報処理技術の
発達に伴い、その外部記憶装置に情報記録媒体として用
いられる磁気ディスクなどの磁気記録媒体に対し、高密
度記録化への要求がますます高くなってきている。
2. Description of the Related Art In recent years, with the development of information processing technology for computers and the like, there is an increasing demand for high density recording of magnetic recording media such as magnetic disks used as information recording media in external storage devices. It has become to.

【0003】現在、磁気記録媒体に用いられている基板
は、円盤状のアルミ合金のプレートに厚さ10〜20μ
mのニッケル/リン合金(以下NiP)の無電解メッキ
を施し、その表面を鏡面研磨したものを用いるのが一般
的である。従来の磁気ディスクとしては、この表面を鏡
面研磨した基板に、テクスチャーと呼ばれる微細な溝を
円周方向に形成し、さらに、例えば図6に符号(3)〜
(6)に示すような膜をスパッタリングにより形成して
いる。形成している膜厚について述べるとクロム(C
r)からなる下地膜(3)は50〜150nm、コバル
ト(Co)合金からなる磁性膜(4)は40〜60n
m、カーボン(C)からなる保護膜(5)は20〜40
nm、潤滑剤膜(6)は1〜3nm程度が適当とされて
いる。なお、図6において、符号(1)はアルミ合金基
板、符号(2)はNiPめっき膜である。
At present, a substrate used for a magnetic recording medium is a disc-shaped aluminum alloy plate having a thickness of 10 to 20 μm.
It is common to use electroless plating of nickel / phosphorus alloy (hereinafter NiP) of m, and the surface of which is mirror-polished. As a conventional magnetic disk, fine grooves called a texture are formed in a circumferential direction on a substrate whose surface is mirror-polished, and further, for example, in FIG.
The film as shown in (6) is formed by sputtering. The thickness of the film formed is chromium (C
The base film (3) made of r) has a thickness of 50 to 150 nm, and the magnetic film (4) made of a cobalt (Co) alloy has a thickness of 40 to 60 n.
m, the protective film (5) made of carbon (C) is 20 to 40
nm, and the lubricant film (6) is about 1 to 3 nm. In FIG. 6, reference numeral (1) is an aluminum alloy substrate, and reference numeral (2) is a NiP plating film.

【0004】磁気記録媒体はテクスチャー加工を基板上
に円周方向に施すことで磁気的性能、電気的性能、耐久
性を満足させている。すなわち、テクスチャー加工によ
り磁気ヘッドとの吸着現象を防止し、且つ円周方向の磁
気異方性を誘起して高い保磁力を得ようとするものであ
る。そのテクスチャーの加工方法としては、研磨テープ
による湿式、または乾式の研磨が一般的である。例えば
回転する基板に適当な粗さの研磨テープを押し付けて円
周方向に微細な加工を行う。これにより基板表面に施さ
れる粗さのレベルとしては、中心線平均粗さ(以下Ra
とする)で5〜10nm、最大高さ(Rmax)で50
〜100nmの範囲が適当であるとされている。
The magnetic recording medium is subjected to texture processing on the substrate in the circumferential direction to satisfy magnetic performance, electrical performance and durability. That is, it is intended to prevent the adsorption phenomenon with the magnetic head by texture processing and to induce the magnetic anisotropy in the circumferential direction to obtain a high coercive force. As a method of processing the texture, wet or dry polishing with a polishing tape is generally used. For example, a polishing tape having an appropriate roughness is pressed against a rotating substrate to perform fine processing in the circumferential direction. As a result of the level of roughness applied to the substrate surface, the center line average roughness (hereinafter referred to as Ra
5) to 10 nm, and the maximum height (Rmax) is 50
The range of up to 100 nm is said to be suitable.

【0005】[0005]

【発明が解決しようとする課題】更に高記録密度化を進
め、より低浮上に対応するためには、より平坦で、平滑
な基板が必要となってくる。そのためにテクスチャー加
工がより微細になされるようになってきた。
In order to further increase the recording density and cope with lower flying height, a flatter and smoother substrate is required. For that reason, the texture processing has become finer.

【0006】しかしながら、上記のような従来の膜構成
を有する磁気記録媒体では、テクスチャー加工が微細で
浅く軽度になるにつれて、ポリッシュ研磨により基板表
面にランダムに残るポリッシュ痕、またはその他のスク
ラッチが、磁気特性に影響を与えるという問題点があっ
た。
However, in the magnetic recording medium having the conventional film structure as described above, as the texture processing becomes finer, shallower and milder, the polish marks randomly left on the surface of the substrate due to the polish polishing or other scratches become magnetic. There is a problem that it affects the characteristics.

【0007】すなわち、円周方向に加工されたテクスチ
ャーの方向に磁気異方性が誘起されるのは当然である
が、ポリッシュ痕の長手方向にも磁気異方性が誘起され
る。基板表面に残るポリッシュ痕は、ポリッシュ仕上げ
の方向に向いており、円周方向と角度をなして存在して
いることから、記録に必要とされる円周方向の磁気特性
に対し、ポリッシュ痕方向にも強い磁気異方性を誘起し
て、磁気記録媒体の円周方向一周内での磁気特性と電磁
変換特性にばらつきを生じる。例えば電気特性不良の1
つであるモジュレーション不良の原因の1つがこの点に
ある。
That is, magnetic anisotropy is naturally induced in the direction of the texture processed in the circumferential direction, but magnetic anisotropy is also induced in the longitudinal direction of the polish mark. The polish marks left on the surface of the substrate face the direction of the polish finish and exist at an angle to the circumferential direction. In particular, a strong magnetic anisotropy is induced to cause variations in the magnetic characteristics and electromagnetic conversion characteristics within the circumference of the magnetic recording medium. For example, one with poor electrical characteristics
This is one of the causes of the poor modulation.

【0008】また、このような問題を避けるため、深い
テクスチャー加工を行ってポリシュ痕を消そうとすれ
ば、グライドハイト性能に支障をきたして低浮上高記録
密度が実現できなくなることは明らかである。具体的に
述べるならば、フライングハイトが0.05μmを要求
されているのに対し、基板表面に0.05μm以上の突
起が存在しているならば磁気ヘッドと磁気記録媒体との
衝突は避けることができず、双方にダメージを与えるこ
とになる。
Further, in order to avoid such a problem, if it is attempted to remove the polish marks by performing deep texturing, it is obvious that the glide height performance is hindered and the low flying height and high recording density cannot be realized. . More specifically, the flying height is required to be 0.05 μm, but if there is a protrusion of 0.05 μm or more on the substrate surface, avoid collision between the magnetic head and the magnetic recording medium. Cannot be done and will damage both sides.

【0009】テクスチャー加工は、統計的な粗さのばら
つきが避けられないことから磁気記録媒体全面にわたり
このような突起が無いことを保証することは極めて困難
である。従ってテクスチャーをより微細に浅くすること
は磁気特性、電気特性のばらつきを招き、深いテクスチ
ャーは磁気ヘッドの低浮上に対応できず、今後の要求で
ある高記録密度を実現するためには現状技術では限界が
あると言える。
In texture processing, it is extremely difficult to guarantee that such protrusions are not present on the entire surface of the magnetic recording medium since statistical variations in roughness are unavoidable. Therefore, making the texture finer and shallower leads to variations in magnetic characteristics and electrical characteristics, and deep texture cannot support the low flying height of the magnetic head, and in order to realize the high recording density required in the future, it is not possible with the current technology. It can be said that there is a limit.

【0010】こうした限界を克服するため、テクスチャ
ー加工を行わずに基板の持つ平坦性、平滑性を低浮上・
高記録密度に有利に働かせる試みが成されている。例え
ばガラス基板を磁気記録媒体の基板とする試みがある。
しかしながら従来のCoNiCr、CoCrTaなどの
磁性材料を、ガラス基板のような平坦性、平滑性の優れ
た基板に適用した場合、円周方向に磁気異方性が誘起さ
れないため高密度磁気記録に十分な保磁力を得ることが
出来ない。またガラス基板は例えばソーダガラス表面に
カリウム等の化学的強化層を有しており、テクスチャー
加工により磁気的性能、電気的特性、耐久性を満たす微
細な形状を得ることは困難である。さらに、ガラス基板
は非常に高価であり、コスト的に不利である。
In order to overcome these limitations, the flatness and smoothness of the substrate can be reduced without the texturing process.
Attempts have been made to take advantage of high recording densities. For example, there is an attempt to use a glass substrate as a substrate for a magnetic recording medium.
However, when a conventional magnetic material such as CoNiCr or CoCrTa is applied to a substrate having excellent flatness and smoothness such as a glass substrate, magnetic anisotropy is not induced in the circumferential direction, which is sufficient for high density magnetic recording. Cannot obtain coercive force. Further, the glass substrate has, for example, a chemically strengthened layer of potassium or the like on the surface of soda glass, and it is difficult to obtain a fine shape satisfying magnetic performance, electrical characteristics and durability by texturing. Furthermore, the glass substrate is very expensive, which is a cost disadvantage.

【0011】従って、ガラス基板のような平坦性、平滑
性の優れた基板に対しては等方的でかつテクスチャー加
工を施さなくても高い保磁力を有する、CoCrPtや
CoNiPtなどが検討されている。これらの材料はP
tを含むため高価で、Pt量の低減が望まれている。し
かし、Pt量を減らすとCoNiCrやCoCrTaと
同様に保磁力が低下し、テクスチャー加工に頼らざるを
えなくなり、基板のポリッシュ痕の影響を受けて不均質
な磁気特性しか得られなくなる。
Therefore, CoCrPt, CoNiPt, etc., which are isotropic and have a high coercive force without being textured, have been studied for a substrate having excellent flatness and smoothness such as a glass substrate. . These materials are P
Since it contains t, it is expensive, and it is desired to reduce the amount of Pt. However, when the amount of Pt is reduced, the coercive force is lowered like CoNiCr and CoCrTa, and it is necessary to rely on the texture processing, and only the nonuniform magnetic property is obtained due to the influence of the polish mark on the substrate.

【0012】本発明はこうした課題を解決するために成
されたものである。すなわち、本発明の目的は基板品質
の影響を受けることなく均質な磁気特性を有し、かつ高
密度磁気記録化のための磁気ヘッドの低浮上化に対応で
きる磁気記録媒体を提供することにある。
The present invention has been made to solve these problems. That is, an object of the present invention is to provide a magnetic recording medium which has a uniform magnetic characteristic without being affected by the substrate quality and which can cope with a low flying height of a magnetic head for high density magnetic recording. .

【0013】[0013]

【課題を解決するための手段】上記課題を解決するため
に請求項1に記載の発明は、NiP合金膜をその表面に
有する基板を使用した磁気記録媒体において、その基板
表面に磁気異方性の誘起を抑制する薄膜と、等方的な磁
気的性質を持つ磁性膜を積層形成した磁気記録媒体とし
たものである。
In order to solve the above-mentioned problems, the invention according to claim 1 is a magnetic recording medium using a substrate having a NiP alloy film on its surface. This is a magnetic recording medium in which a thin film that suppresses induction of magnetic field and a magnetic film having isotropic magnetic properties are laminated.

【0014】請求項2に記載の発明は、上記課題を解決
するために前記請求項1に記載の薄膜が、原子半径が
0.125nm以上の金属からなる磁気記録媒体とした
ものである。
According to a second aspect of the invention, in order to solve the above-mentioned problems, the thin film according to the first aspect is a magnetic recording medium made of a metal having an atomic radius of 0.125 nm or more.

【0015】請求項3に記載の発明は、上記課題を解決
するために前記請求項1に記載の薄膜の膜厚が5nm以
上100nm以下の磁気記録媒体としたものである。。
According to a third aspect of the present invention, in order to solve the above problems, the thin film according to the first aspect is a magnetic recording medium having a film thickness of 5 nm or more and 100 nm or less. .

【0016】請求項4に記載の発明は、上記課題を解決
するために前記請求項1または3に記載の薄膜が、T
i,SiO2 ,Al2 3 のうちの少なくとも1種以上
からなる磁気記録媒体としたものである。
According to a fourth aspect of the present invention, in order to solve the above-mentioned problems, the thin film according to the first or third aspect is made of T
The magnetic recording medium is composed of at least one of i, SiO 2 , and Al 2 O 3 .

【0017】請求項5に記載の発明は、上記課題を解決
するために前記請求項2または3に記載の薄膜がTiか
らなる磁気記録媒体としたものである。
According to a fifth aspect of the present invention, in order to solve the above problems, the thin film according to the second or third aspect is a magnetic recording medium made of Ti.

【0018】[0018]

【作用】本発明の磁気記録媒体では、基板表面のNiP
メッキ層に存在するポリッシュ痕等により発生する磁気
異方性の誘起を抑制する薄膜を形成することにより、均
質な等方的磁気特性を有し、高記録密度、低浮上の可能
な磁気記録媒体を得ることができる。
In the magnetic recording medium of the present invention, the NiP on the substrate surface is
By forming a thin film that suppresses the induction of magnetic anisotropy caused by polish marks or the like present in the plating layer, a magnetic recording medium having homogeneous isotropic magnetic characteristics, high recording density, and low flying height can be obtained. Can be obtained.

【0019】[0019]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 (実施例1)図1は、本発明の一実施例を示す図であ
る。まず構成を説明すると、アルミ合金を主材料とする
円盤状のアルミ合金基板(1)にニッケル/リン(以下
NiP)合金膜(2)を無電解めっきにより形成し、基
板表面をポリッシュ研磨加工をする。次にTiからなる
薄膜(7)を基板加熱を行いながら成膜を行った。その
後、クロム(Cr)の下地膜(3)、コバルット/クロ
ム/タンタル(CoCrTa)合金またはコバルト/ニ
ッケル/クロム(CoNiCr)合金等で磁性膜(4)
を形成した。この磁性膜(4)はバイアススパッタ法と
呼ばれる成膜方法で形成されたものであり。高い保磁力
を得ることができるものである。最後にカーボンで保護
層(5)を形成した。膜形成はスパッタ法で行った。
Embodiments of the present invention will be described below with reference to the drawings. (Embodiment 1) FIG. 1 is a diagram showing an embodiment of the present invention. First, the structure will be described. A nickel / phosphorus (hereinafter referred to as NiP) alloy film (2) is formed on a disk-shaped aluminum alloy substrate (1) mainly made of aluminum alloy by electroless plating, and the substrate surface is polished and polished. To do. Next, a thin film (7) made of Ti was formed while heating the substrate. Then, a magnetic film (4) made of a chromium (Cr) base film (3), a cobalt / chromium / tantalum (CoCrTa) alloy, a cobalt / nickel / chromium (CoNiCr) alloy, or the like.
Was formed. The magnetic film (4) was formed by a film forming method called a bias sputtering method. A high coercive force can be obtained. Finally, carbon was used to form a protective layer (5). The film was formed by the sputtering method.

【0020】図2と図3は、基板のポリッシュ痕に対す
るTiからなる薄膜(7)の効果を示したものであり、
図2は膜厚5nmの場合、図3は膜厚100nmの場合
の磁気特性B−Hカーブであり、縦軸は磁束密度、横軸
は外部磁界を示し、単位はそれぞれGμm、Oeであ
る。また、図2、図3において、(a)、(b)はそれ
ぞれ、ポリッシュ痕長手方向の場合とポリッシュ痕垂直
方向で測定した場合を示す。図から分かるようにTiの
膜厚が5nmであっても100nmであっても、基板位
置によらず同じ等方的磁気特性を示している。すなわち
基板表面に残る形状、つまりポリッシュ痕等の影響によ
る磁気異方性誘起の抑制に効果が認められる。 (実施例2)実施例2は、薄膜(7)として二酸化珪素
薄膜(SiO2 膜)をスパッタ法によりNiP合金膜
(2)上に形成したものである。以下に具体的に説明す
る。
FIGS. 2 and 3 show the effect of the thin film (7) of Ti on the polish marks of the substrate,
2 is a magnetic characteristic B-H curve when the film thickness is 5 nm and FIG. 3 is when the film thickness is 100 nm. The vertical axis represents the magnetic flux density, the horizontal axis represents the external magnetic field, and the units are G μm and Oe, respectively. Further, in FIGS. 2 and 3, (a) and (b) respectively show the case of the longitudinal direction of the polish mark and the case of measuring in the direction perpendicular to the polish mark. As can be seen from the figure, the same isotropic magnetic characteristics are exhibited irrespective of the substrate position regardless of whether the Ti film thickness is 5 nm or 100 nm. That is, the effect that the shape remaining on the substrate surface, that is, the suppression of the induction of magnetic anisotropy due to the influence of the polish mark or the like is recognized. (Embodiment 2) In Embodiment 2, a silicon dioxide thin film (SiO2 film) is formed as a thin film (7) on a NiP alloy film (2) by a sputtering method. This will be specifically described below.

【0021】[0021]

【表1】 表1は、SiO2 膜をスパッタ法で成膜した際のスパッ
タ条件をまとめたものである。
[Table 1] Table 1 summarizes the sputtering conditions when the SiO 2 film is formed by the sputtering method.

【0022】NiP合金膜(2)上に表1に示した条件
でSiO2 を成膜して、しかる後に、上記実施例1と同
様にして下地膜(3)、磁性膜(4)、保護膜(5)を
成膜した。このようにして作成された磁気記録媒体の任
意の位置で磁気特性を測定した結果が図4である。
(a)、(b)はそれぞれ、ポリッシュ痕長手方向の場
合とポリッシュ痕垂直方向で測定した場合を示す。Si
2 厚さは20nmとした。図2、図3のTi膜の例と
同じく等方的で均質な磁気特性が得られている。すなわ
ちNiP合金膜(2)のポリッシュ痕の影響を受けてい
ないことがわかる。
SiO 2 was formed on the NiP alloy film (2) under the conditions shown in Table 1, and thereafter, the underlayer film (3), the magnetic film (4) and the protective film were formed in the same manner as in Example 1 above. A film (5) was formed. FIG. 4 shows the result of measuring the magnetic characteristics at an arbitrary position of the magnetic recording medium thus manufactured.
(A) and (b) respectively show the case of the longitudinal direction of the polish mark and the case of measurement in the direction perpendicular to the polish mark. Si
The O 2 thickness was 20 nm. Similar to the example of the Ti film in FIGS. 2 and 3, isotropic and uniform magnetic characteristics are obtained. That is, it is understood that the NiP alloy film (2) is not affected by the polish mark.

【0023】図5は、比較のために薄膜(7)を施さな
い場合の例である。図2〜図4と同様に(a)、(b)
はそれぞれ、ポリッシュ痕長手方向の場合とポリッシュ
痕垂直方向で測定した場合を示す。テクスチャー加工を
施さず、ポリッシュ研磨仕上げしたNiP合金膜(2)
上に従来技術と同じく直接下地膜(3)、磁性膜
(4)、保護膜(5)、潤滑剤膜(6)を成膜したもの
である。このときのNiP合金膜(2)の表面粗さはR
a2.0nmと非常に平滑であったが、電子顕微鏡によ
る観察では極めて微細なポリッシュ痕が多数確認され
た。磁気特性がポリッシュ痕の影響を受けて大きく異な
る値を示していることがわかる。
FIG. 5 shows an example in which the thin film (7) is not applied for comparison. (A), (b) as in FIGS.
Shows the case of the longitudinal direction of the polish mark and the case of measuring in the vertical direction of the polish mark, respectively. Polished NiP alloy film without texturing (2)
The underlying film (3), the magnetic film (4), the protective film (5), and the lubricant film (6) are directly formed on the upper surface as in the prior art. The surface roughness of the NiP alloy film (2) at this time is R
Although it was very smooth with a of 2.0 nm, a large number of extremely fine polish marks were confirmed by observation with an electron microscope. It can be seen that the magnetic properties show greatly different values under the influence of the polish marks.

【0024】[0024]

【表2】 表2は、本発明例と比較例の磁気特性評価結果を一覧表
にまとめたものである。Ti、SiO2 を成膜すること
でポリッシュ痕の残るNiP合金膜(2)上でも均質で
等方的な磁気特性が得られている。また、Al2 3
場合でも同様な結果が得られ、Ti、Al2 3 、Si
2 を2種以上混合して成膜しても同様な効果が得られ
るのは言うまでもない。ここで、本発明において薄膜に
使用する金属の原子半径を0.125nm以上としたの
は原子半径が0.125nmより小さいとポリッシュ痕
の影響を抑制する効果が小さくなってしまうからであ
る。
[Table 2] Table 2 is a list of the magnetic property evaluation results of the present invention example and the comparative example. By depositing Ti and SiO 2 , uniform and isotropic magnetic characteristics are obtained even on the NiP alloy film (2) having a polish mark. Similar results are obtained in the case of Al 2 O 3 , such as Ti, Al 2 O 3 and Si.
Needless to say, the same effect can be obtained by forming a film by mixing two or more kinds of O 2 . Here, in the present invention, the atomic radius of the metal used for the thin film is set to 0.125 nm or more because the effect of suppressing the influence of the polish mark becomes small when the atomic radius is smaller than 0.125 nm.

【0025】なお、原子半径0.125nm以上の金属
元素としてはTiの他にV,Mn,Cu,Zn,Zr,
Nb,Mo,Tc,Ag,Cd,In,Sn,Sb,T
e,Hf,Ta,W,Re,Au,Pb,Bi,Po,
白金族元素、アルカリ金属、アルカリ土金属、希土類元
素(Gd,Tb,Dy,Ho,Er,Tmなど強磁性元
素は除く)など強磁性元素以外の金属元素が該当し、こ
れらの元素を膜(7)として使用しても同様な効果が得
られる。
As the metal element having an atomic radius of 0.125 nm or more, in addition to Ti, V, Mn, Cu, Zn, Zr,
Nb, Mo, Tc, Ag, Cd, In, Sn, Sb, T
e, Hf, Ta, W, Re, Au, Pb, Bi, Po,
Metal elements other than ferromagnetic elements such as platinum group elements, alkali metals, alkaline earth metals, rare earth elements (excluding ferromagnetic elements such as Gd, Tb, Dy, Ho, Er, and Tm) are applicable, and these elements are formed into a film ( Even if it is used as 7), the same effect can be obtained.

【0026】なお、前記薄膜はスパッタ法に限らず例え
ばゾル- ゲル法などによりコーティングしても同じ効果
が得られることは言うまでもない。
Needless to say, the same effect can be obtained by coating the thin film not only by the sputtering method but also by the sol-gel method or the like.

【0027】[0027]

【発明の効果】本発明の磁気記録媒体は、前述した膜構
成とすることにより、NiP合金膜表面にできたポリッ
シュ痕の影響を受けることなく、均質な磁気特性を有す
る磁気記録媒体を得ることができる。また、バイアスス
パッタ法により、従来のCoCrTa磁性膜を使用する
ことができるためPt系の磁性膜よりコスト面で有利で
あり、さらに、ポリッシュ研磨仕上げがなされたアルミ
合金NiP基板はガラス基板に比べて低コストであるこ
とはもちろんのことRaで1〜2nmであり、十分平滑
で磁気ヘッドの低浮上化に対応出来ることは言うまでも
ない。従って、高記録密度化が十分可能であり工業的な
利用価値が高い。
The magnetic recording medium of the present invention having the above-mentioned film structure can obtain a magnetic recording medium having a uniform magnetic characteristic without being affected by the polish marks formed on the surface of the NiP alloy film. You can In addition, since the conventional CoCrTa magnetic film can be used by the bias sputtering method, it is more advantageous in terms of cost than the Pt-based magnetic film. Furthermore, the aluminum alloy NiP substrate with the polished polishing finish is more advantageous than the glass substrate. Needless to say, the cost is low and Ra is 1 to 2 nm, which is sufficiently smooth and can be applied to lower the flying height of the magnetic head. Therefore, high recording density can be sufficiently achieved and the industrial utility value is high.

【図面の簡単な説明】[Brief description of drawings]

【第1図】本発明に関する磁気記録媒体の膜構成を示す
概略構成図の一例である。
FIG. 1 is an example of a schematic configuration diagram showing a film configuration of a magnetic recording medium according to the present invention.

【第2図】本発明のTi薄膜(膜厚5nm)における磁
気特性B−Hカーブの一例である。
FIG. 2 is an example of a magnetic characteristic B-H curve in a Ti thin film (film thickness 5 nm) of the present invention.

【第3図】本発明のTi薄膜(膜厚100nm)におけ
る磁気特性B−Hカーブの一例である。
FIG. 3 is an example of a magnetic characteristic B-H curve in a Ti thin film (film thickness 100 nm) of the present invention.

【第4図】本発明のSiO2 薄膜における磁気特性B−
Hカーブの一例である。
FIG. 4 Magnetic properties B- of the SiO 2 thin film of the present invention
It is an example of an H curve.

【第5図】比較例における磁気特性B−Hカーブであ
る。
FIG. 5 is a magnetic characteristic BH curve in a comparative example.

【第6図】従来の磁気記録媒体の膜構成を示す断面図で
ある。
FIG. 6 is a cross-sectional view showing a film structure of a conventional magnetic recording medium.

【符号の説明】[Explanation of symbols]

1 アルミ合金基板 2 NiPメッキ膜 3 下地膜、 4 磁性膜 5 保護膜 6 潤滑剤膜 7 薄膜 1 Aluminum alloy substrate 2 NiP plating film 3 Underlayer film, 4 Magnetic film 5 Protective film 6 Lubricant film 7 Thin film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 NiP合金膜をその表面に有する基板を
使用した磁気記録媒体において、その基板表面に磁気異
方性の誘起を抑制する薄膜と、等方的な磁気的性質を持
つ磁性膜を積層形成したことを特徴とする磁気記録媒
体。
1. A magnetic recording medium using a substrate having a NiP alloy film on its surface, a thin film for suppressing induction of magnetic anisotropy and a magnetic film having isotropic magnetic properties on the surface of the substrate. A magnetic recording medium having a laminated structure.
【請求項2】 前記薄膜は、原子半径が0.125nm
以上の金属からなることを特徴とする請求項1に記載の
磁気記録媒体。
2. The thin film has an atomic radius of 0.125 nm.
The magnetic recording medium according to claim 1, wherein the magnetic recording medium is made of any of the above metals.
【請求項3】 前記薄膜の膜厚は5nm以上100nm
以下であることを特徴とする請求項1に記載の磁気記録
媒体。
3. The film thickness of the thin film is 5 nm or more and 100 nm.
The magnetic recording medium according to claim 1, wherein:
【請求項4】 前記薄膜が、Ti,SiO2 ,Al2
3 のうちの少なくとも1種以上からなることを特徴とす
る請求項1または3に記載の磁気記録媒体。
4. The thin film comprises Ti, SiO 2 , Al 2 O
4. The magnetic recording medium according to claim 1, comprising at least one of 3 or more.
【請求項5】 前記薄膜はTiからなることを特徴とす
る請求項2または3に記載の磁気記録媒体。
5. The magnetic recording medium according to claim 2, wherein the thin film is made of Ti.
JP6625293A 1993-03-02 1993-03-02 Magnetic recording medium Withdrawn JPH06259741A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6625293A JPH06259741A (en) 1993-03-02 1993-03-02 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6625293A JPH06259741A (en) 1993-03-02 1993-03-02 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH06259741A true JPH06259741A (en) 1994-09-16

Family

ID=13310493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6625293A Withdrawn JPH06259741A (en) 1993-03-02 1993-03-02 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH06259741A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740383B2 (en) 1998-05-27 2004-05-25 Fujitsu Limited Magnetic recording medium possessing a ratio of Hc(perpendicular) to Hc(horizontal) that is not more than 0.22 and magnetic recording disk device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6740383B2 (en) 1998-05-27 2004-05-25 Fujitsu Limited Magnetic recording medium possessing a ratio of Hc(perpendicular) to Hc(horizontal) that is not more than 0.22 and magnetic recording disk device

Similar Documents

Publication Publication Date Title
US5605733A (en) Magnetic recording medium, method for its production, and system for its use
US8003237B2 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JP4982810B2 (en) Glass substrate manufacturing method and magnetic disk manufacturing method
JP5401069B2 (en) Perpendicular magnetic recording medium
JP4332833B2 (en) Perpendicular magnetic recording medium and manufacturing method thereof
JP5420098B2 (en) Glass substrate for magnetic disk, magnetic disk, and manufacturing method of magnetic disk
JP2724067B2 (en) Metal thin-film magnetic recording media
US20100039724A1 (en) Magnetic recording medium
JPWO2006003922A1 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JPH087859B2 (en) Magnetic recording medium and manufacturing method thereof
CN100424757C (en) Laminated magnetic media using ta containing magnetic alloy as the upper magnetic layer
JP4611847B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
JP4023408B2 (en) Substrate for perpendicular magnetic recording medium, perpendicular magnetic recording medium, and method for producing them
US7357998B2 (en) Disk substrate for a perpendicular magnetic recording medium, perpendicular magnetic recording disk and manufacturing methods thereof
JPH06259741A (en) Magnetic recording medium
JP6085088B2 (en) Method for manufacturing perpendicular magnetic recording medium
JP2002032909A (en) Substrate for magnetic recording medium, magnetic recording medium, method for manufacturing substrate for magnetic recording medium and method for manufacturing magnetic recording medium
JP2001250223A (en) Magnetic recording medium and magnetic recorder
JP2834391B2 (en) Method of manufacturing magnetic recording medium substrate and method of manufacturing magnetic recording medium using the substrate
JP2677108B2 (en) Magnetic recording media
JP2909485B2 (en) Magnetic recording media
JP2000348334A (en) Magnetic recording medium and magnetic disk device
JP4944471B2 (en) Magnetic disk and manufacturing method thereof
JP2802017B2 (en) Metal thin-film magnetic recording media
JPH06325342A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509