JPH06258190A - Detector of gas turbine blade - Google Patents

Detector of gas turbine blade

Info

Publication number
JPH06258190A
JPH06258190A JP4285693A JP4285693A JPH06258190A JP H06258190 A JPH06258190 A JP H06258190A JP 4285693 A JP4285693 A JP 4285693A JP 4285693 A JP4285693 A JP 4285693A JP H06258190 A JPH06258190 A JP H06258190A
Authority
JP
Japan
Prior art keywords
joint
blade
load
core
rotor blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4285693A
Other languages
Japanese (ja)
Inventor
Hiroshige Itou
洋茂 伊藤
Nagatoshi Okabe
永年 岡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4285693A priority Critical patent/JPH06258190A/en
Publication of JPH06258190A publication Critical patent/JPH06258190A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To test the junction strength of a diffusion junction of a core without rotating a moving blade by loading a tensile force equivalent to a centrifugal force between a projection provided on the head core of the moving blade and the blade implanted part. CONSTITUTION:A projection 12 is formed integrally with the top of a head core 9a which holds a ceramic sleeve 8, and a load cell 13 is fitted via a jig 14. A bottom core 9b is fitted with the jig 14 adjusted with the shape of the blade implanted part. The ceramic sleeve 8 is displaced down so that a diffusion junction 11 can be observed from outside, and the circumference of the junction 11 is marked with many impressions and irradiated with laser beams of a laser interference displacement gauge 15. In this state, the jig 14 is loaded with a tensile load equivalent to a centrifugal load, and a data processor 17 collects relative variations and tensile loads of the junction 11 and feeds them to an unjunction operating device 18. The operating device 18 calculates the shape of an unjunction of the diffusion junction 11 from input data, displayed 19, and compared with an allowable unjunction, resulting in quality judgment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はガスタービンの動翼部品
の検査装置に係り、特にセラミックスリーブと金属芯金
を組み合わせた構造のセラミック動翼の検査装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an inspection device for moving blade parts of a gas turbine, and more particularly to an inspection device for a ceramic moving blade having a structure in which a ceramic sleeve and a metal core metal are combined.

【0002】[0002]

【従来の技術】一般にガスタービンの主要部は図8の断
面図に示すように構成されている。すなわち、ガスター
ビン2と同軸に設けられた圧縮機1によって圧縮された
吐出空気をガスタービン燃焼器3に案内し、燃焼器3の
ライナー4部分で燃料を燃焼させ、その燃焼ガスをライ
ナー4からトランジッションピース5、静翼6を経て動
翼7に導き、ガスタービン2を駆動して仕事をするよう
に構成されている。
2. Description of the Related Art Generally, the main part of a gas turbine is constructed as shown in the sectional view of FIG. That is, the discharge air compressed by the compressor 1 provided coaxially with the gas turbine 2 is guided to the gas turbine combustor 3, the fuel is burned in the liner 4 portion of the combustor 3, and the combustion gas is discharged from the liner 4. It is configured to lead to the moving blade 7 via the transition piece 5 and the stationary blade 6, and drive the gas turbine 2 to perform work.

【0003】この種のガスタービンにおいては、タービ
ン入口ガス温度を上昇させるとタービン熱効率が上昇す
ることが知られており、タービン入口温度を上昇させる
ために、ガスタービン部品の材料としては従来、耐熱製
超合金が使用されている。しかし、このような超合金よ
りさらに耐熱製の優れたセラミック材料をガスタービン
部品に適用しようとする試みがなされている。例えば特
開昭59−119001号公報、特開昭59−1600
01号公報などに開示されている。
In this type of gas turbine, it is known that increasing the turbine inlet gas temperature increases the turbine thermal efficiency. In order to increase the turbine inlet temperature, heat resistance has conventionally been used as a material for gas turbine components. Super alloy made from is used. However, attempts have been made to apply ceramic materials, which are more heat resistant than such superalloys, to gas turbine components. For example, JP-A-59-119001 and JP-A-59-1600
No. 01 publication and the like.

【0004】ところで、セラミック材料は圧縮荷重には
強いが、引張荷重には弱いという特性があり、この欠点
を克服するために、金属製芯金とセラミックスリーブを
組み合わせた方式のセラミック動翼が、例えば特開昭5
9−119001号公報に開示されている。
By the way, a ceramic material has a characteristic that it is strong against a compressive load but weak against a tensile load. In order to overcome this drawback, a ceramic rotor blade of a system in which a metal cored bar and a ceramic sleeve are combined has been proposed. For example, JP-A-5
It is disclosed in Japanese Patent Publication No. 9-11001.

【0005】図7はその一例を示したものである。高温
ガスにさらされる羽根通路部外表面に、セラミックスリ
ーブ8があり、その内側が金属製の芯金9となってい
る。このような組み合わせ方式のセラミック動翼では、
芯金9がロータに植え込まれる構造となっており、運転
中にセラミックスリーブに発生する遠心力は芯金9で受
けとめられ、セラミックスリーブ8には圧縮荷重のみが
発生する。引張荷重は芯金の有効部及び植え込み部で発
生するが、この部分は冷却空気孔10を流れる空気によ
り冷却されているため、ガス温度に比べ温度は低く、金
属材料で十分に使用に耐えうる構造となっている。
FIG. 7 shows an example thereof. A ceramic sleeve 8 is provided on the outer surface of the blade passage portion exposed to the high temperature gas, and a metal cored bar 9 is provided inside the ceramic sleeve 8. In such a combination type ceramic rotor blade,
The cored bar 9 is embedded in the rotor, and the centrifugal force generated in the ceramic sleeve during operation is received by the cored bar 9, so that only a compressive load is generated in the ceramic sleeve 8. The tensile load is generated in the effective part and the implanting part of the core metal, but since this part is cooled by the air flowing through the cooling air holes 10, the temperature is lower than the gas temperature and the metal material can sufficiently withstand use. It has a structure.

【0006】このように高温となる羽根通路部にセラミ
ックを使用し、比較的温度が低く、高引っ張り応力の発
生する羽根植込部に金属材料を使用して、両材料の長所
を生かす構造となっている。
As described above, a ceramic is used in the blade passage portion which becomes high in temperature, and a metal material is used in the blade implantation portion where the temperature is relatively low and high tensile stress is generated. Has become.

【0007】すなわち、この種組み合わせ方式のセラミ
ック動翼は、図7に示すように羽根の製作時において、
芯金9を頭部カバーである芯金カバー9bとその下部の
植込部を含む下部芯金9aに分割して製作し、セラミッ
クスリーブ8を下部芯金9aに挿入した後、芯金カバー
9bを設置し、二つの芯金部分9a,9bを接合部11
にて拡散接合等の方法により接合して製作している。
That is, as shown in FIG. 7, the ceramic rotor blade of this combination type has
The mandrel 9 is divided into a mandrel cover 9b which is a head cover and a lower mandrel 9a including an implanting part below the mandrel, and the ceramic sleeve 8 is inserted into the lower mandrel 9a. Is installed, and the two core metal parts 9a, 9b
It is manufactured by bonding with a method such as diffusion bonding.

【0008】[0008]

【発明が解決しようとする課題】上記した組み合わせ方
式のセラミック動翼における拡散接合部11は、比較的
遠心荷重が小さく、羽根有効部と羽根頭部の中間部位で
ある羽根有効部上端部付近の断面が選ばれる。しかし拡
散接合は非常にきびしい温度管理のもとに金属の融点付
近の超高温で実施する必要があるうえに、作業の方法に
よっては接合部の端部に鋭い切り欠きが形成され、正常
に接合した場合に比べて著しい強度低下をもたらす場合
がある。さらに、このような拡散接合部に欠陥が生じた
場合、この接合部はセラミックスリーブで被われるた
め、目視や染色探傷検査、超音波探傷検査等によって接
合部を直接探傷することができず、欠陥の有無が確認で
きない、という問題があった。
The diffusion joint portion 11 in the above-mentioned combination type ceramic moving blade has a relatively small centrifugal load and is located near the upper end portion of the effective blade portion which is an intermediate portion between the effective blade portion and the blade head. A cross section is selected. However, diffusion bonding must be carried out at an extremely high temperature near the melting point of the metal under extremely strict temperature control, and depending on the work method, a sharp notch is formed at the end of the welded part, resulting in normal bonding. In some cases, the strength may be significantly reduced as compared with the case of Further, when a defect occurs in such a diffusion joint, the joint is covered with a ceramic sleeve, and therefore the joint cannot be directly detected by visual inspection, dye flaw inspection, ultrasonic flaw inspection, etc. There was a problem that it could not be confirmed whether or not.

【0009】また、組み合わせ方式のセラミック動翼で
接合強度を確認するための保証試験を実施する場合に
は、試験荷重を負荷できる部分が植え込み部以外にない
ことから、保証試験は回転試験によって実際の回転条件
で行わなければならない。しかし回転試験による保証試
験では接合不良動翼が飛散した場合には試験装置に大き
な損害を与えると同時に、他の健全な羽根にも損傷を与
えるなどの問題があり、また遠心荷重を負荷する速度が
遅く、回転試験に多大な準備を要するなど試験効率は非
常に悪く、その改善が要望されていた。
Further, when conducting a guarantee test for confirming the joint strength in a combination type ceramic moving blade, since there is no portion other than the implanting portion where the test load can be applied, the guarantee test is actually carried out by a rotation test. Must be performed under the rotating conditions of. However, in the guarantee test by the rotation test, if the improperly joined rotor blades scatter, the test equipment will be seriously damaged, and at the same time, other healthy blades will be damaged. However, the test efficiency was very poor because of the slowness and the large amount of preparation required for the rotation test, and its improvement was demanded.

【0010】本発明は上記事情に鑑みてなされたもので
あり、予め接合する羽根部品に突起部を設け、この突起
部分を介して接合部に実際に使用された状態での荷重を
負荷して保証試験を実施するとともに、同時に接合部上
下部の相対変位を計測して、この計測結果から接合部内
部の接合状態を確認できるセラミック動翼の接合部検査
装置を提供することを目的としている。
The present invention has been made in view of the above circumstances, in which a blade part to be joined is provided with a protrusion, and a load in a state of actual use is applied to the joint via the protrusion. An object of the present invention is to provide a ceramic blade joint inspection device capable of performing a proof test and at the same time measuring the relative displacements of the upper and lower portions of the joint and confirming the joint state inside the joint from the measurement results.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明の請求項1は、頭部芯金と下部芯金からなる
動翼の芯金金属と、この動翼の芯金金属の高温ガス通路
部の外表面にセラミックスリーブを配した構造のガスタ
ービン動翼の検査装置において、前記動翼の頭部芯金に
設けた突起部と動翼植込部を用いて遠心力相当荷重によ
り前記頭部芯金と前記下部芯金の接合部の接合強度の保
証試験を行うことを特徴とする。また、請求項2は、接
合部上下部にレーザ光を反射するための圧痕を接合部外
周に沿って複数設け、この圧痕部分でレーザ干渉変位計
による変位分布と外力条件から未接合部演算装置により
接合部内部の未接合部分の形状を解析して許容接合状態
と比較することにより動翼接合部の接合強度の保証試験
を行うことを特徴とする。さらに、請求項3は、動翼の
下部芯金に設けた冷却空気孔に液圧を加え、その圧力に
より生ずる遠心力相当荷重により動翼接合部の接合強度
の保証試験を行うことを特徴とする。
In order to achieve the above object, claim 1 of the present invention provides a metal core of a moving blade comprising a core metal of a head and a lower metal core, and a metal core of the moving blade. In a gas turbine rotor inspection device having a structure in which a ceramic sleeve is arranged on the outer surface of a high temperature gas passage, a centrifugal force equivalent load is used by using a protrusion provided on the core metal of the rotor and a rotor blade implanting portion. According to the above, a joint strength assurance test of a joint portion between the head core metal and the lower core metal is performed. According to a second aspect of the present invention, a plurality of indentations for reflecting a laser beam are provided on the upper and lower portions of the joint along the outer periphery of the joint, and the unjoined portion arithmetic unit is operated at the indents from the displacement distribution by the laser interference displacement meter and the external force condition. It is characterized by conducting a guarantee test of the joint strength of the rotor blade joint by analyzing the shape of the unjoined portion inside the joint and comparing it with the allowable joint state. Further, a third aspect of the present invention is characterized in that a liquid pressure is applied to a cooling air hole provided in a lower core metal of a rotor blade, and a joint strength guarantee test of a rotor blade joint portion is performed by a centrifugal force equivalent load generated by the pressure. To do.

【0012】[0012]

【作用】本発明では羽根頭部芯金の上部に突起部を設
け、この突起部を介して拡散接合部に遠心荷重相当の引
張荷重を負荷しているが、この際、羽根下部は羽根植え
込み部に合致する試験治具に取り付けている。このよう
な構造により羽根の拡散接合部に実際に加わる荷重によ
って接合部の保証試験が可能となり、また引張荷重負荷
後、この突起部は削除して、正規の羽根形状に加工す
る。
In the present invention, a protrusion is provided on the upper portion of the core metal of the blade head, and a tensile load equivalent to a centrifugal load is applied to the diffusion joint through this protrusion. It is attached to the test jig that matches the part. With such a structure, a guarantee test of the joint can be performed by the load actually applied to the diffusion joint of the blade, and after the tensile load is applied, this protrusion is deleted and processed into a regular blade shape.

【0013】実際の遠心相当荷重を負荷して、接合部で
破断しない場合すなわち保証試験に合格した場合でも、
拡散接合部の接合状態は明確でない。保証試験荷重に耐
えられる部分だけ接合していれば、破断に至ることはな
い。そこで拡散接合断面の内部の接合状態を明らかにす
ることが重要となるが、本発明の請求項1では未接合部
が内部に大きく広がっているほど、接合部上下部で検出
される相対変位量は大きくなるという計測結果を用い
て、拡散接合の内部未接合部の形状を求め、これにより
動翼接合部の接合状態の合否を判定する。また請求項2
では引張荷重負荷時に、接合部上下部間の相対変位をレ
ーザ干渉変位計等の高精度な変位計により測定すること
により、羽根接合部に負荷する引張荷重およびその荷重
が負荷されたときの接合部の周長にわたる上下部での相
対変位を境界条件として、接合部断面での内部未接合部
分の形状を算定する。そして、未接合部の形状を予め定
めた許容形状と比較して接合状態の合否を判定する。さ
らに請求項3では動翼の下部芯金に設けた冷却空気孔に
液圧を加え、その圧力により生ずる遠心力相当荷重によ
り動翼接合部の接合状態の合否を判定する。
Even when the actual centrifugal equivalent load is applied and the joint does not break, that is, the guarantee test is passed,
The joining state of the diffusion joint is not clear. If only the part that can withstand the guaranteed test load is joined, it will not break. Therefore, it is important to clarify the bonding state inside the diffusion bonding cross section, but in claim 1 of the present invention, the larger the unbonded part is, the more the relative displacement detected at the upper and lower parts of the bonded part. Is obtained, the shape of the internal unbonded portion of the diffusion bonding is obtained, and the pass / fail of the bonded state of the rotor blade bonding portion is determined by this. Claim 2
When a tensile load is applied, the relative displacement between the upper and lower parts of the joint is measured by a high-precision displacement gauge such as a laser interference displacement meter.The tensile load applied to the blade joint and the joint when the load is applied are measured. The shape of the internal non-bonded part in the cross section of the joint is calculated with the relative displacement in the upper and lower parts over the perimeter of the part as the boundary condition. Then, the shape of the unbonded portion is compared with a predetermined allowable shape to determine whether or not the bonded state is acceptable. Further, in claim 3, liquid pressure is applied to the cooling air hole provided in the lower core metal of the moving blade, and whether the joining state of the moving blade joining portion is acceptable or not is determined by the centrifugal force equivalent load generated by the pressure.

【0014】[0014]

【実施例】以下、本発明の実施例を図を参照して説明す
る。図1は本発明の一実施例のブロック構成図である。
同図において、セラミックスリーブ8を有するガスター
ビン動翼の頭部芯金部9aには上部に遠心力相当の引張
荷重が負荷できる突起部12を設けて一体に製作する。
突起部12には荷重負荷装置の試験治具が取り付けら
れ、またこれに連結するロードセル13によって負荷す
る荷重を検出することができる。また動翼の下部芯金部
9bは、羽根植込部の形状に合致する形状に加工された
試験治具14に取り付ける。この試験治具14は油圧等
の作動により動翼に実機で使用された際に拡散接合部1
1に作用する遠心力相当の引張荷重を負荷できる負荷装
置と連結している。
Embodiments of the present invention will now be described with reference to the drawings. FIG. 1 is a block diagram of an embodiment of the present invention.
In the figure, a head metal core portion 9a of a gas turbine rotor blade having a ceramic sleeve 8 is integrally formed with a protrusion portion 12 on which a tensile load equivalent to a centrifugal force can be loaded.
A test jig for a load applying device is attached to the protrusion 12, and the load applied can be detected by the load cell 13 connected thereto. Further, the lower core metal portion 9b of the moving blade is attached to the test jig 14 which is processed into a shape that matches the shape of the blade implanting portion. This test jig 14 is used for a moving blade by an operation of hydraulic pressure or the like when it is used in an actual machine.
It is connected to a load device capable of applying a tensile load equivalent to the centrifugal force acting on 1.

【0015】引張荷重負荷時にはセラミックスリーブ8
を下部芯金側にずらして、拡散接合部11が外部から観
察できる状態にしておく。また予め拡散接合部11の上
下部には一定距離を保って、例えばビッカース硬度計の
圧子等による角錐形状の圧痕を接合部の周長に多数点設
けておく。この圧痕部にレーザ干渉変位計15のレーザ
光16を当てて、引張荷重負荷時の拡散接合部11の上
下部の相対変位を計測する。この変位計測は拡散接合部
周長にわたり多数点で実施する。そして、変位計測デー
タおよびロードセル13からの引張荷重データはデータ
処理装置17に送られる。
When a tensile load is applied, the ceramic sleeve 8
Is shifted to the lower core metal side so that the diffusion bonding portion 11 can be observed from the outside. Further, a plurality of pyramid-shaped indentations, for example, by an indenter of a Vickers hardness meter are provided on the upper and lower portions of the diffusion bonding portion 11 in advance at a plurality of points along the circumference of the bonding portion. The laser beam 16 of the laser interference displacement meter 15 is applied to this indentation portion to measure the relative displacement of the upper and lower portions of the diffusion bonding portion 11 when a tensile load is applied. This displacement measurement is performed at multiple points along the circumference of the diffusion joint. Then, the displacement measurement data and the tensile load data from the load cell 13 are sent to the data processing device 17.

【0016】データ処理装置17では遠心荷重負荷時の
整合部外周部での接合上下部での相対変位量と引張荷重
のデータが収集された時点で、それらのデータは未接合
部演算装置18に送られる。未接合部演算装置18は収
集された変位と荷重のデータを入力データとして、拡散
接合部の断面での未接合部の大きさ、形状を境界要素法
等により、接合部の外部境界条件から内部の未接合部の
形状を求める逆問題として計算し、その形状を算出す
る。
When the data processing device 17 collects the data of the relative displacement amount and the tensile load in the upper and lower parts of the joint at the outer peripheral part of the matching part when a centrifugal load is applied, these data are stored in the unbonded part computing device 18. Sent. The unbonded part computing device 18 uses the collected displacement and load data as input data to determine the size and shape of the unbonded part in the cross section of the diffusion bonded part from the external boundary condition of the bonded part by the boundary element method or the like. The shape of the non-bonded part is calculated as an inverse problem, and the shape is calculated.

【0017】未接合部の形状のデータは未接合部演算装
置18に接続する接合部断面形状の表示装置19に送
り、その形状を表示するとともに予め規定した許容未接
合部形状と比較して、拡散接合状態の合否を判定する。
次に、本実施例の作用を説明する。
The data of the shape of the unbonded portion is sent to the display device 19 of the cross-sectional shape of the bonded portion, which is connected to the unbonded portion computing device 18, and the shape is displayed and compared with the allowable unbonded portion shape defined in advance. The acceptance of the diffusion bonding state is determined.
Next, the operation of this embodiment will be described.

【0018】図1において、頭部芯金部9bに設けた突
起部12は、芯金の製作時に一体で、かつ遠心荷重相当
の引張荷重に十分耐えられる大きさで製作し、この突起
部12に荷重負荷装置の試験治具14を接合して動翼に
引張荷重を負荷する。この引張荷重は拡散接合部11に
実機の運転状態で作用する荷重であり、この荷重の負荷
によって拡散接合部11で破壊しない場合には、拡散接
合部11の強度は初期段階においては十分であることが
保証される。すなわち、拡散接合部11に遠心荷重相当
の荷重を負荷することによって、拡散接合部における保
証試験が可能になる。この保証試験は室温で実施するた
め実機使用温度での材料の引張破断強度の低下を考慮し
て、試験荷重を高めに設定し、保証試験の信頼性を向上
することもできる。
In FIG. 1, the protruding portion 12 provided on the head core bar 9b is integrally formed when the core bar is manufactured, and has a size large enough to withstand a tensile load equivalent to a centrifugal load. The test jig 14 of the load applying device is joined to the above and a tensile load is applied to the moving blade. This tensile load is a load that acts on the diffusion joint 11 in the operating state of the actual machine, and if the diffusion joint 11 does not break due to the load of this load, the strength of the diffusion joint 11 is sufficient in the initial stage. Is guaranteed. That is, by applying a load equivalent to a centrifugal load to the diffusion bonding portion 11, it is possible to perform a guarantee test on the diffusion bonding portion. Since this guarantee test is performed at room temperature, the test load can be set higher in consideration of the decrease in the tensile breaking strength of the material at the actual operating temperature, and the reliability of the guarantee test can be improved.

【0019】次に、図2を用いて引張荷重負荷時の接合
での変位の計測方法について説明する。図2に示すよう
に、拡散接合部11を挟んで上下部に一定の距離dの位
置に圧痕20を予め設けておくが、圧痕斜面部の方向は
同一方向とする。この圧痕20に翼面に垂直にレーザ光
16を当てると、入射光とαの角度をなして圧痕斜面部
で反射したレーザ光が観察点に至る。観察点では上下部
の圧痕で反射したレーザ光の干渉による縞21が観察さ
れる。圧痕と観察点までの距離をLとし、干渉縞の移動
距離をxとすると、圧痕間の変位Δdは Δd=d・x/(L・tanα) で表され、微小変位Δdが干渉縞の移動距離xとして測
定できる。微小変位Δdの測定精度は0.01μm 程度
まで可能である。このため拡散接合部の内部に未接合部
分22が僅かに大きく広がっている場合でも、引張荷重
を負荷した場合の圧痕間での変位量の変化から未接合部
22の大きさの計測が可能となる。
Next, a method of measuring the displacement at the time of joining under tensile load will be described with reference to FIG. As shown in FIG. 2, the indentations 20 are provided in advance at positions of a certain distance d in the upper and lower portions with the diffusion bonding section 11 sandwiched therebetween, but the directions of the indentation slopes are the same. When the laser light 16 is applied to the indentation 20 perpendicularly to the blade surface, the laser light that forms an angle α with the incident light and is reflected by the indentation slope surface portion reaches the observation point. At the observation point, fringes 21 due to the interference of the laser light reflected by the indentations in the upper and lower parts are observed. When the distance between the indentation and the observation point is L and the movement distance of the interference fringes is x, the displacement Δd between the indentations is represented by Δd = d · x / (L · tanα), and the small displacement Δd is the movement of the interference fringes. It can be measured as the distance x. The measurement accuracy of the minute displacement Δd can be up to about 0.01 μm. Therefore, even if the unbonded portion 22 spreads slightly inside the diffusion bonded portion, the size of the unbonded portion 22 can be measured from the change in displacement amount between the indentations when a tensile load is applied. Become.

【0020】図3はレーザ干渉変位計15の構成図であ
る。同図に示すように、レーザ発信器23から発光され
たレーザ光は光路変更のためのミラー24で反射して圧
痕部分当てられる。ミラー24は動翼位置の僅か移動に
対してもレーザ発振器23を移動することなく、ミラー
24の反射角度の調整により常に圧痕部にレーザ光を当
てるため不可欠である。圧痕部で反射したレーザ干渉光
は光センサ25で受光する。光センサ25は例えば微小
なフォトダイオードを多数並べたものであり、干渉縞の
移動を電気的な信号に変換して出力する。次に、光セン
サ25から出力された干渉縞の移動信号は変位算出器2
6に送られ、ここで上式により圧痕間の変位量を算出す
る。
FIG. 3 is a block diagram of the laser interference displacement meter 15. As shown in the figure, the laser light emitted from the laser oscillator 23 is reflected by the mirror 24 for changing the optical path and applied to the indented portion. The mirror 24 is indispensable because the laser oscillator 23 is not moved even if the position of the moving blade is slightly moved, and the laser beam is always applied to the indented portion by adjusting the reflection angle of the mirror 24. The laser interference light reflected by the indentation is received by the optical sensor 25. The optical sensor 25 is formed by arranging a large number of minute photodiodes, for example, and converts movement of interference fringes into an electrical signal and outputs it. Next, the movement signal of the interference fringes output from the optical sensor 25 is the displacement calculator 2
6, the displacement amount between the indentations is calculated by the above equation.

【0021】図4は圧痕間の変位量の計測値から動翼内
部の未接合部の形状を求める過程を説明する図である。
同図において、データ処理装置17には遠心荷重負荷時
の整合部外周部での接合上下部での相対変位量と引張荷
重のデータが集められ、これらのデータから接合部外周
部での連続する変位量の分布形を求める。未接合部演算
装置18は得られた変位量分布形と引張荷重から、拡散
接合部内部の未接合部の形状を求める。これは通常の解
析が外力と境界条件から構造物各部の変位、ひずみを求
めるのに対して、構造物の変位、ひずみと外力条件から
境界条件を求める逆問題として、とらえることができ
る。すなわち 通常順問題:{外力}、{境界条件}→{変位、ひず
み} 逆問題:{変位、ひずみ}、{外力}→{境界条件} であり、未知である内部未接合部の境界条件をスプライ
ン関数のような関数で近似して、関数の係数を最適化す
ることにより接合部で観察される変位量分布に最も良く
一致する境界条件を得ることができる。
FIG. 4 is a diagram for explaining the process of obtaining the shape of the unbonded portion inside the moving blade from the measured value of the displacement amount between the indentations.
In the figure, the data processor 17 collects data of the relative displacement amount at the joint upper and lower portions and the tensile load at the outer peripheral portion of the matching portion when a centrifugal load is applied, and these data are continuously obtained at the outer peripheral portion of the joint portion. Calculate the distribution of displacement. The unbonded portion computing device 18 obtains the shape of the unbonded portion inside the diffusion bonded portion from the obtained displacement amount distribution form and tensile load. This can be regarded as an inverse problem in which the normal analysis obtains the displacement and strain of each part of the structure from the external force and the boundary condition, while the boundary condition is obtained from the displacement, strain and the external force condition of the structure. That is, a normal order problem: {external force}, {boundary condition} → {displacement, strain} Inverse problem: {displacement, strain}, {external force} → {boundary condition} By approximating with a function such as a spline function and optimizing the coefficient of the function, it is possible to obtain the boundary condition that best matches the displacement distribution observed at the joint.

【0022】その結果は、表示装置19に拡散接合部断
面での未接合部22および接合部27の形成として表示
することができる。この結果を許容可能な未接合部形状
28と比較して接合状態の合否を判定することができ
る。許容未接合形状28は想定される動翼の運用形態か
ら運用寿命内に接合部で疲労およびクリープによりき裂
が進展した場合でも、最終破断に至らない形状であり、
負荷荷重、温度の変動を考慮して予め規定しておく。本
実施例の効果として次の事項があげられる。
The result can be displayed on the display device 19 as the formation of the unbonded portion 22 and the bonded portion 27 in the cross section of the diffusion bonded portion. The result can be compared with the allowable unbonded portion shape 28 to determine whether the bonded state is acceptable or not. The allowable unbonded shape 28 is a shape that does not reach the final fracture even if a crack develops due to fatigue and creep in the bonded portion within the service life from the assumed blade operating mode.
It is specified in advance in consideration of load load and temperature fluctuations. The effects of this embodiment are as follows.

【0023】まず、動翼の頭部芯金9に設けた突起部1
2と動翼の植込部を用いて、実機で使用された場合に接
合部11に加わる遠心力と同程度の引張荷重によって、
保証試験が可能になることである。突起部12を設けず
に接合部の保証試験を行う場合には、先で述べたように
動翼の構造上、接合部上方には突起部12にあたる荷重
作用部分が得られないことから、遠心荷重相当の荷重を
接合部に加えるためには、実際に回転試験を実施して実
機と同一の回転数で保証試験を行う必要がある。しか
し、回転試験で保証試験を行う場合、1本の接合不良の
羽根が飛散した際にも、試験装置に甚大な損害を与える
とともに他の健全な羽根も損傷する恐れがある。本実施
例では個々の動翼に対して保証試験が可能であり、保証
試験に多大な準備を必要とせず、迅速な荷重負荷が行え
るとともに接合部で破損した場合にも荷重負荷装置に与
える損傷は皆無であることからその効果は大きい。
First, the protruding portion 1 provided on the cored bar 9 of the moving blade.
By using 2 and the implanted portion of the moving blade, a tensile load equivalent to the centrifugal force applied to the joint 11 when used in an actual machine,
The guarantee test is possible. When conducting a joint guarantee test without providing the protrusion 12, as described above, the load acting portion corresponding to the protrusion 12 cannot be obtained above the joint due to the structure of the moving blade. In order to apply a load equivalent to the load to the joint, it is necessary to actually perform a rotation test and perform a guarantee test at the same rotation speed as the actual machine. However, when performing a guarantee test by a rotation test, even if one badly joined blade is scattered, it may cause great damage to the test apparatus and damage other healthy blades. In this example, a proof test can be performed on each moving blade, a large amount of preparation is not required for the proof test, rapid load loading can be performed, and damage to the load loading device even if the joint is broken. The effect is great because there is nothing.

【0024】次に、接合部断面での接合状態の定量的な
把握ができ、許容接合状態と比較した合理的な合否判定
が可能になることがあげられる。本実施例に示したよう
に接合部での変形状態から内部の接合状態を解析する方
法は、従来の超音波や電磁気的な手法により内部の欠陥
を検査する方法では、検出不可能であった動翼の接合状
態を明確に画像としてとらえることができる。このよう
にして得られる接合状態図は、接合の上下面で材料が接
触している場合でも、力学的に荷重を負荷した際、接触
状態が得られなくなる場合は未接合と判定されることか
ら、実際の接合状態をより明確に厳しくとらえることが
できる。
Next, it is possible to quantitatively grasp the joining state in the cross section of the joining portion and to make a rational pass / fail judgment in comparison with the allowable joining state. The method of analyzing the internal joint state from the deformed state at the joint portion as shown in this embodiment cannot be detected by the conventional method of inspecting internal defects by ultrasonic waves or electromagnetic methods. It is possible to clearly capture the joining state of the blades as an image. The joining state diagram obtained in this way is judged to be unjoined when the contact state cannot be obtained when a load is mechanically applied even if the materials are in contact with the upper and lower surfaces of the joint. , It is possible to grasp the actual joining state more clearly and strictly.

【0025】さらに、動翼の運用形態を考慮した許容接
合状態を規定することにより、保証試験に合格した動翼
に対しても、実機での遠心荷重による疲労・クリープ損
傷により未接合部が拡大した場合にも、供用期間中、接
合部が破断することなく、十分遠心荷重に耐えられるこ
とを保証することができる。
Further, by defining the allowable joining state in consideration of the operating form of the moving blade, even for a moving blade that has passed the guarantee test, the unjoined portion expands due to fatigue and creep damage due to centrifugal load in an actual machine. Even in such a case, it is possible to guarantee that the joint portion can sufficiently withstand the centrifugal load during the service period without breaking.

【0026】図5は本発明の他の実施例であるひずみゲ
ージ式変位計による検査法を説明するための構成図であ
る。すなわち、レーザ干渉変位計に代わる接合部上下部
での相対変位を計測する他の装置の例として、電気抵抗
線ひずみゲージ30を用いた変位計を拡散接合部に取り
付けた例である。この変位計は接合部上下部に接着剤等
で変位検出用の探触子29を取り付け、その探触子29
の動きを貼付したひずみゲージ30の出力で検出するも
のであり、検出精度はレーザ干渉変位計に比べ劣るが、
簡易的に試験を実施できる、という利点がある。
FIG. 5 is a block diagram for explaining an inspection method using a strain gauge type displacement gauge which is another embodiment of the present invention. That is, this is an example in which a displacement gauge using an electric resistance wire strain gauge 30 is attached to a diffusion joint as an example of another device that measures the relative displacement in the upper and lower portions of the joint instead of the laser interference displacement gauge. In this displacement meter, a probe 29 for displacement detection is attached to the upper and lower parts of the joint with adhesive or the like, and the probe 29
The detection accuracy is inferior to that of the laser interference displacement meter, although the detection accuracy is inferior to the output of the strain gauge 30 attached.
There is an advantage that the test can be carried out simply.

【0027】図6は本発明のさらに他の実施例である液
圧を用いた検査法を説明するための構成図である。すな
わち、接合部11に遠心荷重相当の荷重を負荷するため
に、動翼植込部に設けられた冷却空気孔10に水圧また
は油圧による液圧を負荷して、拡散接合部に液圧による
荷重を負荷して接合部11の状態を検査するものであ
る。この場合、機械的な引張負荷による保証試験に比べ
て、予め設けておくべき頭部芯金の突起部が不要となる
が、保証試験段階で接合部11が破断した場合の外部に
与える損傷を考慮して、保証試験は防護壁を設けた試験
槽中で実施する必要がある。
FIG. 6 is a constitutional view for explaining an inspection method using hydraulic pressure which is still another embodiment of the present invention. That is, in order to apply a load equivalent to a centrifugal load to the joint portion 11, hydraulic pressure or hydraulic pressure is applied to the cooling air holes 10 provided in the moving blade implanting portion, and the diffusion joint portion is applied with the hydraulic load. Is applied to inspect the state of the joint portion 11. In this case, compared to the guarantee test by mechanical tensile load, the protrusion of the head core bar, which should be provided in advance, is unnecessary, but damage caused to the outside when the joint 11 is broken in the guarantee test stage is eliminated. In consideration, the assurance test should be carried out in a test tank equipped with a protective wall.

【0028】[0028]

【発明の効果】以上説明したように、本発明によれば、
従来、回転試験により行っていた拡散接合部の保証試験
が機械的荷重または液圧による荷重によって、個々の動
翼に対して容易に実施できるので、保証試験実施の際の
多大な準備も必要とせず、接合部で破損した場合にも荷
重負荷装置に与える損傷も小さく、他の健全な動翼に損
傷を与えることなく保証試験の実施が可能である。また
回転試験による保証試験に比べて迅速な荷重負荷が行え
るために、試験効率も高く、保証試験実施面での効果は
大きい。
As described above, according to the present invention,
Conventionally, the guarantee test of the diffusion joint, which was performed by the rotation test, can be easily performed for each rotor blade by a mechanical load or a hydraulic load.Therefore, a great deal of preparation is required for performing the guarantee test. Even if the joint breaks, the damage to the load applying device is small, and the guarantee test can be performed without damaging other healthy moving blades. In addition, since the load can be applied more quickly than the assurance test by the rotation test, the test efficiency is high and the effect of the assurance test is large.

【0029】また、従来の超音波や電磁気を用いた手法
では動翼の接合部の接合状態を検出する事ができなかっ
たし、また従来の手法で検査可能な場合にも未接合部の
上下面が局部的に接触する状態では明確に接合状態をと
らえることができなかった。しかし、本発明では遠心荷
重相当の負荷を与えた状態で接合状態を検査するため、
未接合部が局部的に接触した状態であっても、明確に接
合部断面での接合状態を定量的に把握できる。
In addition, the conventional method using ultrasonic waves or electromagnetic waves cannot detect the joint state of the joint portion of the moving blade, and when the conventional method can inspect, the unjoined portion can be detected. It was not possible to clearly detect the bonded state when the lower surface was in local contact. However, in the present invention, since the bonding state is inspected under a load equivalent to the centrifugal load,
Even if the unbonded part is locally in contact, the bonded state in the cross section of the bonded part can be clearly understood quantitatively.

【0030】さらに動翼の運用形態を考慮した許容接合
状態を規定することにより、供用期間中に安全に動翼が
使用可能であることが保証でき、動翼の信頼性を向上さ
せることができる。
Further, by defining the allowable joining state in consideration of the operating form of the moving blade, it can be guaranteed that the moving blade can be used safely during the service period, and the reliability of the moving blade can be improved. .

【0031】以上のように、本発明によるガスタービン
動翼検査装置の適用によりガスタービン全体の信頼性を
高めるとともに検査効率も向上させることができるた
め、その効果は極めて大きい。
As described above, by applying the gas turbine rotor blade inspection apparatus according to the present invention, the reliability of the entire gas turbine can be improved and the inspection efficiency can be improved, so that the effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のガスタービン動翼検査装置の一実施例
のブロック構成図。
FIG. 1 is a block configuration diagram of an embodiment of a gas turbine rotor blade inspection device of the present invention.

【図2】本発明に係るレーザ変位干渉計による接合部の
変位を計測する方法の説明図。
FIG. 2 is an explanatory diagram of a method for measuring displacement of a joint portion by a laser displacement interferometer according to the present invention.

【図3】図2のレーザ変位干渉計の構成図。FIG. 3 is a configuration diagram of the laser displacement interferometer of FIG.

【図4】動翼接合部の拡散接合断面での接合状態を解析
する過程の説明図。
FIG. 4 is an explanatory view of a process of analyzing a welding state in a diffusion welding cross section of a rotor blade welding portion.

【図5】本発明の他の実施例であるひずみゲージ式変位
計による検査法の説明図。
FIG. 5 is an explanatory view of an inspection method using a strain gauge type displacement gauge which is another embodiment of the present invention.

【図6】本発明のさらに他の実施例である液圧を用いた
検査法の説明図。
FIG. 6 is an explanatory view of an inspection method using hydraulic pressure which is still another embodiment of the present invention.

【図7】同図(a)は従来のセラミック動翼の側面図、
同図(b)は同図(a)の断面図。
FIG. 7 (a) is a side view of a conventional ceramic rotor blade,
The figure (b) is sectional drawing of the figure (a).

【図8】従来のガスタービンの主要部を説明するための
断面図。
FIG. 8 is a cross-sectional view for explaining a main part of a conventional gas turbine.

【符号の説明】[Explanation of symbols]

1…圧縮機、2…ガスタービン、3…燃焼器、4…ライ
ナー、5…トランジッションピース、6…静翼、7…動
翼、8…セラミックスリーブ、9…芯金、10…冷却空
気孔、11…拡散接合部、12…突起部、13…ロード
セル、14…試験治具、15…レーザ干渉変位計、16
…レーザ光、17…データ処理装置、18…未接合部演
算装置、19…表示装置、20…圧痕、21…干渉縞、
22…未接合部、23…レーザ発振器、24…ミラー、
25…光センサ、26…変位演算器、27…接合部、2
8…許容未接合形状、29…探触子、30…ひずみゲー
ジ、31…液圧。
1 ... Compressor, 2 ... Gas turbine, 3 ... Combustor, 4 ... Liner, 5 ... Transition piece, 6 ... Stationary blade, 7 ... Moving blade, 8 ... Ceramic sleeve, 9 ... Core metal, 10 ... Cooling air hole, 11 ... Diffusion bonding part, 12 ... Projection part, 13 ... Load cell, 14 ... Test jig, 15 ... Laser interference displacement meter, 16
... laser light, 17 ... data processing device, 18 ... unbonded portion arithmetic device, 19 ... display device, 20 ... indentation, 21 ... interference fringe,
22 ... Unjoined part, 23 ... Laser oscillator, 24 ... Mirror,
25 ... Optical sensor, 26 ... Displacement calculator, 27 ... Joint part, 2
8 ... Allowable unbonded shape, 29 ... Probe, 30 ... Strain gauge, 31 ... Hydraulic pressure.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 頭部芯金と下部芯金からなる動翼の芯金
金属と、この動翼の芯金金属の高温ガス通路部の外表面
にセラミックスリーブを配した構造のガスタービン動翼
の検査装置において、前記動翼の頭部芯金に設けた突起
部と動翼植込部を用いて遠心力相当荷重により前記頭部
芯金と前記下部芯金の接合部の接合強度の保証試験を行
うことを特徴とするガスタービン動翼検査装置。
1. A gas turbine blade having a structure in which a metal core of a moving blade composed of a head metal core and a lower metal core and a ceramic sleeve is arranged on an outer surface of a high temperature gas passage portion of the metal core of the moving blade. In the inspection device, the guarantee of the joint strength of the joint portion between the head core metal and the lower core metal by a load equivalent to the centrifugal force using the protrusion provided on the core metal of the rotor blade and the blade implantation part. A gas turbine rotor blade inspection device characterized by performing a test.
【請求項2】 接合部上下部にレーザ光を反射するため
の圧痕を接合部外周に沿って複数設け、この圧痕部分で
レーザ干渉変位計による変位分布と外力条件から未接合
部演算装置により接合部内部の未接合部分の形状を解析
して許容接合状態と比較することにより動翼接合部の接
合強度の保証試験を行うことを特徴とする請求項1記載
のガスタービン動翼検査装置。
2. A plurality of indentations for reflecting a laser beam are provided on the upper and lower portions of the joint along the outer periphery of the joint, and the joint is operated by a non-joint computing device from the displacement distribution by the laser interference displacement meter and the external force condition at the indent. The gas turbine rotor blade inspection device according to claim 1, wherein a joint strength guarantee test of the rotor blade joint portion is performed by analyzing a shape of an unjoined portion inside the portion and comparing the shape with an allowable joint state.
【請求項3】 動翼の下部芯金に設けた冷却空気孔に液
圧を加え、その圧力により生ずる遠心力相当荷重により
動翼接合部の接合強度の保証試験を行うことを特徴とす
る請求項1記載のガスタービン動翼検査装置。
3. A guarantee test of joint strength of a rotor blade joint is performed by applying hydraulic pressure to a cooling air hole provided in a lower core metal of a rotor blade and applying a centrifugal force equivalent load generated by the pressure. Item 1. The gas turbine rotor blade inspection device according to item 1.
JP4285693A 1993-03-03 1993-03-03 Detector of gas turbine blade Pending JPH06258190A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4285693A JPH06258190A (en) 1993-03-03 1993-03-03 Detector of gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4285693A JPH06258190A (en) 1993-03-03 1993-03-03 Detector of gas turbine blade

Publications (1)

Publication Number Publication Date
JPH06258190A true JPH06258190A (en) 1994-09-16

Family

ID=12647670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4285693A Pending JPH06258190A (en) 1993-03-03 1993-03-03 Detector of gas turbine blade

Country Status (1)

Country Link
JP (1) JPH06258190A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201903A (en) * 2000-12-28 2002-07-19 Ishikawajima Harima Heavy Ind Co Ltd Blade scattering device and method therefor
WO2010131519A1 (en) * 2009-05-12 2010-11-18 三菱重工業株式会社 Method and apparatus for simulation test of centrifugal stress of turbine blade
CN111473968A (en) * 2020-05-14 2020-07-31 宋宝峰 Overhanging beam type building structure component test loading device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002201903A (en) * 2000-12-28 2002-07-19 Ishikawajima Harima Heavy Ind Co Ltd Blade scattering device and method therefor
JP4590731B2 (en) * 2000-12-28 2010-12-01 株式会社Ihi Blade scattering apparatus and method
WO2010131519A1 (en) * 2009-05-12 2010-11-18 三菱重工業株式会社 Method and apparatus for simulation test of centrifugal stress of turbine blade
CN111473968A (en) * 2020-05-14 2020-07-31 宋宝峰 Overhanging beam type building structure component test loading device

Similar Documents

Publication Publication Date Title
US5140264A (en) Method for non-destructively assessing the condition of a turbine blade using eddy current probes inserted within cooling holes
KR101067705B1 (en) Laser ultrasonic inspecting device and laser ultrasonic inspecting system
JP2001032724A (en) On-line life diagnostic system
EP1408201B1 (en) Steam turbine inspection method
US20190064119A1 (en) Laser ultrasonic thermography inspection
US20040240600A1 (en) Positron annihilation for inspection of land based industrial gas turbine components
US4953973A (en) Detection of compressive residual stresses using the method of caustics
US6094260A (en) Holographic interferometry for monitoring and controlling laser shock peening
JP5531257B2 (en) Turbine blade flaw detection method
US11976997B2 (en) Inspection method for inspecting a condition of an externally invisible component of a device using a borescope
JPH06258190A (en) Detector of gas turbine blade
JPH09195795A (en) Remaining life evaluation method for gas turbine stationary blade and device thereof
JP6122669B2 (en) Remaining life evaluation method for high temperature machine parts
JP2804701B2 (en) Gas turbine coating blade deterioration diagnosis method and apparatus
JPH10207534A (en) Method and device for piping abnormality detection of high-temperature gas piping
JPH08160035A (en) Method and apparatus for controlling life of high temperature part of gas turbine
JP2002286444A (en) Crack detecting method for high-temperature pipe
KR20220170700A (en) A mornitering system for steam turbine blade based on ai and operation metohd thereof
JP3046926B2 (en) Inspection method of fuel guide pin for reactor
JPH01269051A (en) Ultrasonic flow detector for connecting bolt
JPH04256825A (en) Pipe life diagnosis method
Opheys et al. Blade root/blade attachment inspection by advanced UT and phased array technique
Mayer et al. Investigations by non-destructive inspection to determine the size of natural defects in large forgings of turbogenerators
Nonaka Residual life evaluation and repair procedures for high temperature boiler piping
Shen Comparison of Non-destructive Testing Methods for Fan Blades