JPH0625750B2 - Charged substance separator - Google Patents

Charged substance separator

Info

Publication number
JPH0625750B2
JPH0625750B2 JP60199433A JP19943385A JPH0625750B2 JP H0625750 B2 JPH0625750 B2 JP H0625750B2 JP 60199433 A JP60199433 A JP 60199433A JP 19943385 A JP19943385 A JP 19943385A JP H0625750 B2 JPH0625750 B2 JP H0625750B2
Authority
JP
Japan
Prior art keywords
chamber
molecular weight
charged
separation
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60199433A
Other languages
Japanese (ja)
Other versions
JPS6259853A (en
Inventor
親生 小田
正二 吉永
克美 室井
信行 細見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60199433A priority Critical patent/JPH0625750B2/en
Publication of JPS6259853A publication Critical patent/JPS6259853A/en
Publication of JPH0625750B2 publication Critical patent/JPH0625750B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Peptides Or Proteins (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、たんぱく質,核酸,細胞等の荷電物質の分離
精製技術に係り、特に電気泳動法を利用して荷電物質の
分離を行なう荷電物質の分離装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a technique for separating and purifying charged substances such as proteins, nucleic acids, cells and the like, and in particular to a charged substance for separating charged substances by using an electrophoretic method. The present invention relates to a separation device.

〔発明の背景〕[Background of the Invention]

従来のたんぱく質,核酸,細胞等の荷電物質の分離精製
法として、電気泳動法,膜分離法,液体クロマトグラフ
ィ等がある。膜分離法は、膜の孔の大きさによりたんぱ
く質を分離する方法で、連続処理ができるが、たんぱく
質の分離能が劣るという欠点があり、液体クロマトグラ
フィは、たんぱく質を担体充填カラムを通して分離する
方法で、分離能はすぐれているが、バッチ操作のため工
業規模な大量処理は不適当である。また、電気泳動法
は、たんぱく質の荷電量の差を利用して、電場中にて分
離精製する方法である。この電気泳動法には、ゲル等の
担体を用いる担体電気泳動歩と、担体を用いず自由流動
液中にて行なう無担体電気泳動法がある。担体電気泳動
法はバッチ方式であり、大量処理を行なうような工業化
には無担体電気泳動法が適している。
As a conventional method for separating and purifying charged substances such as proteins, nucleic acids and cells, there are an electrophoresis method, a membrane separation method, a liquid chromatography and the like. The membrane separation method is a method of separating proteins according to the size of the pores of the membrane, and although continuous treatment is possible, it has the disadvantage of poor protein separation ability.Liquid chromatography is a method of separating proteins through a column packed with a carrier. Although it has excellent separation ability, it is not suitable for industrial-scale large-scale processing because of batch operation. The electrophoresis method is a method of separating and purifying in an electric field by utilizing the difference in the charge amount of proteins. This electrophoresis method includes a carrier electrophoresis step using a carrier such as a gel and a carrier-free electrophoresis method performed in a free flowing liquid without using the carrier. The carrier electrophoresis method is a batch method, and the carrier-free electrophoresis method is suitable for industrialization in which a large amount of treatment is performed.

無担体電気泳動法については、***のカート・ハニッヒ
(Kurt Hanning)氏が文献「エレクトロホレシス,3,
P235−243,1982」(Electrophoresis,3,P2
35-243,1982)に発表している。その方法を以下に示
す。
Regarding the carrier-free electrophoresis method, Kurt Hanning of West Germany published a document “Electrophoresis, 3, 3.
P235-243, 1982 "(Electrophoresis, 3, P2
35-243, 1982). The method is shown below.

泳動室内で電場を横切って一定速度で流下する分離バツ
ファー中に注入口から連続的に分離すべきたんぱく質混
合物を注入する。各たんぱく質は、それぞれ荷電量が異
なるため電場中での移動速度は異なる。そのため分離バ
ッファー中を流下中に分離バッファーの流速とのかねあ
いでそれぞれに偏向されて分離される。このように本方
法は連続的に分離することができるため、工業規模のた
んぱく質の分離精製に対して有効であることがわかる。
本方法で分離性能を高めるためには分離用チャンバ内の
分離バッファーの流速を常に一定に保つことが重要であ
る。ところが、分離バッファーには電流を流すためジュ
ール熱が必ず発生し、その熱により分離バッファーに対
流現象が生じ、分離バッファーの流れが乱れる。そのた
めたんぱく質の分離能は低下する。そこで、この点を改
善するため従来、無担体電気泳動装置は分離バッファー
の温度や流速を±0.2%と極めて精度良くコントロー
ルする必要があり、そのために、分離チャンバーを薄い
平板形で極力小さくせざるを得ず、処理量が少なく、工
業規模に大型化する場合の問題となっている。
The protein mixture to be continuously separated is injected from the inlet into a separation buffer that flows at a constant rate across the electric field in the electrophoresis chamber. Since each protein has a different charge amount, the moving speed in an electric field is different. Therefore, while flowing down in the separation buffer, it is deflected and separated depending on the flow rate of the separation buffer. As described above, since the present method can be continuously separated, it can be seen that it is effective for industrial scale protein separation and purification.
In order to improve the separation performance in this method, it is important to always keep the flow rate of the separation buffer in the separation chamber constant. However, Joule heat is always generated because a current is passed through the separation buffer, and the heat causes a convection phenomenon in the separation buffer to disturb the flow of the separation buffer. Therefore, the resolution of proteins is reduced. Therefore, in order to improve this point, it has been necessary to control the temperature and flow rate of the separation buffer with a precision of ± 0.2% in the conventional carrier-free electrophoresis apparatus. Therefore, the separation chamber should be a thin flat plate and be as small as possible. It is unavoidable that the amount of processing is small and it becomes a problem when it is scaled up to an industrial scale.

〔発明の目的〕[Object of the Invention]

本発明の目的は、等電点分画と分子量分画とを一つの装
置で行ない、特定の等電点と分子量とを有する荷電物質
を連続して分離することのできる荷電物質の分離装置を
提供することである。
An object of the present invention is to provide a charged substance separation device capable of performing isoelectric point fractionation and molecular weight fractionation in a single device and continuously separating a charged substance having a specific isoelectric point and molecular weight. Is to provide.

〔発明の概要〕[Outline of Invention]

本発明の特徴は、泳動室と該泳動室の両側方にある二つ
の電極室との間をそれぞれ分離対象荷電物質を通さない
半透膜で仕切り、直流電圧の印加方向に順次孔径が異な
り分離対象荷電物質を選択透過する分画膜を、妃処理液
の流下方向に沿って複数配置して前記泳動室内を3室以
上に区分し、区分された各室にそれぞれ出口ノズルを設
けたことを特徴とする荷電物質の分離装置にある。
The feature of the present invention is that the electrophoretic chamber and the two electrode chambers on both sides of the electrophoretic chamber are partitioned by a semipermeable membrane that does not pass the charged substance to be separated. A plurality of separation membranes that selectively permeate the charged substance of interest are arranged along the flow direction of the treatment liquid to divide the migration chamber into three or more chambers, and each divided chamber has an outlet nozzle. It is a feature of the apparatus for separating charged substances.

〔発明の実施例〕Example of Invention

以下、本発明の一実施例を第1,2図により説明する。
第1図は本発明による荷電物質の連続分離装置の正面断
面図、第2図は第1図のII−II矢視断面図である。図に
おいて、1は流動装置本体、2は泳動室、3a,3bは
電極室である。泳動室2と泳動室3a,3bは、孔径の
小さい分画膜である半透膜4で仕切られている。泳動室
2内は分子量に応じて分画する分画膜5a,5bにより
3室2a,2b,2cに区分されている。一方電極室3
a,3b内にはそれぞれ直流電圧を印加するための電極
6a,6bが設置されている。泳動室2cの上端には荷
電物質を含む被処理液の入口ノズル7cがあり、泳動室
2a,2bの上端には分離液の入口ノズル7a,7bが
ある。そして、泳動室2a,2b,2cの下端には被処
理液の出口ノズル8a,8b,8cがある。また、電極
室3a,3bのそれぞれの下部および上部には、電極液
の入口ノズル9a,9bおよび出口ノズル10a,10bが
設けられている。
An embodiment of the present invention will be described below with reference to FIGS.
FIG. 1 is a front sectional view of a continuous separator for charged substances according to the present invention, and FIG. 2 is a sectional view taken along the line II-II of FIG. In the figure, 1 is a main body of a fluidizer, 2 is a migration chamber, and 3a and 3b are electrode chambers. The migration chamber 2 and the migration chambers 3a and 3b are separated by a semipermeable membrane 4 which is a separation membrane having a small pore diameter. The migration chamber 2 is divided into three chambers 2a, 2b, 2c by fractionation membranes 5a, 5b that fractionate according to the molecular weight. On the other hand, electrode chamber 3
Electrodes 6a and 6b for applying a DC voltage are installed in a and 3b, respectively. At the upper end of the migration chamber 2c, there are inlet nozzles 7c for the liquid to be treated containing charged substances, and at the upper ends of the electrophoresis chambers 2a and 2b there are inlet nozzles 7a and 7b for the separation liquid. Further, outlet nozzles 8a, 8b, 8c for the liquid to be treated are provided at the lower ends of the migration chambers 2a, 2b, 2c. Further, electrode liquid inlet nozzles 9a, 9b and outlet nozzles 10a, 10b are provided at the lower and upper portions of the electrode chambers 3a, 3b, respectively.

ここで、電極室3a,3bと泳動室2とを仕切る半透膜
4には、たんぱく質などの被処理荷電物質を通さない孔
径を持つ逆浸透膜などが用いられる。また、流動室2内
を区分する分子量分画膜5aには、被処理荷電物質中の
目的成分の分子量を保持する膜を用い、分子量分画膜5
bには、目的成分の分子量を透過させ、目的成分より大
きい分子量を持つ物質を透過させない膜を用いる。
Here, as the semipermeable membrane 4 that partitions the electrode chambers 3a and 3b from the electrophoretic chamber 2, a reverse osmosis membrane or the like having a pore size that does not pass a charged substance to be treated such as protein is used. The molecular weight fractionation membrane 5a that divides the inside of the flow chamber 2 is a membrane that holds the molecular weight of the target component in the charged substance to be treated.
For b, a membrane that allows the molecular weight of the target component to permeate but does not allow a substance having a molecular weight higher than the target component to permeate is used.

このような泳動装置1の電極室3a,3bに電極液(緩
衝液)を流し、泳動室2a,2bの上部から分離用緩衝
液を流入させ、泳動室2cの上部からたんぱく質などの
被処理荷電物質を含む緩衝液を流入させて電極棒6a,
6bに直流電圧をかける。ここで、緩衝液のPHを目的
成分の等電点より高い値に調整し、電極6aを正,6b
を負として荷電すると緩衝液のPHより高い等電点の荷
電物質は、図中11bの軌跡で示すように、負の電極6b
の方向に泳動移動し、泳動室2cの負の電極側(図の右
側)を下降し、出口ノズル8cから取り出される。一
方、目的成分を含む緩衝液のPHより低い等電点の荷電
物質は、11a,11b,11cの軌跡で示すように、いずれ
も正の電極6aの方向に泳動移動するが、分子量分画膜
5a,5bが設置してあるため、目的成分より大きい分
子量の荷電物質は、11cの軌跡で示すように、分子量分
画膜5bにさえぎられて泳動室2c内にとどまったまま
で下降し、出口ノズル8cから流出する。また目的成分
は、11bの軌跡で示すように、分子量分画膜5bを透過
し、次の分画膜5aにさえぎられて泳動室2b内を下降
し、出口ノズル8bから取り出される。そして、緩衝液
のPHより低い等電点を持ち、目的成分より小さい分子
量の荷電物質は11aの軌跡で示すように分画膜5b,5
aの両方を透過して図の左側の泳動室2aに達し、出口
ノズル8aから取り出される。
Electrode solution (buffer solution) is caused to flow into the electrode chambers 3a and 3b of the electrophoretic apparatus 1 as described above, a separation buffer solution is caused to flow in from the upper portions of the electrophoretic chambers 2a and 2b, and a treated object such as protein is charged from the upper portion of the electrophoretic chamber 2c. A buffer solution containing a substance is caused to flow into the electrode rod 6a,
Apply DC voltage to 6b. Here, the pH of the buffer solution is adjusted to a value higher than the isoelectric point of the target component, and the electrodes 6a are set to positive and 6b.
When charged as negative, the charged substance having an isoelectric point higher than the pH of the buffer solution has a negative electrode 6b as shown by the locus 11b in the figure.
The migration is performed in the direction of, and the negative electrode side (right side in the figure) of the migration chamber 2c is lowered, and it is taken out from the outlet nozzle 8c. On the other hand, a charged substance having an isoelectric point lower than the pH of the buffer solution containing the target component migrates toward the positive electrode 6a as shown by the loci 11a, 11b, and 11c, but the molecular weight fractionation membrane is used. Since 5a and 5b are installed, a charged substance having a molecular weight larger than the target component descends while being retained in the migration chamber 2c while being blocked by the molecular weight fractionation film 5b as shown by the locus 11c. It flows out from 8c. As shown by the locus 11b, the target component permeates the molecular weight fractionation membrane 5b, is blocked by the next fractionation membrane 5a, descends in the migration chamber 2b, and is taken out from the outlet nozzle 8b. Then, a charged substance having an isoelectric point lower than the pH of the buffer solution and having a molecular weight smaller than the target component is separated into the fractionation membranes 5b, 5 as shown by the locus 11a.
After passing through both a and reaching the migration chamber 2a on the left side of the figure, it is taken out from the outlet nozzle 8a.

このようにして、分子量および等電点に分布を持った荷
電物質中から目的成分を連続して取り出すことができ
る。
In this way, the target component can be continuously extracted from the charged substance having a distribution in molecular weight and isoelectric point.

本装置を用いて市販たんぱく質の混合物を分離する場合
について説明する。ミオキナーゼ(Myokinase……等電
点4.3,分子量21,000)をA,オバルブミン
(Ovalbumin……等電点4.6,分子量45,000)
をb,オバイン・セラム・アルブミン(Bovine serum a
lbumin……等電点4.7,分子量67,000)をC,
トリオセホスフェイト・イソメラーゼ(Triosephosphat
e isomerase………等電点5.8,分子量43,00
0)をDとして、これらの混合溶液からBを連続分離し
ようとする場合、分子量分画膜5aに保持分子量40,
000の膜を用い、分画膜5bに保持分子量60,00
0の膜を用いて、緩衝液のPHを5.2に調整する。こ
のようにしてたんぱく質A,B,C,Dを含む混合溶液
を本装置1に連続供給すると、緩衝液のPHより高い等
電点を持つたんぱく質Dは負の電極側に泳動するため、
軌跡11dに沿って泳動室2cを下降する。また、たんぱ
く質Cは等電点が緩衝液のPHより低いため、正の電極
側に泳動するが、分画膜5bにさえぎられて、図中の軌
跡11cに沿って泳動室2cを下降し、たんぱく質Dと共
に出口ノズル8cから取り出される。そして、たんぱく
質Bは、等電点とPHの関係から正の電極側に移動し、
分画膜5bを透過し、分画膜5aにさえぎられて軌跡11
bに沿って泳動室2bを降下し、出口ノズル8bから連
続して取り出される。一方、たんぱく質Aは、正の電極
側に移動し、分画膜5bおよび5aを透過して、軌跡11
aで示すように、泳動室2a内を降下し、出口ノズル8
aから取り出される。このようにして、等電点および分
子量に分布を持つ、たんぱく質A,B,C,Dの混合溶
液から、特定の等電点,分子量の目的たんぱく質Bを連
続分離できる。
The case of separating a mixture of commercially available proteins using this apparatus will be described. Myokinase (isoelectric point 4.3, molecular weight 21,000) is A, Ovalbumin (isoelectric point 4.6, molecular weight 45,000)
B, ovine serum albumin (Bovine serum a
lbumin ... Isoelectric point 4.7, molecular weight 67,000) is C,
Triosephosphat isomerase
e isomerase ……… isoelectric point 5.8, molecular weight 43,00
0) as D, when B is to be continuously separated from these mixed solutions, the molecular weight fractionation membrane 5a retains a molecular weight of 40,
000 membrane is used, and the molecular weight retained on the fractionation membrane 5b is 60,000.
Adjust the pH of the buffer to 5.2 using the 0 membrane. When the mixed solution containing the proteins A, B, C, and D is continuously supplied to the apparatus 1 in this way, the protein D having an isoelectric point higher than the pH of the buffer solution migrates to the negative electrode side.
The migration chamber 2c is moved down along the locus 11d. Further, since protein C has an isoelectric point lower than the pH of the buffer solution, it migrates to the positive electrode side, but is blocked by the fractionation membrane 5b and descends the migration chamber 2c along the locus 11c in the figure. It is taken out from the outlet nozzle 8c together with the protein D. Then, protein B moves to the positive electrode side due to the relationship between the isoelectric point and PH,
Traces 11 are transmitted through the fractionation membrane 5b and blocked by the fractionation membrane 5a.
Then, it is moved down the migration chamber 2b along b and is continuously taken out from the outlet nozzle 8b. On the other hand, protein A migrates to the positive electrode side, permeates through the fractionation membranes 5b and 5a, and the locus 11
As shown by a, it descends in the migration chamber 2a, and the outlet nozzle 8
taken out from a. In this way, the target protein B having a specific isoelectric point and molecular weight can be continuously separated from a mixed solution of proteins A, B, C, and D having distributions of isoelectric point and molecular weight.

本発明の他の実施例を第3図に示す。この実施例は、第
1図にあるような分離用緩衝液の入口ノズルを使用せ
ず、装置を簡略化したものであり、処理量が少なく小型
装置の場合には十分性能を発揮できる。
Another embodiment of the present invention is shown in FIG. This embodiment does not use an inlet nozzle for the separating buffer solution as shown in FIG. 1 and simplifies the apparatus, and has a small throughput and can sufficiently exhibit performance in a small apparatus.

本発明の推奨される実施例においては、第4図に示すよ
うに、緩衝液のPHを荷電方向に分布を持たせたもの
で、緩衝液入口ノズル7a,7a′,7bから入る液の
PHに差をつけたものである。本実施例では入口ノズル
7cから入った被処理液はまず、分子量分画膜5bで目
的たんぱく質より大きいたんぱく質の透過がさえぎら
れ、分画膜5bを透過したたんぱく質は荷電方向のPH
分布に応じたそれぞれのたんぱく質の等電点のところま
で泳動して下降し、出口ノズル8a,8a′,8bから
取り出される。このとき、分画膜5a,5a′の孔径
は、目的たんぱく質の分子量に応じて必要により調節す
る。この結果、分子量の大きいものを除いた目的等電点
を持つたんぱく質が連続分離できる。
In the preferred embodiment of the present invention, as shown in FIG. 4, the pH of the buffer solution is distributed in the charging direction, and the pH of the solution entering from the buffer solution inlet nozzles 7a, 7a ', 7b is The difference is. In the present embodiment, the liquid to be treated entered from the inlet nozzle 7c is first blocked by the molecular weight fractionation membrane 5b from permeating a protein larger than the target protein, and the protein permeating the fractionation membrane 5b is charged with PH in the charge direction.
The protein migrates and descends to the isoelectric point of each protein according to the distribution, and is taken out from the outlet nozzles 8a, 8a ', 8b. At this time, the pore diameters of the fractionation membranes 5a and 5a 'are adjusted as necessary according to the molecular weight of the target protein. As a result, proteins having the target isoelectric point except for those having a large molecular weight can be continuously separated.

さらに本発明の推奨される実施例においては、第1図に
示す分離用緩衝液の導電率を荷電方向に変え、入口ノズ
ル7aから入る緩衝液の導電率を高くし、入口ノズル7
bから入る緩衝液の導電率を低くしたものである。これ
により分画膜5a,5bで仕切られた泳動室2bでのた
んぱく質の泳動速度を高めることができ、処理量が増加
できる。
Further, in a preferred embodiment of the present invention, the conductivity of the separation buffer solution shown in FIG. 1 is changed to the charging direction to increase the conductivity of the buffer solution entering from the inlet nozzle 7a, and the inlet nozzle 7
The conductivity of the buffer solution entering from b is lowered. As a result, the migration speed of the protein in the migration chamber 2b partitioned by the fractionation membranes 5a and 5b can be increased, and the throughput can be increased.

〔発明効果〕[Invention effect]

本発明によれば、中間分子量の物質の連続分離すなわ
ち、3種類以上の物質から特定の等電点分画と分子量と
を持つ荷電物質を連続して分離することができるので、
たんぱく質などの大量連続分離が可能となる。
According to the present invention, it is possible to continuously separate a substance having an intermediate molecular weight, that is, to continuously separate a charged substance having a specific isoelectric point fraction and a molecular weight from three or more substances,
It enables large-scale continuous separation of proteins and the like.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例の縦断面図、第2図は第1図
のII−II線断面図である。第3図,第4図はそれぞれ本
発明の他の実施例を示す。 1……泳動装置本体、2……泳動室、3a,3b……電
極室、4……半透膜、5a,5b……分子量分画膜
FIG. 1 is a vertical sectional view of an embodiment of the present invention, and FIG. 2 is a sectional view taken along line II-II of FIG. 3 and 4 show other embodiments of the present invention. 1 ... Electrophoresis device body, 2 ... Migration chamber, 3a, 3b ... Electrode chamber, 4 ... Semipermeable membrane, 5a, 5b ... Molecular weight fractionation membrane

───────────────────────────────────────────────────── フロントページの続き (72)発明者 細見 信行 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (56)参考文献 特開 昭59−171850(JP,A) 特開 昭58−147639(JP,A) 特開 昭47−33881(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nobuyuki Hosomi No. 794 Higashi-Toyoi, Shimomatsu City, Yamaguchi Prefecture Inside the Kasado Plant, Hitachi, Ltd. (56) Reference JP-A-59-171850 (JP, A) JP 58-147639 (JP, A) JP-A-47-33881 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】複数の荷電物質を含む被処理液を、該被処
理液の流下方向と直角方向に直流電圧が印加された泳動
室内に供給し、前記荷電物質の分離を行う荷電物質の分
離装置において、 前記泳動室と該泳動室の両側方にある二つの電極室との
間をそれぞれ分離対象荷電物質を通さない半透膜で仕切
り、 前記直流電圧の印加方向に順次孔径が異なり分離対象荷
電物質を選択透過する分画膜を、前記流下方向に沿って
複数配置して前記泳動室を3室以上に区分し、 前記区分された各室にそれぞれ出口ノズルを設けたこと
を特徴とする荷電物質の分離装置。
1. A separation of a charged substance in which a liquid to be treated containing a plurality of charged substances is supplied into a migration chamber to which a direct current voltage is applied in a direction perpendicular to the flow direction of the treated liquid to separate the charged substances. In the apparatus, the electrophoretic chamber and the two electrode chambers on both sides of the electrophoretic chamber are partitioned by semipermeable membranes that do not pass a charged substance to be separated, and the target to be separated has a different pore diameter in the direction of application of the DC voltage. A plurality of separation membranes that selectively permeate charged substances are arranged along the downflow direction to divide the migration chamber into three or more chambers, and an outlet nozzle is provided in each of the divided chambers. Separator for charged substances.
JP60199433A 1985-09-11 1985-09-11 Charged substance separator Expired - Lifetime JPH0625750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60199433A JPH0625750B2 (en) 1985-09-11 1985-09-11 Charged substance separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60199433A JPH0625750B2 (en) 1985-09-11 1985-09-11 Charged substance separator

Publications (2)

Publication Number Publication Date
JPS6259853A JPS6259853A (en) 1987-03-16
JPH0625750B2 true JPH0625750B2 (en) 1994-04-06

Family

ID=16407736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60199433A Expired - Lifetime JPH0625750B2 (en) 1985-09-11 1985-09-11 Charged substance separator

Country Status (1)

Country Link
JP (1) JPH0625750B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833372B2 (en) * 1987-07-03 1996-03-29 株式会社日立製作所 Method and device for separating charged substances
US5128043A (en) * 1991-02-13 1992-07-07 Wildermuth Glen W Method and apparatus for purifying liquids
JPH06139875A (en) * 1992-10-26 1994-05-20 Mitsubishi Electric Corp Fitting device for microswitch
JP2003028835A (en) * 2001-07-11 2003-01-29 Olympus Optical Co Ltd Free flow electrophoretic element and free flow electrophoretic method
WO2007049426A1 (en) * 2005-10-25 2007-05-03 Hitachi, Ltd. Nuclear magnetic resonance probe and nuclear magnetic resonance apparatus
EP2038643B1 (en) * 2006-06-20 2017-10-18 Becton Dickinson and Company Method and device for separation and depletion of certain proteins and particles using electrophoresis
JP2012200666A (en) * 2011-03-25 2012-10-22 Dowa Eco-System Co Ltd Li SOLUTION RECOVERY APPARATUS AND Li SOLUTION RECOVERY METHOD

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147639A (en) * 1982-02-26 1983-09-02 Hideyuki Nishizawa Separation by continuous electric migration and its device
JPS59171850A (en) * 1983-03-19 1984-09-28 Nitto Electric Ind Co Ltd Separation of protein

Also Published As

Publication number Publication date
JPS6259853A (en) 1987-03-16

Similar Documents

Publication Publication Date Title
EP0171676B1 (en) Free-flow electrophoretic separation method and apparatus therefor
US5080770A (en) Apparatus and method for separating particles
Horvath et al. Multifunctional apparatus for electrokinetic processing of proteins
US4315812A (en) Apparatus for continuous electrochromatographic separation
EP0630473A1 (en) Electrical separator apparatus and method of counterflow gradient focusing
US20040040851A1 (en) Multichannel microscale system for high throughput preparative separation with comprehensive collection and analysis
CA2002816A1 (en) Process and device for separating electrically charged macromolecular compounds by forced-flow membrane electrophoresis
US20050167270A1 (en) Electrophoresis apparatus and method
Ivory The prospects for large-scale electrophoresis
US5609743A (en) Electrophoresis fractionator
JPH0625750B2 (en) Charged substance separator
US4834862A (en) Ampholyte separation method and apparatus
IE63398B1 (en) Process and device for the electrophoretic separation purification and concentration of charged or polarizable macromolecules
US5071536A (en) High resolution continuous flow electrophoresis
EP0103965A2 (en) Electrofocusing apparatus
JP2004113079A (en) Method and apparatus for protein identification
Galier et al. Electrophoretic membrane contactors
JPH0599899A (en) Method for separately purifying bio-substance
Roman et al. Separation techniques for biotechnology in the 1990s
Hamel et al. Modeling and applications of downstream processing: a survey of innovative strategies
JP4180229B2 (en) Fractionation and concentration of edible peptides
Chao et al. Semicontinuous protein separation via variable-field-strength electrophoresis
Hunter In focus and on the move: Prospects for electrophoresis in the food industry
JPS59171850A (en) Separation of protein
JPS61290352A (en) Separation of charged substance