JPH06256919A - Method for working titanium alloy - Google Patents

Method for working titanium alloy

Info

Publication number
JPH06256919A
JPH06256919A JP4031793A JP4031793A JPH06256919A JP H06256919 A JPH06256919 A JP H06256919A JP 4031793 A JP4031793 A JP 4031793A JP 4031793 A JP4031793 A JP 4031793A JP H06256919 A JPH06256919 A JP H06256919A
Authority
JP
Japan
Prior art keywords
temp
working
plastic working
temperature
titanium alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4031793A
Other languages
Japanese (ja)
Inventor
Isao Kuboki
功 久保木
Yutaka Wakabayashi
豊 若林
Keitarou Koroishi
圭太郎 頃石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP4031793A priority Critical patent/JPH06256919A/en
Publication of JPH06256919A publication Critical patent/JPH06256919A/en
Pending legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Abstract

PURPOSE:To improve the plastic workability of a titanium alloy and also to improve strength and ductility by performing primary plastic working at a temp. not higher than the static recrystallization temp. at specific draft and then performing secondary plastic working at a temp. lower by specific temp. than the beta-transformation temp. CONSTITUTION:Plastic working, such as rolling, is done at a temp. not higher than the static recrystallization temp., particularly not higher than room temp., at 20-40% draft. Subsequently, without performing heat treatment, plastic working such as die forging is done at a temp. in the range between the beta-transformation temp. and a temp. lower by 250 deg.C than the beta-transformation temp. Because dislocation density to be a recrystallization driving force is increased by cold working in a titanium alloy containing large amounts of residual beta-phase, recovery and recrystallization occur during heating up to working temp. at subsequent plastic working or during heating and holding up to and at the above temp. or during forming at secondary plastic working, and the crystalline grains in the course of deformation are refined. Resultingly, deformation resistance is decreased and deformation velocity is increased. As a result, plastic workability is improved and structure is extremely refined, by which the ductility as well as strength of a final formed part can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はチタン合金の加工方法に
関し、特に大部分がα相とβ相とからなるチタン合金の
加工方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for processing a titanium alloy, and more particularly to a method for processing a titanium alloy which is mostly composed of α phase and β phase.

【0002】[0002]

【従来の技術】near- β型チタン合金あるいはβrich
(α+β)型チタン合金は、一般にβ変態温度Tβ以下
の温度での熱間加工および再結晶処理によって、大部分
が粒状α相と残留β相とからなる2μm乃至3μm程度
の微細等軸粒組織として用いられる。これらのチタン合
金では、β変態温度Tβ以下の静的再結晶温度付近で超
塑性現象が発現し、低変形応力で大きな伸びが得られ
る。このため、静的再結晶温度付近での超塑性成形加工
や熱間成形加工がし易い。また、代表的なチタン合金で
ある(α+β)型のTi−6Al−4Vとは異なり、上
述の組織状態のチタン合金ではマルテンサイト組織がほ
とんど見られず残留β相を多量に含むため、冷間成形加
工も可能である。
[Prior Art] near-β type titanium alloy or βrich
The (α + β) -type titanium alloy is generally a fine equiaxed grain structure of about 2 μm to 3 μm composed mainly of granular α phase and residual β phase by hot working and recrystallization treatment at a temperature of β transformation temperature Tβ or lower. Used as. In these titanium alloys, a superplastic phenomenon appears near the static recrystallization temperature below the β transformation temperature Tβ, and a large elongation can be obtained with low deformation stress. Therefore, superplastic forming or hot forming near the static recrystallization temperature is easy. In addition, unlike the (α + β) type Ti-6Al-4V, which is a typical titanium alloy, the titanium alloy in the above-described structure state has almost no martensite structure and contains a large amount of residual β phase, so that it is cold. Molding is also possible.

【0003】従来、これら上述の組織を有するチタン合
金の超塑性成形、熱間成形および冷間成形は、それぞれ
単独の成形方法として用いられていた。また、これらの
成形加工前に、成形加工に供するブランク材の寸法精度
を高めるため冷間圧延などを加える場合もあるが、この
冷間圧延の後にはかならずソリ矯正や上述の組織にする
ための熱処理(再結晶処理)が行われていた。
Conventionally, superplastic forming, hot forming, and cold forming of titanium alloys having the above-mentioned structures have been used as independent forming methods. In addition, before these forming processes, cold rolling etc. may be added in order to improve the dimensional accuracy of the blank material to be subjected to forming process, but after this cold rolling, it is necessary to correct the warp or to make the above-mentioned structure. Heat treatment (recrystallization treatment) was performed.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、超塑性
成形では変形速度が非常に遅く、量産が必要な製品に超
塑性成形方法はあまり使用されていなかった。また、熱
間成形では材料の変形抵抗が十分に低くないため、1つ
の工程でnear.net.shapeが困難なため、換言すれば1つ
の工程でいきなり最終外形に近い形状に成形することが
できないため、工程数が増大するという不都合があっ
た。また、冷間成形では材料の変形抵抗がさらに高いた
め、工程数がさらに増大するばかりでなく、型鍛造や深
絞り加工においては強加工の加わるコーナー部で割れや
亀裂が発生し易いという不都合があった。
However, the deformation rate of superplastic forming is very slow, and the superplastic forming method has not been often used for products that require mass production. In addition, since the deformation resistance of the material is not sufficiently low in hot forming, it is difficult to form near.net.shape in one step. In other words, it is not possible to suddenly form a shape close to the final outer shape in one step. Therefore, there is an inconvenience that the number of steps is increased. Further, in cold forming, since the deformation resistance of the material is higher, not only the number of steps is further increased, but also in die forging and deep drawing, there is a disadvantage that cracks and cracks are likely to occur at the corners where strong processing is applied. there were.

【0005】本発明は、前記の課題に鑑みてなされたも
のであり、大部分がα相とβ相とからなるチタン合金の
塑性加工性が高く且つ強度および延性に優れた成形品が
得られるような加工方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and a titanium alloy mainly composed of α phase and β phase has high plastic workability, and a molded product excellent in strength and ductility can be obtained. The purpose is to provide such a processing method.

【0006】[0006]

【課題を解決するための手段】前記課題を解決するため
に、本発明においては、大部分がα相とβ相とからなる
チタン合金の加工方法において、静的再結晶温度以下の
温度で圧下率20%乃至60%の第1の塑性加工を行う
工程と、β変態温度乃至β変態温度より250°C低い
温度の温度範囲で第2の塑性加工を行う工程とを備えて
いることを特徴とする方法を提供する。本発明の好まし
い態様によれば、上記第1の塑性加工は室温以下の温度
で行われ、上記第2の塑性加工は恒温で行われる。ま
た、別の態様によれば、上記第1の塑性加工および第2
の塑性加工の双方または第2の塑性加工だけが型鍛造加
工である。
In order to solve the above problems, according to the present invention, in a method for processing a titanium alloy, which is mostly composed of an α phase and a β phase, it is rolled at a temperature lower than a static recrystallization temperature. And a step of performing a second plastic working in a temperature range of β transformation temperature to a temperature lower by 250 ° C. than the β transformation temperature. And provide a method. According to a preferred aspect of the present invention, the first plastic working is performed at a temperature equal to or lower than room temperature, and the second plastic working is performed at a constant temperature. According to another aspect, the first plastic working and the second plastic working
Both of the plastic workings or only the second plastic workings are die forgings.

【0007】[0007]

【作用】本発明の加工方法では、粒状のα相とβ相とか
らなるnear- β型チタン合金あるいはβrich(α+β)
型チタン合金において、静的再結晶温度以下の温度、特
に室温以下の温度で圧下率(加工率)20%乃至60%
の圧延等の塑性加工を行う。次いで、熱処理を行うこと
なくTβ−250°C≦T≦Tβ(Tβはβ変態温度)
の温度範囲で型鍛造等の塑性加工を行う。上記チタン合
金は残留β相を多量に含むため、静的再結晶温度以下の
温度、特に室温以下の温度で塑性加工(冷間加工)を行
うことができる。冷間加工によって再結晶の駆動力とな
る転位密度が増大するため、次に行う塑性加工の加工温
度への加熱中または加熱保持中に、あるいは第2の塑性
加工の成形加工中に、回復・再結晶が生じ、変形中の結
晶粒が微細化する。これによって、変形抵抗が低下し、
変形速度が増大する。この結果、第2の塑性加工の加工
性が向上する。また、成形加工後の組織が非常に微細に
なるため、最終成形品の強度および延性がともに向上す
る。
According to the processing method of the present invention, a near-β type titanium alloy or βrich (α + β) consisting of granular α phase and β phase is used.
Type titanium alloys, at a temperature below the static recrystallization temperature, especially at a temperature below room temperature, a reduction rate (working rate) of 20% to 60%
Plastic working such as rolling. Next, Tβ-250 ° C ≦ T ≦ Tβ (Tβ is β transformation temperature) without heat treatment.
Perform plastic working such as die forging within the temperature range. Since the above titanium alloy contains a large amount of residual β phase, it can be plastically worked (cold working) at a temperature not higher than the static recrystallization temperature, particularly not higher than room temperature. The cold working increases the dislocation density, which is the driving force for recrystallization, so recovery during heating or holding at the working temperature of the next plastic working, or during the forming of the second plastic working, Recrystallization occurs and the crystal grains under deformation become finer. This reduces the deformation resistance,
The deformation speed increases. As a result, the workability of the second plastic working is improved. Further, since the structure after molding is extremely fine, both strength and ductility of the final molded product are improved.

【0008】[0008]

【実施例】本発明の実施例を、添付図面に基づいて説明
する。本発明の実施例に使用した供試材は、次表に示す
化学成分を有するβrich(α+β)型のTi−4.5A
l−3V−2Mo−2Fe合金(以下、単に「Ti−
4.5−3−2−2」という)であった。組織は、平均
粒径約2μmの等軸(α+β)二相組織である。なお、
これらの供試材のβ変態温度は900°Cであった。
Embodiments of the present invention will be described with reference to the accompanying drawings. The test materials used in the examples of the present invention are βrich (α + β) type Ti-4.5A having the chemical components shown in the following table.
1-3V-2Mo-2Fe alloy (hereinafter, simply referred to as "Ti-
4.5-3--2-2 "). The tissue is an equiaxed (α + β) biphasic tissue with an average particle size of about 2 μm. In addition,
The β transformation temperature of these test materials was 900 ° C.

【表1】[Table 1]

【0009】(実施例1)上記供試材に、圧下率20
%、40%および60%の冷間圧延を施した。これらの
冷間圧延後の供試材の試料および冷間圧延されていない
供試材(圧下率0%)の試料から、それぞれ引張試験片
を採取した。これらの採取した試験片を用い、600°
C、700°C、800°Cおよび900°Cの各温度
において、初期ひずみ速度1×10-3/Sで高温引張試
験を行った。その結果を図1および図2に示す。
(Example 1) A reduction ratio of 20 was applied to the above-mentioned test material.
%, 40% and 60% cold rolled. Tensile test pieces were taken from each of the sample of the test material after cold rolling and the sample of the test material that was not cold rolled (reduction ratio 0%). Using these collected test pieces, 600 °
At each temperature of C, 700 ° C., 800 ° C. and 900 ° C., a high temperature tensile test was performed at an initial strain rate of 1 × 10 −3 / S. The results are shown in FIGS. 1 and 2.

【0010】図示のように、700°Cおよび800°
Cでは圧下率が大きいほど、全伸びが大きく且つ流動応
力が小さくなり、加工性が向上することがわかった。こ
の結果に基づき、第1の塑性加工の圧下率を20%乃至
60%とし、第2の塑性加工の加工温度をTβ−250
°C≦T≦Tβ(本実施例では650°C乃至900°
Cに相当)の範囲とした。本実施例では、第2の塑性加
工に恒温加工(高温引張試験)を用いたが、上述の加工
温度範囲内であれば、どのような熱間加工であってもよ
いことはいうまでもない。また、引張試験を破断前に中
断(伸び100%)し、その試験片の平行部からさらに
引張試験片を採取し、室温での引張試験を行った。その
結果、供試材をそのまま室温で引張試験した場合より
も、伸びおよび強度がともに向上することがわかった。
ここで、高温引張試験を中断させた試験片の組織は、粒
径1μm以下の非常に微細な等軸粒組織であった。
As shown, 700 ° C and 800 °
It was found that in C, the larger the rolling reduction, the larger the total elongation, the smaller the flow stress, and the better the workability. Based on this result, the reduction ratio of the first plastic working is set to 20% to 60%, and the working temperature of the second plastic working is set to Tβ-250.
° C ≦ T ≦ Tβ (650 ° C to 900 ° in this embodiment)
(Equivalent to C). In the present embodiment, the isothermal working (high temperature tensile test) was used for the second plastic working, but it goes without saying that any hot working may be carried out within the working temperature range described above. . Further, the tensile test was interrupted (elongation 100%) before breaking, a tensile test piece was further taken from the parallel portion of the test piece, and the tensile test was performed at room temperature. As a result, it was found that both the elongation and the strength were improved as compared with the case where the test material was directly subjected to the tensile test at room temperature.
Here, the structure of the test piece in which the high temperature tensile test was interrupted was a very fine equiaxed grain structure with a grain size of 1 μm or less.

【0011】(実施例2)供試材に室温、600°C、
および800°Cで圧下率40%の圧延を施した。各温
度で圧延された供試材の試料から引張試験片を採取し、
800°Cにおいて初期ひずみ速度1×10-3/Sで高
温引張試験を行った。その結果を図3および図4に示
す。図示のように、圧延温度が低いほど全伸びが大きく
且つ流動応力が小さくなり、加工性が向上することがわ
かった。この結果に基づいて、第1の塑性加工の加工温
度を比較的低温の静的再結晶温度以下とした。
(Example 2) At a room temperature of 600 ° C.,
And rolling at a rolling reduction of 40% at 800 ° C. Taking a tensile test piece from the sample of the test material rolled at each temperature,
A high temperature tensile test was performed at an initial strain rate of 1 × 10 −3 / S at 800 ° C. The results are shown in FIGS. 3 and 4. As shown in the figure, it was found that the lower the rolling temperature, the larger the total elongation, the smaller the flow stress, and the better the workability. Based on this result, the working temperature of the first plastic working was set to be equal to or lower than the relatively low static recrystallization temperature.

【0012】(実施例3)供試材を円盤状に加工して、
型鍛造用のブランクを作製した。作製したブランクを腕
時計ケースの裏蓋用金型にセットし、室温で型鍛造成形
した。鍛造回数は2回で、その間に中間焼鈍を入れなか
った。上記冷間型鍛造を施した被加工材のバリを除去
し、800°Cに加熱した腕時計ケースの裏蓋用金型に
セットした。金型の加熱温度を保持しながら、鍛造速度
0.1mm/分で、型充填するまで恒温鍛造を行った。
ブランクを冷間鍛造することなく上述の鍛造条件で恒温
鍛造した場合と比較して、より少ない打ち込み量で型充
填が完了した。すなわち、冷間鍛造をすることなく恒温
鍛造するより、ブランクを冷間鍛造してから恒温鍛造す
る方が、加工性が向上することがわかった。
(Example 3) The test material was processed into a disk shape,
A blank for die forging was produced. The produced blank was set in a mold for a back cover of a wristwatch case and was die forged at room temperature. The number of forgings was two, and no intermediate annealing was performed in the meantime. The burrs of the cold forged material to be processed were removed, and the burrs were set on a back cover mold of a wristwatch case heated to 800 ° C. While maintaining the heating temperature of the die, isothermal forging was performed at a forging speed of 0.1 mm / min until the die was filled.
Compared with the case where the blank was subjected to the constant temperature forging under the above-mentioned forging conditions without being cold forged, the die filling was completed with a smaller driving amount. That is, it has been found that the workability is improved by cold forging the blank and then isothermally forging, rather than isothermal forging without cold forging.

【0013】また、供試材を冷間圧延した後にブランク
を作製して800°Cで恒温鍛造を行っても、供試材か
ら冷間圧延することなくブランクを作製して800°C
で恒温鍛造を行う場合よりも、より少ない打ち込み量で
型充填が完了した。すなわち、供試材を冷間圧延するこ
となくそのまま得たブランクを恒温鍛造するより、供試
材を冷間圧延して得たブランクを恒温鍛造する方が、加
工性が向上することがわかった。
Further, even if a blank is prepared after cold rolling of the specimen and subjected to isothermal forging at 800 ° C., a blank is prepared without cold rolling from the specimen to 800 ° C.
Mold filling was completed with a smaller amount of driving than in the case of constant temperature forging. That is, it was found that the isothermal forging of the blank obtained by cold rolling the test material improves the workability, rather than the isothermal forging of the blank obtained as it is without cold rolling the test material. .

【0014】なお、本実施例では、被加工材としてβri
ch(α+β)型のTi−4.5−3−2−2合金を使用
した例を示したが、大部分がα相とβ相とからなるチタ
ン合金であれば、本発明を適用して同様の効果を奏する
ことができることは明らかである。
In this embodiment, βri is used as the material to be processed.
Although an example using a ch (α + β) type Ti-4.5-3-2-2 alloy is shown, the present invention is applied to most titanium alloys consisting of α phase and β phase. It is obvious that the same effect can be achieved.

【0015】[0015]

【効果】以上説明したごとく、本発明のチタン合金の加
工方法では、第1の塑性加工である冷間加工によって再
結晶の駆動力となる転位密度が増大するため、次に行う
第2の塑性加工中に、回復・再結晶が生じ、変形中の結
晶粒が微細化する。これによって、変形抵抗が低下し、
変形速度が増大する。この結果、塑性加工性が著しく向
上する。また、成形加工後の組織が非常に微細になるた
め、最終成形品の強度および延性がともに著しく向上す
る。
As described above, in the titanium alloy processing method of the present invention, the cold working, which is the first plastic working, increases the dislocation density, which is the driving force for recrystallization. Recovery and recrystallization occur during processing, and the crystal grains during deformation become finer. This reduces the deformation resistance,
The deformation speed increases. As a result, plastic workability is significantly improved. In addition, since the structure after molding is extremely fine, the strength and ductility of the final molded product are significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例における、引張試験温度
と全伸びとの関係を示す図である。
FIG. 1 is a diagram showing a relationship between a tensile test temperature and a total elongation in a first example of the present invention.

【図2】本発明の第1の実施例における、引張試験温度
と流動応力との関係を示す図である。
FIG. 2 is a diagram showing a relationship between a tensile test temperature and a flow stress in the first example of the present invention.

【図3】本発明の第2の実施例における、圧延温度と全
伸びとの関係を示す図である。
FIG. 3 is a diagram showing the relationship between rolling temperature and total elongation in the second example of the present invention.

【図4】本発明の第2の実施例における、圧延温度と流
動応力との関係を示す図である。
FIG. 4 is a diagram showing the relationship between rolling temperature and flow stress in the second example of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 大部分がα相とβ相とからなるチタン合
金の加工方法において、静的再結晶温度以下の温度で圧
下率20%乃至60%の第1の塑性加工を行う工程と、
β変態温度乃至β変態温度より250°C低い温度の温
度範囲で第2の塑性加工を行う工程とを備えていること
を特徴とするチタン合金の加工方法。
1. A method of processing a titanium alloy, which is mainly composed of an α phase and a β phase, in which a first plastic working with a reduction rate of 20% to 60% is performed at a temperature equal to or lower than a static recrystallization temperature.
and a step of performing a second plastic working in a temperature range of β transformation temperature to a temperature lower by 250 ° C. than the β transformation temperature.
JP4031793A 1993-03-01 1993-03-01 Method for working titanium alloy Pending JPH06256919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031793A JPH06256919A (en) 1993-03-01 1993-03-01 Method for working titanium alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4031793A JPH06256919A (en) 1993-03-01 1993-03-01 Method for working titanium alloy

Publications (1)

Publication Number Publication Date
JPH06256919A true JPH06256919A (en) 1994-09-13

Family

ID=12577240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031793A Pending JPH06256919A (en) 1993-03-01 1993-03-01 Method for working titanium alloy

Country Status (1)

Country Link
JP (1) JPH06256919A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002743A1 (en) * 1997-07-11 1999-01-21 Johnson Matthey Electronics, Inc. Metal article with fine uniform structures and textures and process of making same
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US6348139B1 (en) 1998-06-17 2002-02-19 Honeywell International Inc. Tantalum-comprising articles
US6723187B2 (en) 1999-12-16 2004-04-20 Honeywell International Inc. Methods of fabricating articles and sputtering targets
US7517417B2 (en) 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
JP2014231627A (en) * 2013-05-29 2014-12-11 財団法人日本産業科学研究所 Titanium alloy, method of producing high-strength titanium alloy and method of working titanium alloy

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999002743A1 (en) * 1997-07-11 1999-01-21 Johnson Matthey Electronics, Inc. Metal article with fine uniform structures and textures and process of making same
US6238494B1 (en) 1997-07-11 2001-05-29 Johnson Matthey Electronics Inc. Polycrystalline, metallic sputtering target
US6569270B2 (en) 1997-07-11 2003-05-27 Honeywell International Inc. Process for producing a metal article
US6348139B1 (en) 1998-06-17 2002-02-19 Honeywell International Inc. Tantalum-comprising articles
US6723187B2 (en) 1999-12-16 2004-04-20 Honeywell International Inc. Methods of fabricating articles and sputtering targets
US6878250B1 (en) 1999-12-16 2005-04-12 Honeywell International Inc. Sputtering targets formed from cast materials
US6331233B1 (en) 2000-02-02 2001-12-18 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US7101447B2 (en) 2000-02-02 2006-09-05 Honeywell International Inc. Tantalum sputtering target with fine grains and uniform texture and method of manufacture
US7517417B2 (en) 2000-02-02 2009-04-14 Honeywell International Inc. Tantalum PVD component producing methods
JP2014231627A (en) * 2013-05-29 2014-12-11 財団法人日本産業科学研究所 Titanium alloy, method of producing high-strength titanium alloy and method of working titanium alloy
US10006114B2 (en) 2013-05-29 2018-06-26 Honda Motor Co., Ltd. Titanium alloy, method of manufacturing high-strength titanium alloy, and method of processing titanium alloy

Similar Documents

Publication Publication Date Title
JP2983598B2 (en) Fine grain titanium forgings and method for producing the same
US6059904A (en) Isothermal and high retained strain forging of Ni-base superalloys
US5547523A (en) Retained strain forging of ni-base superalloys
CA1229004A (en) Forging process for superalloys
US3686041A (en) Method of producing titanium alloys having an ultrafine grain size and product produced thereby
WO2008060637A2 (en) Methods of beta processing titanium alloys
JPH09302450A (en) Control of grain size of nickel-base superalloy
KR20120064687A (en) Titanium alloy microstructural refinement method and high temperature-high strain superplastic forming of titanium alloys
JPH06256919A (en) Method for working titanium alloy
US5556484A (en) Method for reducing abnormal grain growth in Ni-base superalloys
US6565683B1 (en) Method for processing billets from multiphase alloys and the article
JPH0692630B2 (en) Method for producing seamless pipe made of pure titanium or titanium alloy
JP3362428B2 (en) Processing method of hot-formed product of β-type titanium alloy
JP3926877B2 (en) Heat treatment method for nickel-base superalloy
JPH06272004A (en) Method for working titanium alloy
JPH0364435A (en) Method for forging ni base superalloy
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JPH08193254A (en) Method for working titanium alloy
JPS63130755A (en) Working heat treatment of alpha+beta type titanium alloy
US5217548A (en) Process for working β type titanium alloy
JP2580682B2 (en) Method for producing α + β type Ti alloy member having high strength and high toughness
JPH1161298A (en) Titanium-aluminum intermetallic compound-base alloy and its production
JPH03240939A (en) Manufacture of high ductility and high toughness titanium alloy
JPH02274850A (en) Heat treatment of intermetallic compound ti-al-based alloy
JPS5825421A (en) Manufacture of titanium alloy rolling material having satisfactory texture