JPH0625896A - Formation of carbonaceous coating by electrolysis method - Google Patents

Formation of carbonaceous coating by electrolysis method

Info

Publication number
JPH0625896A
JPH0625896A JP29402792A JP29402792A JPH0625896A JP H0625896 A JPH0625896 A JP H0625896A JP 29402792 A JP29402792 A JP 29402792A JP 29402792 A JP29402792 A JP 29402792A JP H0625896 A JPH0625896 A JP H0625896A
Authority
JP
Japan
Prior art keywords
thin film
carbon
diamond
electrolysis
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29402792A
Other languages
Japanese (ja)
Other versions
JP3156981B2 (en
Inventor
Matsufumi Takatani
松文 高谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP29402792A priority Critical patent/JP3156981B2/en
Publication of JPH0625896A publication Critical patent/JPH0625896A/en
Application granted granted Critical
Publication of JP3156981B2 publication Critical patent/JP3156981B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To extremely easily form a diamond thin film, diamondlike carbon thin film or amorphous carbon or graphite thin film or superconductive film with good adhesion according to the kind of a conductive material on the surface of the conductive material at a low cost by an electrolysis method. CONSTITUTION:An electrolyte or the electrolyte formed by adding at least one kinds of the particles selected from superfine particle carbon and fullerene particles into the electrolyte is added into an aq. soln. contg. an org. compd. or liquid org. compd. The material to be coated and a counter electrode material are immersed therein and are subjected to a DC electrolysis or the electrolysis modulated by pulses with the former as cathode and the latter as anode, by which the diamond thin film, diamond-like carbon thin film or amorphous carbon or graphite thin film or superconductive film is formed on the surface of the cathode material (material to be coated).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、新規な電解法による炭
素質被覆の形成方法に関するものである。さらに詳しく
いえば、本発明は、有機化合物を電解することによっ
て、導電性材料表面にダイヤモンド薄膜、ダイヤモンド
状炭素薄膜又は無定形炭素やグラファイト薄膜を、密着
性よく極めて容易にかつ低いコストで形成させる工業的
方法に関するものである。
FIELD OF THE INVENTION The present invention relates to a method for forming a carbonaceous coating by a novel electrolytic method. More specifically, the present invention forms a diamond thin film, a diamond-like carbon thin film, or an amorphous carbon or graphite thin film on the surface of a conductive material with good adhesion and very easily and at low cost by electrolyzing an organic compound. It concerns an industrial method.

【0002】[0002]

【従来の技術】従来、ダイヤモンドは極めて硬く、高耐
摩耗性を有することから、工業用として、非鉄材料や非
金属材料の切削加工工具、あるいは高耐摩耗性が要求さ
れる耐摩耗工具や、耐摩耗部材などに利用されている。
これらのダイヤモンド工具や耐摩耗部材に用いられるダ
イヤモンド素材としては、例えば天然又は合成単結晶ダ
イヤモンド、焼結体多結晶ダイヤモンドなどを挙げるこ
とができる。
2. Description of the Related Art Conventionally, since diamond is extremely hard and has high wear resistance, it is industrially used for cutting tools made of non-ferrous materials or non-metal materials, or wear-resistant tools requiring high wear resistance, It is used as a wear resistant member.
Examples of the diamond material used for these diamond tools and wear resistant members include natural or synthetic single crystal diamond and sintered polycrystalline diamond.

【0003】さらに、近年気相合成法によるダイヤモン
ド薄膜の合成技術が著しい発展を遂げ、この気相合成法
により、基材表面にダイヤモンド薄膜を形成させ、これ
を種々のダイヤモンド工具や耐摩耗部材に利用すること
が試みられている。
Further, in recent years, a technique for synthesizing a diamond thin film by a vapor phase synthesis method has made remarkable progress, and a diamond thin film is formed on a surface of a base material by this vapor phase synthesis method, which is used for various diamond tools and wear resistant members. Attempting to utilize.

【0004】この気相合成法としては、例えば炭素源を
含む原料ガスを用い、これをプラズマ分解するか、又は
不均等化反応を利用して、ダイヤモンド薄膜を基材表面
に析出させる化学蒸着法(CVD法)、熱陰極PIGガ
ン、冷陰極PIGガン、スパッターガンなどを用いて膜
状ダイヤモンドを基材表面に形成させるイオン化蒸着法
などが知られている。特に、CVD法により、ダイヤモ
ンド薄膜を基材表面に析出させる方法は、他の方法に比
べ、あまり高温を必要とせず、かつ連続操業が容易であ
って工業的に有利であることから、最近注目を浴びてい
る。
As the vapor phase synthesis method, for example, a chemical vapor deposition method is used in which a raw material gas containing a carbon source is used, and this is plasma decomposed or a nonuniform reaction is used to deposit a diamond thin film on the surface of a substrate. An ionization vapor deposition method is known in which a film diamond is formed on the surface of a substrate by using a (CVD method), a hot cathode PIG gun, a cold cathode PIG gun, a sputter gun, or the like. In particular, the method of depositing a diamond thin film on the surface of a substrate by the CVD method, which requires less high temperature than other methods, is easy to operate continuously, and is industrially advantageous, has recently attracted attention. Taking a bath.

【0005】このCVD法によりダイヤモンド薄膜を形
成させる方法としては、これまで種々の方法が提案され
ており、例えば2〜30モル%の一酸化炭素及び水素ガ
スを含有する原料ガスを活性化して超硬合金に接触させ
る方法などが開示されている(特開平1−201476
号公報)。しかしながら、このようなCVD法によるダ
イヤモンド薄膜の形成方法においては、他の気相合成法
に比べると比較的低い温度でよいが、それでも800〜
1000℃の基材温度を必要とするため、低融点の銅合
金やマグネシウム合金、アルミニウムなどの基材は使用
できないし、また、鋼やステンレスなどの鉄系材料は炭
素が浸透拡散するため、ダイヤモンド薄膜が形成されに
くく、基材として不適当であるなど、基材の種類が制限
されるのを免れず、一般に超硬合金、ケイ素、タングス
テン、モリブデン、チタン合金などの鉄系以外の高融点
基材が使用されている。さらに、ダイヤモンド薄膜形成
装置が複雑なため製造コストが高くつき、しかも成膜条
件の範囲が狭いなどの欠点があり、工業的方法としては
必ずしも満足しうるものではない。
As a method for forming a diamond thin film by this CVD method, various methods have been proposed so far, for example, by activating a raw material gas containing carbon monoxide and hydrogen gas of 2 to 30 mol% and irradiating an ultra-high pressure gas. A method of contacting with a hard alloy has been disclosed (JP-A-1-201476).
Issue). However, in such a method for forming a diamond thin film by the CVD method, a relatively low temperature may be used as compared with other vapor phase synthesis methods, but still 800 to
Since a base material temperature of 1000 ° C is required, base materials such as low-melting copper alloys, magnesium alloys, and aluminum cannot be used, and iron-based materials such as steel and stainless steel have carbon that permeates and diffuses. It is difficult to form a thin film and it is unsuitable as a base material, so it is inevitable that the type of base material is limited, and it is generally a high melting point group other than iron-based materials such as cemented carbide, silicon, tungsten, molybdenum, titanium alloys. Wood is used. Further, since the diamond thin film forming apparatus is complicated, the manufacturing cost is high and the range of film forming conditions is narrow, which is not always satisfactory as an industrial method.

【0006】他方、無定形炭素やグラファイト薄膜が被
覆された材料は耐食性や潤滑特性などに優れ、工業材料
として有用である。このような無定形炭素やグラファイ
ト薄膜を基材上に形成させる方法としてはCVD法が知
られており、例えば、前記のCVD法によるダイヤモン
ド薄膜の形成において、基材温度をより低くし、かつ炭
素源の濃度をより高くすることによって、基材上に無定
形炭素やグラファイト薄膜が形成される。しかしなが
ら、このようなCVD法による無定形炭素やグラファイ
ト薄膜の形成方法は、前記のCVD法によるダイヤモン
ド薄膜の形成方法の場合と同様に、装置が複雑である
上、被覆面積が制限されるのを免れないなどの欠点を有
し、工業的方法とはいえない。
On the other hand, a material coated with amorphous carbon or a graphite thin film is excellent in corrosion resistance and lubricating properties and is useful as an industrial material. A CVD method is known as a method for forming such an amorphous carbon or graphite thin film on a substrate. For example, in forming a diamond thin film by the above-mentioned CVD method, the substrate temperature is lowered and The higher concentration of source forms amorphous carbon or graphite thin films on the substrate. However, such a method for forming an amorphous carbon or graphite thin film by the CVD method requires a complicated device and a limited coating area as in the case of the above-described method for forming a diamond thin film by the CVD method. It has drawbacks such as inevitability and cannot be said to be an industrial method.

【0007】[0007]

【発明が解決しようとする課題】本発明は、このような
事情のもとで、基材として鉄系材料はもちろんのこと、
導電性材料であればその融点にあまり関係なく使用する
ことができ、かつCVD法のような複雑な装置を必要と
せず、簡単な装置を用いて安価にダイヤモンド薄膜、ダ
イヤモンド状炭素薄膜又は無定形炭素やグラファイト薄
膜のような炭素質被覆を、基材表面に密着性よく形成さ
せるための工業的方法を提供することを目的としてなさ
れたものである。
Under the circumstances described above, the present invention not only uses iron-based materials as base materials,
As long as it is a conductive material, it can be used regardless of its melting point, and does not require a complicated device such as a CVD method and can be used inexpensively with a simple device to produce a diamond thin film, a diamond-like carbon thin film, or an amorphous form. It was made for the purpose of providing an industrial method for forming a carbonaceous coating such as carbon or a graphite thin film on the surface of a substrate with good adhesion.

【0008】[0008]

【課題を解決するための手段】本発明者は、前記目的を
達成するために鋭意研究を重ねた結果、有機化合物含有
水溶液又は液状有機化合物に、電解質あるいは電解質に
特定粒子を添加したものを加え、この中に陰極として被
覆すべき材料を、陽極として対極材料を浸せきし、直流
電解又はパルスによる変調電解を行うことにより、該陰
極材料表面に炭素質被覆が容易に密着性よく形成される
こと、そして電解条件を適宜選ぶことにより、該炭素質
被覆としてダイヤモンド薄膜、ダイヤモンド状炭素薄膜
又は無定形炭素やグラファイト薄膜を任意に形成しうる
ことを見出し、この知見に基づいて本発明を完成するに
至った。
Means for Solving the Problems As a result of intensive studies to achieve the above-mentioned object, the present inventor has added an organic compound-containing aqueous solution or a liquid organic compound to which an electrolyte or an electrolyte containing specific particles is added. By soaking the material to be coated as a cathode in this and a counter electrode material as an anode and performing direct current electrolysis or modulated electrolysis by pulse, a carbonaceous coating can be easily formed with good adhesion on the surface of the cathode material. , And by appropriately selecting the electrolysis conditions, it was found that a diamond thin film, a diamond-like carbon thin film or an amorphous carbon or graphite thin film can be arbitrarily formed as the carbonaceous coating, and the present invention is completed based on this finding. I arrived.

【0009】すなわち、本発明は、有機化合物含有水溶
液又は液状有機化合物に、電解質あるいは電解質に超微
粒子カーボン及びフラーレン粒子の中から選ばれた少な
くとも1種の粒子を添加したものを加え、この中に被覆
すべき材料と対極材料とを浸せきし、前者を陰極、後者
を陽極として直流電解又はパルスによる変調電解を施す
ことを特徴とする炭素質被覆の形成方法を提供するもの
である。
That is, according to the present invention, an aqueous solution containing an organic compound or a liquid organic compound is added with an electrolyte or an electrolyte to which at least one kind of particles selected from ultrafine carbon particles and fullerene particles is added. The present invention provides a method for forming a carbonaceous coating, which comprises immersing a material to be coated and a counter electrode material, and subjecting the former to a cathode and the latter to a direct current electrolysis or a pulsed modulation electrolysis.

【0010】本発明方法において用いられる電解液は、
有機化合物含有水溶液又は液状有機化合物に、電解質あ
るいは電解質に超微粒子カーボン(クラスターカーボン
を含む)及びフラーレン(C60、C70等)粒子の中
から選ばれた少なくとも1種の粒子を添加したものを加
えたものであって、該電解質としては、例えば硫酸など
の酸性物質、水酸化ナトリウムや水酸化カリウムなどの
アルカリ金属の水酸化物、炭酸ナトリウム、炭酸カリウ
ム、塩化ナトリウム、塩化カリウム、酢酸ナトリウム、
酢酸カリウムなどのアルカリ金属塩などが挙げられる。
The electrolytic solution used in the method of the present invention is
An organic compound-containing aqueous solution or a liquid organic compound containing an electrolyte or an electrolyte to which at least one kind of particles selected from ultrafine carbon particles (including cluster carbon particles) and fullerene (C 60 , C 70, etc.) particles is added. As the electrolyte, examples of the electrolyte include acidic substances such as sulfuric acid, hydroxides of alkali metals such as sodium hydroxide and potassium hydroxide, sodium carbonate, potassium carbonate, sodium chloride, potassium chloride, sodium acetate,
Examples thereof include alkali metal salts such as potassium acetate.

【0011】一方、該有機化合物としては、例えばメチ
ルアルコール、エチルアルコール、イソプロピルアルコ
ール、n‐プロピルアルコールなどの一価の低級アルコ
ール、エチレングリコール、プロピレングリコールなど
の二価のアルコール類、ホルムアルデヒド、アセトアル
デヒドなどのアルデヒド類、アセトン、メチルエチルケ
トンなどのケトン類、ジメチルエーテル、メチルエチル
エーテル、ジエチルエーテルなどのエーテル類、エチレ
ンジアミンなどのジアミン類、酢酸ナトリウム、酢酸カ
リウムなどの有機カルボン酸塩などが挙げられ、これら
は1種用いてもよいし、2種以上を組み合わせて用いて
もよい。
On the other hand, examples of the organic compound include monohydric lower alcohols such as methyl alcohol, ethyl alcohol, isopropyl alcohol and n-propyl alcohol, dihydric alcohols such as ethylene glycol and propylene glycol, formaldehyde and acetaldehyde. Aldehydes, ketones such as acetone and methyl ethyl ketone, ethers such as dimethyl ether, methyl ethyl ether and diethyl ether, diamines such as ethylenediamine, and organic carboxylic acid salts such as sodium acetate and potassium acetate. One kind may be used, or two or more kinds may be used in combination.

【0012】本発明においては、該電解液は水溶液の形
で用いてもよいし、液状有機化合物に前記電解質を溶解
した有機溶液の形で用いてもよい。該電解液が水溶液で
ある場合、各成分の含有量については、電解質として酸
性酸化物を用いる場合には通常5〜30重量%の範囲
で、アルカリ金属の水酸化物や塩を用いる場合には通常
0.1〜10重量%の範囲で選ばれる。また、有機化合
物の含有量は通常0.5〜20重量%の範囲で選ばれ
る。さらに、超微粒子カーボンやフラーレン粒子を用い
る場合、その添加量は電解質に対し0.5〜10g/L
の範囲で選ばれる。
In the present invention, the electrolytic solution may be used in the form of an aqueous solution or may be used in the form of an organic solution in which the electrolyte is dissolved in a liquid organic compound. When the electrolytic solution is an aqueous solution, the content of each component is usually in the range of 5 to 30% by weight when an acidic oxide is used as the electrolyte, and when the alkali metal hydroxide or salt is used. Usually, it is selected in the range of 0.1 to 10% by weight. The content of the organic compound is usually selected in the range of 0.5 to 20% by weight. Furthermore, when ultrafine carbon particles or fullerene particles are used, the amount added is 0.5 to 10 g / L with respect to the electrolyte.
It is selected in the range of.

【0013】一方、電解液が液状有機化合物を溶媒とす
る有機溶液である場合、電解質の含有量は通常0.5〜
20重量%の範囲で選ばれる。また、超微粒子カーボン
やフラーレン粒子を用いる場合、その添加量は電解質に
対し0.5〜10g/Lの範囲で選ばれる。
On the other hand, when the electrolytic solution is an organic solution using a liquid organic compound as a solvent, the content of the electrolyte is usually 0.5 to
It is selected in the range of 20% by weight. When ultrafine carbon particles or fullerene particles are used, the addition amount thereof is selected within the range of 0.5 to 10 g / L with respect to the electrolyte.

【0014】本発明方法において用いられる陽極材料に
ついては、導電性を有し、かつ電解液に侵されないもの
であればよく特に制限されず、例えば炭素材料やフェラ
イトなどが好ましく用いられる。一方、陰極には、被覆
すべき材料が用いられる。この被覆すべき材料について
は、導電性を有し、かつ電解液に侵されず、しかも電解
時における陰極温度に耐えうるものであればよく特に制
限されず、例えば鋼、ステンレス鋼、銅合金、マグネシ
ウム合金、アルミニウム、超硬合金、ケイ素、タングス
テン、モリブデン、チタン合金などが用いられる。
The anode material used in the method of the present invention is not particularly limited as long as it has conductivity and is not corroded by the electrolytic solution. For example, a carbon material or ferrite is preferably used. On the other hand, the material to be coated is used for the cathode. The material to be coated is not particularly limited as long as it has conductivity, and is not corroded by the electrolytic solution, and can withstand the cathode temperature during electrolysis, for example, steel, stainless steel, copper alloy, Magnesium alloy, aluminum, cemented carbide, silicon, tungsten, molybdenum, titanium alloy, etc. are used.

【0015】また、炭素質被覆として、ダイヤモンド薄
膜を形成させる場合には、陰極に超硬合金、ケイ素、タ
ングステン、モリブデン、チタン合金などの高融点材料
を用いるのが望ましい。
When a diamond thin film is formed as the carbonaceous coating, it is desirable to use a high melting point material such as cemented carbide, silicon, tungsten, molybdenum, titanium alloy for the cathode.

【0016】本発明方法においては、まず、図1の本発
明方法の説明図で示すように電解液中に陽極2及び被覆
すべき材料から成る陰極1を浸せきしたのち、該陽極と
陰極との間に直流電圧又はパルス電圧を印加して、直流
電解又はパルスによる変調電解を行う。この際電圧を上
げるのに伴い、順次電解域、不安定域及びアーク放電域
が出現し、通常不安定域において、陰極材料の表面で熱
とプラズマにより、有機化合物と発生水素との反応が起
こり、該陰極材料表面に無定形炭素やグラファイト薄膜
が形成され、一方、アーク放電域においては、通常陰極
材料表面でアーク放電により、有機化合物と発生水素と
の反応が起こり、該陰極材料表面にダイヤモンド薄膜が
形成される。また、不安定域とアーク放電域の中間領域
においては、陰極材料表面にダイヤモンドとグラファイ
トなどの炭素とから成るダイヤモンド状炭素薄膜が形成
される。また、超微粒子カーボンやフラーレンを単独て
あるいは2種以上組み合わせて使用するときには、潤滑
及び耐食性の優れた膜の形成を目的とする場合が多く、
そのためには電解域や不安定域で行われる。
In the method of the present invention, first, as shown in the explanatory view of the method of the present invention in FIG. 1, an anode 2 and a cathode 1 made of a material to be coated are immersed in an electrolytic solution, and then the anode and the cathode are formed. A DC voltage or pulse voltage is applied in between to perform DC electrolysis or pulse modulated electrolysis. At this time, as the voltage is increased, an electrolytic region, an unstable region and an arc discharge region appear in sequence, and in the normally unstable region, the reaction between the organic compound and the generated hydrogen occurs due to heat and plasma on the surface of the cathode material. , Amorphous carbon or graphite thin film is formed on the surface of the cathode material, while in the arc discharge region, a reaction between an organic compound and generated hydrogen usually occurs due to arc discharge on the surface of the cathode material, and diamond is formed on the surface of the cathode material. A thin film is formed. Further, in the intermediate region between the unstable region and the arc discharge region, a diamond-like carbon thin film composed of diamond and carbon such as graphite is formed on the surface of the cathode material. In addition, when ultrafine carbon or fullerene is used alone or in combination of two or more, it is often aimed to form a film having excellent lubrication and corrosion resistance,
For that purpose, it is carried out in an electrolysis region or an unstable region.

【0017】図2に、この際の電流と電圧との関係、電
流と時間との関係、陰極面の温度と電圧との関係及び陰
極面の温度と時間との関係をそれぞれグラフ(イ)、
(ロ)、(ハ)及び(ニ)で示す。また、図3に、この
際の電解域、不安定域及びアーク放電域における陰極材
料表面の加熱状態を、それぞれ説明図(イ)、(ロ)及
び(ハ)で示す。
FIG. 2 is a graph (a) showing the relationship between current and voltage, the relationship between current and time, the relationship between temperature and voltage on the cathode surface, and the relationship between temperature and time on the cathode surface, respectively.
Indicated by (b), (c) and (d). Further, FIG. 3 shows the heating states of the surface of the cathode material in the electrolysis region, the unstable region and the arc discharge region at this time with explanatory views (a), (b) and (c), respectively.

【0018】本発明方法における電解においては、アー
ク放電域を出現させる電圧は数百ボルトまででよいの
で、本発明方法は工業的に実施するのに有利である。ま
た、電解条件領域を調節することにより、被覆すべき材
料表面にダイヤモンド薄膜、ダイヤモンドとグラファイ
トなどの炭素が微細に混合したダイヤモンド状炭素薄
膜、あるいは無定形炭素やグラファイト薄膜を適宜形成
させることができる。
In the electrolysis in the method of the present invention, the voltage for causing the arc discharge region to appear may be up to several hundreds of volts, so that the method of the present invention is advantageous for industrial implementation. Further, by adjusting the electrolysis condition region, a diamond thin film, a diamond-like carbon thin film in which carbon such as diamond and graphite are finely mixed, or an amorphous carbon or graphite thin film can be appropriately formed on the surface of the material to be coated. .

【0019】[0019]

【発明の効果】本発明方法によると、電解法によって極
めて簡単に、かつ低いコストで導電性材料表面にその材
料の種類に応じてダイヤモンド薄膜、ダイヤモンド状炭
素薄膜又は無定形炭素やグラファイト薄膜あるいは超伝
導膜を密着性よく形成させることができる。ダイヤモン
ド薄膜やダイヤモンド状炭素薄膜が設けられた材料は、
例えば非鉄材料や非金属材料の切削加工工具、あるいは
高耐摩耗性が要求される耐摩耗工具や耐摩耗部材などと
して有用であり、一方、無定形炭素やグラファイト薄膜
が設けられた材料は、例えば耐食部材や潤滑性が要求さ
れる部材などとして有用である。
According to the method of the present invention, a diamond thin film, a diamond-like carbon thin film, an amorphous carbon or graphite thin film, or a super thin film can be formed on the surface of a conductive material very easily and at low cost by an electrolysis method. The conductive film can be formed with good adhesion. Materials provided with diamond thin film or diamond-like carbon thin film,
For example, it is useful as a cutting tool of a non-ferrous material or a non-metallic material, or as a wear resistant tool or a wear resistant member that requires high wear resistance, while a material provided with amorphous carbon or a graphite thin film is, for example, It is useful as a corrosion resistant member or a member requiring lubricity.

【0020】[0020]

【実施例】次に、実施例により本発明をさらに詳細に説
明するが、本発明はこれらの例によってなんら限定され
るものではない。
The present invention will be described in more detail by way of examples, which should not be construed as limiting the invention thereto.

【0021】実施例1 電解液として、水酸化ナトリウム1重量%及びエチレン
ジアミン5重量%を含有する水溶液を、陽極として炭素
板を、陰極としてステンレス鋼板を用い、直流電解を行
った。この際の電流‐電圧曲線を図4に示す。
Example 1 DC electrolysis was carried out using an aqueous solution containing 1% by weight of sodium hydroxide and 5% by weight of ethylenediamine as an electrolytic solution, a carbon plate as an anode, and a stainless steel plate as a cathode. The current-voltage curve at this time is shown in FIG.

【0022】なお、この図4で示される傾向は、エチレ
ンジアミンの代わりにエチルアルコール、アセトアルデ
ヒド、アセトン、エチレングリコール及び酢酸カリウム
をそれぞれ5重量%濃度になるように用いた場合も同様
であった。
The tendency shown in FIG. 4 was the same when ethyl alcohol, acetaldehyde, acetone, ethylene glycol and potassium acetate were used instead of ethylenediamine so as to have a concentration of 5% by weight.

【0023】また、20V、40V、60V、80V及
び140Vの各電位で5分間保持した際の陰極のステン
レス鋼板の温度を図5に示す。
FIG. 5 shows the temperature of the stainless steel plate of the cathode when the potentials of 20 V, 40 V, 60 V, 80 V and 140 V were held for 5 minutes.

【0024】さらに、それぞれの各電位において形成さ
れた被膜を表面分析法であるXPS(X‐ray Ph
toelectron Spectroscopy)に
より評価した結果、C/Sスペクトルは20Vと60V
がグラファイトのスペクトル及び80Vと140Vでは
グラファイトとダイヤモンドとが混合したダイヤモンド
状炭素のスペクトルと一致していた。
Further, the film formed at each potential is subjected to a surface analysis method, XPS (X-ray Ph).
C / S spectra were 20V and 60V as a result of evaluation by toelectron spectroscopy.
Was in agreement with the spectrum of graphite and the spectrum of diamond-like carbon in which graphite and diamond were mixed at 80V and 140V.

【0025】また、陰極としてタングステン板及びモリ
ブデン板を用いた場合、直流電位が60VまではC/S
スペクトルはステンレス鋼板の場合と同様であった。さ
らに、180Vのアーク放電領域で形成された被膜はダ
イヤモンドのスペクトルと一致していた。
When a tungsten plate and a molybdenum plate are used as the cathode, the C / S is up to a DC potential of 60V.
The spectrum was similar to that of the stainless steel plate. Furthermore, the coating formed in the 180 V arc discharge region was in agreement with the spectrum of diamond.

【0026】実施例2 水酸化ナトリウム1重量%及びエチレンジアミン5重量
%を含有する水溶液からなる電解液に、これに対しフラ
ーレンを15〜20重量%含有する超微粒子を1g/L
の割合で添加したものを用い、陽極としてグラフアイト
板を、陰極として銅板を用いたこと以外は実施例1と同
様にして10Vで10分間直流電解を行ったところ、約
0.5μm厚のカーボン膜が形成された。この皮膜につ
いてはセロテープによる剥離は何ら認められず密着性に
優れ、また鋼との摩擦係数は0.02〜0.03の値を
示した。
Example 2 An electrolytic solution comprising an aqueous solution containing 1% by weight of sodium hydroxide and 5% by weight of ethylenediamine was added to 1 g / L of ultrafine particles containing 15 to 20% by weight of fullerene.
In the same manner as in Example 1 except that a graphite plate was used as the anode and a copper plate was used as the cathode, DC electrolysis was performed at 10 V for 10 minutes. A film was formed. No peeling due to cellophane was observed in this film, and the adhesion was excellent, and the friction coefficient with steel showed a value of 0.02 to 0.03.

【0027】実施例3 水酸化カリウム1重量%及びエチレンジアミン5重量%
を含有する水溶液からなる電解液に、フラーレン(C
60)を1g/Lの割合で添加し、アルミナセラミック
ス上に銀鏡反応によって銀を被覆した。この試料に30
V、20分の電解で2μm厚のフラーレン膜を形成さ
せ、超伝導特性を測定したところ、超伝導臨界温度(T
c)18Kを得た。
Example 3 1% by weight potassium hydroxide and 5% by weight ethylenediamine
Fullerene (C
60 ) was added at a rate of 1 g / L, and silver was coated on the alumina ceramics by a silver mirror reaction. 30 for this sample
A fullerene film having a thickness of 2 μm was formed by electrolysis for 20 minutes for V, and the superconducting property was measured.
c) 18K was obtained.

【0028】実施例4 代表的な酸性酸化物である硫酸を20重量%及びエチレ
ングリコールを3重量%の割合で含有する水溶液を調製
した。
Example 4 An aqueous solution containing 20% by weight of sulfuric acid, which is a typical acidic oxide, and 3% by weight of ethylene glycol, was prepared.

【0029】次に、電解液として前記水溶液を陽極とし
て黒鉛板を、陰極としてアルミニウム板を用い、直流電
圧40V、電流密度2A/dmの条件で電解したとこ
ろ、陰極のアルミニウム板上に粗面状の炭素膜が形成さ
れた。さらに、前記と同じ電解液を用い、パルス電源に
よって100A/dmの電流密度及びDuty30〜
80%で電解したところ、厚さ0.5〜1.0μmの黒
色の色彩を有するち密で平滑な被膜が形成された。この
被膜の摩擦係数をダイヤモンド針(R=120°)を用
いて測定したところ0.2であり、アルミニウム板の
0.5に比べてはるかに小さかった。
Next, when the above aqueous solution was used as an electrolytic solution, a graphite plate was used as an anode, and an aluminum plate was used as a cathode, electrolysis was performed under the conditions of a DC voltage of 40 V and a current density of 2 A / dm 2 , and a rough surface was formed on the aluminum plate of the cathode. -Shaped carbon film was formed. Further, using the same electrolytic solution as above, a pulsed power supply was used to obtain a current density of 100 A / dm 2 and a Duty 30-
When electrolyzed at 80%, a dense and smooth film having a black color and a thickness of 0.5 to 1.0 μm was formed. The coefficient of friction of this coating was measured with a diamond stylus (R = 120 °) and was 0.2, which was far smaller than 0.5 of the aluminum plate.

【0030】実施例5 水酸化ナトリウムと水酸化カリウム及び5重量%のエチ
レンジアミンを含有する温度50℃、pH13の水溶液
から成る電解液を用い、かつ陽極として黒鉛板を、陰極
としてマグネシウム合金板を用いて、直流電圧60V、
電流密度2A/dm、30分間の条件で電解を行い、
陰極のマグネシウム合金板上に2μm厚の炭素膜を形成
させた。この炭素膜を被覆させたマグネシウム板を5重
量%の塩化ナトリウム水溶液中に浸せきして、その耐食
性試験を行ったところ、20日間錆が発生しなかった。
Example 5 An electrolytic solution comprising an aqueous solution containing sodium hydroxide and potassium hydroxide and 5% by weight of ethylenediamine at a temperature of 50 ° C. and a pH of 13 was used, and a graphite plate was used as an anode and a magnesium alloy plate was used as a cathode. DC voltage 60V,
Electrolysis is performed under conditions of current density of 2 A / dm 2 and 30 minutes,
A carbon film having a thickness of 2 μm was formed on the magnesium alloy plate of the cathode. When the magnesium plate coated with this carbon film was dipped in a 5 wt% sodium chloride aqueous solution and subjected to a corrosion resistance test, no rust was generated for 20 days.

【0031】一方、炭素膜を設けてないマグネシウム合
金板について、前記と同様の耐食性試験を行ったとこ
ろ、浸せき後1時間で表面から水素ガスの発生が認めら
れ、錆が発生した。
On the other hand, when a magnesium alloy plate without a carbon film was subjected to the same corrosion resistance test as described above, hydrogen gas was observed to be generated from the surface 1 hour after the immersion, and rust was generated.

【0032】実施例6 実施例5の電解液に、フラーレン(C60)を1g/L
添加したものを用い、電解条件を直流電圧40V、電流
密度1A/dm、15分間としたこと以外は実施例5
と同様にして陽極板上に2μm厚の炭素膜を形成させ
た。この炭素膜を被覆させたマグネシウム板の耐食性
は、実施例4の場合と同様のものであった。
Example 6 1 g / L of fullerene (C 60 ) was added to the electrolytic solution of Example 5.
Example 5 except that the added one was used and the electrolysis conditions were a DC voltage of 40 V, a current density of 1 A / dm 2 , and 15 minutes.
A 2 μm thick carbon film was formed on the anode plate in the same manner as in. The corrosion resistance of the magnesium plate coated with this carbon film was similar to that in Example 4.

【0033】実施例7 エチレングリコールに、塩化ナトリウムを全重量に基づ
き5重量%の割合で添加して得られた電解液を用い、か
つ陽極として黒鉛板を、陰極として鋼製プレス型材(S
KD11材)を用いて直流電解を行い、陰極の鋼製プレ
ス型材の表面に厚さ1〜2μmのダイヤモンド状炭素膜
を形成させた。
Example 7 An electrolytic solution obtained by adding sodium chloride to ethylene glycol at a ratio of 5% by weight based on the total weight was used, and a graphite plate was used as an anode and a steel press mold material (S
Direct current electrolysis was performed using KD11 material) to form a diamond-like carbon film having a thickness of 1 to 2 μm on the surface of the steel press mold material of the cathode.

【0034】このようにしてダイヤモンド状炭素膜が形
成されたプレス型材は、被膜を施さないプレス型材に比
べて5倍の寿命を有していた。
The press die material on which the diamond-like carbon film was formed in this manner had a service life five times as long as that of the press die material without the coating.

【0035】なお、塩化ナトリウムの代わりに酢酸カリ
ウムを5重量%の割合で添加した電解液を用いても、同
様にダイヤモンド状炭素膜の形成は可能であった。
A diamond-like carbon film could be similarly formed by using an electrolytic solution containing potassium acetate at a ratio of 5% by weight instead of sodium chloride.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明方法説明図。FIG. 1 is an explanatory view of a method of the present invention.

【図2】 本発明の電解における電流と電圧との関係
(イ)、電流と時間との関係(ロ)、陰極温度と電圧と
の関係(ハ)及び陰極温度と時間との関係(ニ)を示す
グラフ。
FIG. 2 shows the relationship between current and voltage (a), the relationship between current and time (b), the relationship between cathode temperature and voltage (c), and the relationship between cathode temperature and time (d) in the electrolysis of the present invention. The graph showing.

【図3】 本発明の電解において、電解域(イ)、不安
定域(ロ)及びアーク放電域(ハ)における陰極表面の
加熱状態を示す説明図。
FIG. 3 is an explanatory view showing a heating state of a cathode surface in an electrolysis zone (a), an unstable zone (b) and an arc discharge zone (c) in the electrolysis of the present invention.

【図4】 実施例1における直流電圧と電流密度との関
係を示すグラフ。
FIG. 4 is a graph showing the relationship between the DC voltage and the current density in Example 1.

【図5】 実施例1における直流電圧と陰極温度との関
係を示すグラフ。
5 is a graph showing the relationship between the DC voltage and the cathode temperature in Example 1. FIG.

【符号の説明】[Explanation of symbols]

1 陰極(被覆すべき材料) 2 陽極 1 cathode (material to be coated) 2 anode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 有機化合物含有水溶液又は液状有機化合
物に電解質を加え、この中に被覆すべき材料と対極材料
とを浸せきし、前者を陰極、後者を陽極として直流電解
又はパルスによる変調電解を施すことを特徴とする炭素
質被覆の形成方法。
1. An electrolyte is added to an organic compound-containing aqueous solution or a liquid organic compound, and a material to be coated and a counter electrode material are immersed in the electrolyte, and direct current electrolysis or pulse electrolysis is performed by using the former as a cathode and the latter as an anode. A method for forming a carbonaceous coating, comprising:
【請求項2】 有機化合物含有水溶液又は液状有機化合
物に、電解質に超微粒子カーボン及びフラーレン粒子の
中から選ばれた少なくとも1種の粒子を添加したものを
加え、この中に被覆すべき材料と対極材料とを浸せき
し、前者を陰極、後者を陽極として直流電解又はパルス
による変調電解を施すことを特徴とする炭素質被覆の形
成方法。
2. An organic compound-containing aqueous solution or a liquid organic compound, to which at least one kind of particles selected from ultrafine carbon particles and fullerene particles is added to an electrolyte, and the material to be coated and the counter electrode. A method of forming a carbonaceous coating, which comprises immersing a material and subjecting the former to a cathode and the latter to an anode for direct current electrolysis or pulsed modulation electrolysis.
【請求項3】 炭素質被覆がダイヤモンド薄膜又はダイ
ヤモンド状炭素から成る請求項1又は2記載の方法。
3. A method according to claim 1 or 2, wherein the carbonaceous coating comprises a diamond film or diamond-like carbon.
【請求項4】 炭素質被覆が無定形炭素又はグラファイ
トから成る請求項1又は2記載の方法。
4. A method according to claim 1 or 2 wherein the carbonaceous coating comprises amorphous carbon or graphite.
JP29402792A 1992-02-10 1992-10-08 Method of forming carbonaceous coating by electrolytic method Expired - Fee Related JP3156981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29402792A JP3156981B2 (en) 1992-02-10 1992-10-08 Method of forming carbonaceous coating by electrolytic method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5651192 1992-02-10
JP4-56511 1992-02-10
JP29402792A JP3156981B2 (en) 1992-02-10 1992-10-08 Method of forming carbonaceous coating by electrolytic method

Publications (2)

Publication Number Publication Date
JPH0625896A true JPH0625896A (en) 1994-02-01
JP3156981B2 JP3156981B2 (en) 2001-04-16

Family

ID=26397470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29402792A Expired - Fee Related JP3156981B2 (en) 1992-02-10 1992-10-08 Method of forming carbonaceous coating by electrolytic method

Country Status (1)

Country Link
JP (1) JP3156981B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006063436A (en) * 2004-07-27 2006-03-09 Nok Corp Method for forming carbon material thin film
US7335290B2 (en) 2002-05-24 2008-02-26 Kabushikikaisha Equos Research Processing method for nano-size substance
US9006552B2 (en) 2011-10-28 2015-04-14 Roland Corporation Effect apparatus for electronic stringed musical instruments

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7335290B2 (en) 2002-05-24 2008-02-26 Kabushikikaisha Equos Research Processing method for nano-size substance
JP2006063436A (en) * 2004-07-27 2006-03-09 Nok Corp Method for forming carbon material thin film
JP4581663B2 (en) * 2004-07-27 2010-11-17 Nok株式会社 Method for forming carbon material thin film
US9006552B2 (en) 2011-10-28 2015-04-14 Roland Corporation Effect apparatus for electronic stringed musical instruments

Also Published As

Publication number Publication date
JP3156981B2 (en) 2001-04-16

Similar Documents

Publication Publication Date Title
TWI564437B (en) Non-metallic coating and method of its production
US6071570A (en) Electrodes of improved service life
Shriram et al. Electrodeposition of nanocrystalline nickel—A brief review
CN85108093A (en) The electrode that is used for electrochemical process, the method and the application of electrode in electrolyzer of making this electrode
JPH0570718B2 (en)
CN108977865A (en) A kind of preparation method of 5XXX aluminium and the high anti-corrosion single fine and close differential arc oxidation film layer of aluminum alloy surface
Zelley Formation of immersion zinc coatings on aluminum
EP2058418A1 (en) Method for boriding of coatings using high speed electrolytic process
Wei et al. Structure and effects of electroless Ni–Sn–P transition layer during acid electroless plating on magnesium alloys
JP2012504192A (en) Alloy coating apparatus and metal riding method
JPH0611917B2 (en) Multi-layer aluminum plating substrate for anodizing treatment
Kumar et al. Influence of vanillin on the corrosion behavior of Ni-W alloy electrodeposits and its properties
JP3156981B2 (en) Method of forming carbonaceous coating by electrolytic method
US6699379B1 (en) Method for reducing stress in nickel-based alloy plating
CN103031581A (en) Method of preparing multi-element carbide film through electrodeposition of liquid phase plasmas
RU2543659C1 (en) Method for production of composite metal-ceramic coating at valve metals and their alloys
US3488264A (en) High speed electrodeposition of nickel
US20150197870A1 (en) Method for Plating Fine Grain Copper Deposit on Metal Substrate
JP2006016647A (en) Electrolytic oxidation treatment method and electrolytic oxidation-treated metallic material
US3989558A (en) Coating and diffusion process for improving the life of cobalt-bonded sintered carbide tools
US4111760A (en) Method and electrolyte for the electrodeposition of cobalt and cobalt-base alloys in the presence of an insoluble anode
GB1393115A (en) Cutting tools and cutting processes
Shanthi et al. Study of surface morphology in DC and pulse plating of silver alloy
Ramanauskas et al. Pulse plating effect on composition and corrosion properties of zinc alloy coatings
CN106947991B (en) A kind of preparation method of aluminum alloy surface wear-and corrosion-resistant anti-thermal shock coating

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees