JPH06256543A - Biaxially oriented thermoplastic resin film - Google Patents

Biaxially oriented thermoplastic resin film

Info

Publication number
JPH06256543A
JPH06256543A JP6017498A JP1749894A JPH06256543A JP H06256543 A JPH06256543 A JP H06256543A JP 6017498 A JP6017498 A JP 6017498A JP 1749894 A JP1749894 A JP 1749894A JP H06256543 A JPH06256543 A JP H06256543A
Authority
JP
Japan
Prior art keywords
film
thermoplastic resin
particles
inert particles
biaxially oriented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6017498A
Other languages
Japanese (ja)
Other versions
JP2892273B2 (en
Inventor
Iwao Okazaki
巌 岡崎
Koichi Abe
晃一 阿部
Shoji Nakajima
彰二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP1749894A priority Critical patent/JP2892273B2/en
Publication of JPH06256543A publication Critical patent/JPH06256543A/en
Application granted granted Critical
Publication of JP2892273B2 publication Critical patent/JP2892273B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Laminated Bodies (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain the subject film useful for video tapes, etc., mainly comprising a thermoplastic resin and inert particles having a specified size and a specified content, and excellent in surface shaving resistance, dubbing resistance and quality stability. CONSTITUTION:This resin film mainly consists of a thermoplastic resin such as a crystalline polyester, etc., having <=20cm<-1> total reflection Raman crystallization index and inert particles such as an aluminosilicate, silica, a crosslinked PS, etc., contains 0.5-50wt.% inert particle and is 3-10mum thick. The average particle size of the inert particles in the film has 0.1-10 times the film thickness. Here, it is preferable to laminate the objective film on a film surface of the thermoplastic resin not containing inert particles to make a biaxially oriented thermoplastic resin film. Further, the inert particles in the objective film preferably have 0.007-2mum average size, 1.0-1.3 size ratio, <=0.6 particle size relative standard deviation, and 0.001-0.2wt.%, content.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二軸配向熱可塑性樹脂フ
ィルムに関するものである。
FIELD OF THE INVENTION The present invention relates to a biaxially oriented thermoplastic resin film.

【0002】[0002]

【従来の技術】二軸配向熱可塑性樹脂フィルムとして
は、熱可塑性樹脂であるポリエステルにコロイド状シリ
カに起因する実質的に球形のシリカ粒子を含有せしめた
フィルムが知られている(たとえば特開昭59−171
623号公報)。
2. Description of the Related Art As a biaxially oriented thermoplastic resin film, a film is known in which polyester, which is a thermoplastic resin, contains substantially spherical silica particles derived from colloidal silica (see, for example, Japanese Patent Laid-Open Publication No. Sho. 59-171
623).

【0003】[0003]

【発明が解決しようとする課題】しかし、上記従来の二
軸配向熱可塑性樹脂フィルムの主要な用途であるビデオ
テープは、最近、ソフト用(制作された映像作品をパッ
ケージ媒体に記録固定、複製・増製したもの)に用いら
れるケースが多く、この場合、上記従来のフィルムを用
いたビデオテープでは、「映像作品を録画する工程」で
マスターテープから高速でダビング(記録複写)する時
のS/N(シグナル/ノイズ比、画質のパラメータ)の
低下が大きく画質が悪くなるという問題点も出てきてい
る。
However, video tapes, which are the main applications of the above-mentioned conventional biaxially oriented thermoplastic resin films, have recently been used for software (recording, fixing, copying, and copying of produced video works on a package medium). It is often used for the additional tapes). In this case, in the case of the video tape using the above-mentioned conventional film, S / when performing the high-speed dubbing (recording copy) from the master tape in the "step of recording the video work" There is also a problem that N (signal / noise ratio, image quality parameter) is largely reduced and the image quality is deteriorated.

【0004】本発明はかかる問題点を改善し、ダビング
による画質(S/N)の低下が少ない(以下耐ダビング
性という)フィルムを提供することを課題とする。
An object of the present invention is to solve the above problems and to provide a film in which the deterioration of the image quality (S / N) due to dubbing is small (hereinafter referred to as dubbing resistance).

【0005】[0005]

【課題を解決するための手段】フィルム中に含有する不
活性粒子の平均粒径がフィルム厚さの0.1〜10倍で
あって、該粒子の含有量が0.5〜50重量%であるこ
とを特徴とする厚さ3μmを越え10μm以下の二軸配
向熱可塑性樹脂フィルムとしたものである。
Means for Solving the Problems The average particle size of the inert particles contained in the film is 0.1 to 10 times the film thickness, and the content of the particles is 0.5 to 50% by weight. A biaxially oriented thermoplastic resin film having a thickness of more than 3 μm and 10 μm or less.

【0006】本発明を構成する熱可塑性樹脂Aはポリエ
ステル、ポリオレフィン、ポリアミド、ポリフェニレン
スルフィドなど特に限定されることはないが、特に、ポ
リエステル、中でもエチレンテレフタレート、エチレン
α,β−ビス(2-クロルフェノキシ)エタン-4,4'-ジカ
ルボキシレート、エチレン2,6-ナフタレート単位から選
ばれた少なくとも一種の構造単位を主要構成成分とする
場合に、耐ダビング性がより一層良好となるので望まし
い。また、本発明を構成する熱可塑性樹脂は結晶性、あ
るいは溶融時光学異方性である場合に耐ダビング性がよ
り一層良好となるのできわめて望ましい。ここでいう結
晶性とはいわゆる非晶質ではないことを示すものであ
り、定量的には結晶化パラメータにおける冷結晶化温度
Tccが検出され、かつ結晶化パラメータΔTcgが1
50℃以下のものである。さらに、示差走査熱量計で測
定された融解熱(融解エンタルピー変化)が7.5ca
l/g以上の結晶性を示す場合に耐ダビング性がより一
層良好となるのできわめて望ましい。また、エチレンテ
レフタレートを主要構成成分とするポリエステルの場合
に耐ダビング性がより一層良好となるので特に望まし
い。なお、本発明を阻害しない範囲内で、2種以上の熱
可塑性樹脂を混合しても良いし、共重合ポリマを用いて
も良い。
The thermoplastic resin A constituting the present invention is not particularly limited to polyesters, polyolefins, polyamides, polyphenylene sulfides, etc., but especially polyesters, especially ethylene terephthalate, ethylene α, β-bis (2-chlorophenoxy). ) When at least one structural unit selected from ethane-4,4'-dicarboxylate and ethylene 2,6-naphthalate units is a main constituent, it is preferable because the dubbing resistance is further improved. Further, the thermoplastic resin constituting the present invention is extremely desirable because it has further improved dubbing resistance when it has crystallinity or optical anisotropy when melted. The term "crystallinity" as used herein means that it is not so-called amorphous. Quantitatively, the cold crystallization temperature Tcc in the crystallization parameter is detected, and the crystallization parameter ΔTcg is 1.
It is not more than 50 ° C. Furthermore, the heat of fusion (change in enthalpy of fusion) measured by a differential scanning calorimeter is 7.5 ca.
When the crystallinity is 1 / g or more, the dubbing resistance is further improved, which is extremely desirable. Further, in the case of a polyester containing ethylene terephthalate as a main constituent, the dubbing resistance is further improved, which is particularly desirable. Two or more kinds of thermoplastic resins may be mixed, or a copolymerized polymer may be used, as long as the present invention is not impaired.

【0007】本発明の熱可塑性樹脂A中の不活性粒子
は、フィルム中での粒径比(粒子の長径/短径)が1.
0〜1.3の粒子、特に、球形状の粒子の場合に耐ダビ
ング性がより一層良好となるので望ましい。
The inert particles in the thermoplastic resin A of the present invention have a particle size ratio (major axis / minor axis of particles) of 1.
Particles of 0 to 1.3, particularly spherical particles, are preferable because the dubbing resistance is further improved.

【0008】また、本発明の熱可塑性樹脂A中の不活性
粒子はフィルム中での単一粒子指数が0.7以上、好ま
しくは0.9以上である場合に耐ダビング性がより一層
良好となるので特に望ましい。
Further, the inactive particles in the thermoplastic resin A of the present invention are more excellent in dubbing resistance when the single particle index in the film is 0.7 or more, preferably 0.9 or more. Therefore, it is particularly desirable.

【0009】また、本発明の熱可塑性樹脂A中の不活性
粒子は、フィルム中での相対標準偏差が0.6以下、好
ましくは0.5以下の場合に耐ダビング性がより一層良
好となるので望ましい。
Further, the inert particles in the thermoplastic resin A of the present invention have a better dubbing resistance when the relative standard deviation in the film is 0.6 or less, preferably 0.5 or less. So desirable.

【0010】本発明の熱可塑性樹脂A中の不活性粒子の
種類は特に限定されないが、上記の好ましい粒子特性を
満足するにはアルミナ珪酸塩、1次粒子が凝集した状態
のシリカ、内部折出粒子などは好ましくなく、コロイダ
ルシリカに起因する実質的に球形のシリカ粒子、架橋高
分子による粒子(たとえば架橋ポリスチレン)などがあ
るが、特に10重量%減量時温度(窒素中で熱重量分析
装置島津TG−30Mを用いて測定。昇温速度20℃/
分)が380℃以上になるまで架橋度を高くした架橋高
分子粒子の場合に耐ダビング性がより一層良好となるの
で特に望ましい。なお、コロイダルシリカに起因する球
形シリカの場合にはアルコキシド法で製造された、ナト
リウム含有量が少ない、実質的に球形のシリカの場合に
耐ダビング性がより一層良好となるので特に望ましい。
しかしながら、その他の粒子、例えば炭酸カルシウム、
二酸化チタン、アルミナ等の粒子でもフィルム厚さと平
均粒径の適切なコントロールにより十分使いこなせるも
のである。
The type of the inert particles in the thermoplastic resin A of the present invention is not particularly limited, but in order to satisfy the above preferable particle characteristics, an alumina silicate, silica in the state where primary particles are agglomerated, and internal protrusions are used. Particles and the like are not preferable, and there are substantially spherical silica particles derived from colloidal silica, particles of a crosslinked polymer (for example, crosslinked polystyrene), and the like, but particularly 10% by weight reduction temperature (thermogravimetric analyzer in nitrogen, Shimadzu Shimadzu). Measured using TG-30M, heating rate 20 ° C /
It is particularly desirable in the case of crosslinked polymer particles having a high degree of crosslinking up to 380 ° C. or higher because the dubbing resistance is further improved. In the case of spherical silica derived from colloidal silica, dubbing resistance is further improved in the case of substantially spherical silica produced by the alkoxide method and having a low sodium content, which is particularly desirable.
However, other particles such as calcium carbonate,
Even particles of titanium dioxide, alumina, etc. can be sufficiently used by appropriately controlling the film thickness and average particle diameter.

【0011】本発明の熱可塑性樹脂A中の不活性粒子の
結晶化促進係数は特に限定されないが、−15〜15
℃、好ましくは−5℃〜10℃の場合に、耐ダビング性
がより一層良好となるので特に望ましい。
The crystallization promoting coefficient of the inert particles in the thermoplastic resin A of the present invention is not particularly limited, but it is -15 to 15
C., preferably -5.degree. C. to 10.degree. C., the dubbing resistance is further improved, which is particularly desirable.

【0012】不活性粒子の大きさは、フィルム中での平
均粒径がフィルム厚さの0.1〜10倍、好ましくは
0.5〜5倍、さらに好ましくは1.1〜3倍の範囲で
あることが必要である。平均粒径/フィルム厚さ比が上
記の範囲より小さくても、大きくても耐ダビング性が不
良となるので好ましくない。
The size of the inert particles is such that the average particle size in the film is 0.1 to 10 times, preferably 0.5 to 5 times, and more preferably 1.1 to 3 times the film thickness. It is necessary to be. If the average particle size / film thickness ratio is smaller or larger than the above range, the dubbing resistance becomes poor, which is not preferable.

【0013】また熱可塑性樹脂A中の不活性粒子のフィ
ルム中での平均粒径(直径)が0.007〜0.5μ
m、好ましくは0.02〜0.45μmの範囲である場
合に、耐ダビング性がより一層良好となるので望まし
い。
The average particle size (diameter) of the inert particles in the thermoplastic resin A in the film is 0.007 to 0.5 μm.
m, preferably 0.02 to 0.45 μm is desirable because the dubbing resistance is further improved.

【0014】本発明の熱可塑性樹脂A中の不活性粒子の
含有量は0.5〜50重量%、好ましくは1〜30重量
%さらに好ましくは2〜15重量%であることが必要で
ある。不活性粒子の含有量が上記の範囲より少なくて
も、逆に大きくても耐ダビング性が不良となるので好ま
しくない。
It is necessary that the content of the inert particles in the thermoplastic resin A of the present invention is 0.5 to 50% by weight, preferably 1 to 30% by weight, more preferably 2 to 15% by weight. If the content of the inert particles is less than the above range, or on the contrary, it is not preferable because the dubbing resistance becomes poor.

【0015】本発明フィルムは上記熱可塑性樹脂Aと不
活性粒子からなる組成物を主要成分とするが、本発明の
目的を阻害しない範囲内で、他種ポリマをブレンドして
もよいし、また酸化防止剤、熱安定剤、滑剤、紫外線吸
収剤などの有機添加剤が通常添加される程度添加されて
いてもよい。
The film of the present invention contains a composition comprising the above-mentioned thermoplastic resin A and inert particles as a main component, but other types of polymers may be blended within a range not impairing the purpose of the present invention. Organic additives such as antioxidants, heat stabilizers, lubricants, and ultraviolet absorbers may be added to the extent that they are usually added.

【0016】本発明フィルムは上記組成物を二軸配向せ
しめたフィルムである。一軸あるいは無配向フィルムで
は耐ダビング性が不良となるので好ましくない。この配
向の程度は特に限定されないが、高分子の分子配向の程
度の目安であるヤング率が長手方向、幅方向ともに35
0kg/mm2 以上である場合に、耐ダビング性がより
一層良好となるのできわめて望ましい。分子配向の程度
の目安であるヤング率の上限は特に限定されないが、通
常、5000kg/mm2 程度が製造上の限界である。
The film of the present invention is a film obtained by biaxially orienting the above composition. A uniaxial or non-oriented film is not preferable because the dubbing resistance becomes poor. The degree of this orientation is not particularly limited, but the Young's modulus, which is a measure of the degree of molecular orientation of the polymer, is 35 in both the longitudinal direction and the width direction.
When it is 0 kg / mm 2 or more, the dubbing resistance is further improved, which is extremely desirable. The upper limit of the Young's modulus, which is a measure of the degree of molecular orientation, is not particularly limited, but usually about 5000 kg / mm 2 is a manufacturing limit.

【0017】また、本発明フィルムは、ヤング率が上記
範囲内であっても、フィルムの厚さ方向の一部分、例え
ば、表層付近のポリマ分子の配向が無配向、あるいは、
一軸配向になっていない。すなわち、厚さ方向の全部分
の分子配向が二軸配向である場合に、耐ダビング性がよ
り一層良好となるので望ましい。
Further, in the film of the present invention, even if the Young's modulus is within the above range, the orientation of polymer molecules in a part in the thickness direction of the film, for example, near the surface layer is non-orientation, or
Not uniaxially oriented. That is, when the molecular orientation of the entire portion in the thickness direction is biaxial orientation, the dubbing resistance is further improved, which is desirable.

【0018】特にアッベ屈折率計、レーザーを用いた屈
折率計、全反射レーザーラマン法などによって測定され
る分子配向が、表面、裏面ともに二軸配向である場合
に、耐ダビング性がより一層良好となるので特に望まし
い。
In particular, when the molecular orientation measured by an Abbe refractometer, a refractometer using a laser, a total reflection laser Raman method or the like is biaxially oriented on both the front surface and the back surface, the dubbing resistance is further improved. Therefore, it is particularly desirable.

【0019】さらに熱可塑性樹脂Aが結晶性ポリエステ
ルであり、これを主成分とする本発明フィルムの表面の
全反射ラマン結晶化指数が20cm-1以下、好ましくは
18cm-1以下、さらに17cm-1以下の場合に耐ダビ
ング性がより一層良好となるのできわめて望ましい。
Further, the thermoplastic resin A is a crystalline polyester, and the total reflection Raman crystallization index of the surface of the film of the present invention containing this as a main component is 20 cm -1 or less, preferably 18 cm -1 or less, and further 17 cm -1. In the following cases, the dubbing resistance is further improved, which is extremely desirable.

【0020】本発明の熱可塑性樹脂Aを主成分とするフ
ィルムの2次イオンマススペクトルによって測定される
表層粒子濃度比は特に限定されないが、1/10以下、
特に1/50以下である場合に耐ダビング性がより一層
良好となるので特に望ましい。
The surface layer particle concentration ratio measured by the secondary ion mass spectrum of the film containing the thermoplastic resin A as a main component of the present invention is not particularly limited, but is 1/10 or less,
Particularly, when it is 1/50 or less, the dubbing resistance is further improved, which is particularly desirable.

【0021】本発明の熱可塑性樹脂Aを主成分とするフ
ィルムの厚さは3μmを越え10μm以下、好ましくは
3μmを越え8μm以下、さらに好ましくは3μmを越
え6μm以下であることが必要である。フィルム厚さが
上記の範囲より小さくても大きくても耐ダビング性が不
良となるので好ましくない。
The thickness of the film containing the thermoplastic resin A as a main component of the present invention must be more than 3 μm and less than 10 μm, preferably more than 3 μm and less than 8 μm, and more preferably more than 3 μm and less than 6 μm. If the film thickness is smaller or larger than the above range, the dubbing resistance becomes poor, which is not preferable.

【0022】本発明の熱可塑性樹脂Aを主成分とするフ
ィルムの表面の平均突起高さは5〜500nm、好まし
くは10〜300nm、さらに好ましくは15〜200
nmの範囲である場合に耐ダビング性がより一層良好と
なるので特に望ましい。
The average protrusion height on the surface of the film containing the thermoplastic resin A as a main component of the present invention is 5 to 500 nm, preferably 10 to 300 nm, and more preferably 15 to 200.
When it is in the range of nm, the dubbing resistance is further improved, which is particularly desirable.

【0023】本発明の熱可塑性樹脂Aを主成分とするフ
ィルムの平均突起間隔は6μm以下、好ましくは4μm
以下である場合に耐ダビング性がより一層良好となるの
で特に望ましい。
The average protrusion interval of the film containing the thermoplastic resin A as a main component of the present invention is 6 μm or less, preferably 4 μm.
When it is below, the dubbing resistance is further improved, which is particularly desirable.

【0024】本発明の熱可塑性樹脂Aを主成分とするフ
ィルムの表面の中心線深さRpは特に限定されないが、
Rpが180nm以下、特に160nm以下の場合に耐
ダビング性がより一層良好となるので特に望ましい。ま
た、上記Rpと最大高さRtの比、Rt/Rpが1.5
〜2.5、特に1.7〜2.3の場合に耐ダビング性が
より一層良好となるので特に望ましい。
The center line depth Rp of the surface of the film containing the thermoplastic resin A as a main component of the present invention is not particularly limited,
When Rp is 180 nm or less, particularly 160 nm or less, the dubbing resistance is further improved, which is particularly desirable. Further, the ratio of Rp and the maximum height Rt, Rt / Rp is 1.5.
It is particularly preferable that the value is 2.5 to 2.5, particularly 1.7 to 2.3, because the dubbing resistance is further improved.

【0025】本発明の熱可塑性樹脂Aを主成分とするフ
ィルムの表面の中心線平均粗さRaと最大高さRtの
比、Rt/Raが9.0以下、とくに8.5以下の場合
に耐ダビング性がより一層良好となるので特に望まし
い。
When the ratio of the center line average roughness Ra to the maximum height Rt of the surface of the film containing the thermoplastic resin A of the present invention as the main component, Rt / Ra, is 9.0 or less, particularly 8.5 or less. It is particularly desirable because the dubbing resistance is further improved.

【0026】本発明フィルムは上述したように、構成す
る熱可塑性樹脂が結晶性あるいは溶融光学異方性である
ことがきわめて望ましいが、溶融等方性フィルムの場
合、結晶性パラメータΔTcgが25〜65℃である場
合に耐ダビング性がより一層良好となるので特に望まし
い。
As described above, it is highly desirable that the thermoplastic resin constituting the film of the present invention has crystallinity or melt optical anisotropy, but in the case of a melt isotropic film, the crystallinity parameter ΔTcg is 25 to 65. When the temperature is ° C, the dubbing resistance is further improved, which is particularly desirable.

【0027】なお熱可塑性樹脂Aがポリエステルの場合
には熱可塑性樹脂A面の厚さ方向屈折率が1.5以下の
場合に耐ダビング性がより一層良好となるので特に望ま
しい。
When the thermoplastic resin A is polyester, dubbing resistance is further improved when the thermoplastic resin A surface has a refractive index in the thickness direction of 1.5 or less, which is particularly desirable.

【0028】本発明フィルムを構成する熱可塑性樹脂A
がポリエステルの場合はフィルムの固有粘度が0.60
以上、特に0.70以上の場合に耐ダビング性がより一
層良好となるので特に望ましい。
Thermoplastic resin A constituting the film of the present invention
When polyester is polyester, the intrinsic viscosity of the film is 0.60
As described above, particularly when it is 0.70 or more, the dubbing resistance is further improved, which is particularly desirable.

【0029】本発明フィルムを構成する熱可塑性樹脂A
がポリエステルの場合はフィルム中の低分子成分含有量
が0.8重量%以下、特に0.5重量%以下の場合に耐
ダビング性がより一層良好となるので特に望ましい。
Thermoplastic resin A constituting the film of the present invention
Is a polyester, the dubbing resistance is further improved when the content of the low-molecular component in the film is 0.8% by weight or less, particularly 0.5% by weight or less, which is particularly desirable.

【0030】本発明フィルムは、もちろん単体(単層フ
ィルム)でも用いられるが、熱可塑性樹脂Bのフィルム
の少なくとも片面に上記熱可塑性樹脂Aのフィルムを積
層した後二軸配向したフィルムの形で用いると、機械的
特性が良好となるのみならず、耐ダビング性もより一層
良好となるのできわめて望ましい。ここで熱可塑性樹脂
AとBは同じ種類でも、異なるものでも良い。
The film of the present invention can be used alone (single layer film), but is used in the form of a biaxially oriented film after the film of the thermoplastic resin A is laminated on at least one surface of the film of the thermoplastic resin B. In that case, not only the mechanical properties are improved, but also the dubbing resistance is further improved, which is extremely desirable. Here, the thermoplastic resins A and B may be the same type or different types.

【0031】上記は積層構成がA/B/A、A/Bの場
合であるが、もちろん、Aと異なる表面状態を有するC
層をAと反対面に設けたA/B/Cでも、あるいはそれ
以上の多層構造でもよい。(ここでA、B、Cそれぞれ
の熱可塑性樹脂の種類は同種でも、異種でもよい。ま
た、少なくとも片方の表面はA層であることが必要であ
る。)熱可塑性樹脂Bとしては結晶性ポリマが望まし
く、特に、結晶性パラメータΔTcgが20〜100℃
の範囲の場合に、耐ダビング性がより一層良好となるの
で望ましい。具体例として、ポリエステル、ポリアミ
ド、ポリフェニレンスルフィド、ポリオレフィンが挙げ
られるが、ポリエステルの場合に耐ダビング性がより一
層良好となるので特に望ましい。また、ポリエステルと
しては、エチレンテレフタレート、エチレンα,β−ビ
ス(2-クロルフェノキシ)エタン-4,4'-ジカルボキシレ
ート、エチレン2,6-ナフタレート単位から選ばれた少な
くとも一種の構造単位を主要構成成分とする場合に耐ダ
ビング性が特に良好となるので望ましい。ただし、本発
明を阻害しない範囲内、望ましい結晶性を損なわない範
囲内で、好ましくは5モル%以内であれば他成分が共重
合されていてもよい。
The above is the case where the laminated structure is A / B / A or A / B. Of course, C having a surface state different from that of A is used.
It may be A / B / C in which a layer is provided on the side opposite to A, or a multilayer structure having more layers. (Here, the types of the thermoplastic resins of A, B, and C may be the same or different, and at least one surface must be the A layer.) The thermoplastic resin B is a crystalline polymer. Is desirable, in particular, the crystallinity parameter ΔTcg is 20 to 100 ° C.
In the case of the range of 1, the dubbing resistance is further improved, which is desirable. Specific examples thereof include polyester, polyamide, polyphenylene sulfide, and polyolefin. In the case of polyester, dubbing resistance is further improved, which is particularly desirable. In addition, as the polyester, at least one structural unit selected from ethylene terephthalate, ethylene α, β-bis (2-chlorophenoxy) ethane-4,4′-dicarboxylate, and ethylene 2,6-naphthalate units is the main component. When it is used as a constituent component, dubbing resistance becomes particularly good, which is desirable. However, other components may be copolymerized within a range that does not impair the present invention and a range that does not impair the desired crystallinity, and preferably within 5 mol%.

【0032】本発明の熱可塑性樹脂Bにも、本発明の目
的を阻害しない範囲内で、他種ポリマをブレンドしても
よいし、また酸化防止剤、熱安定剤、滑剤、紫外線吸収
剤などの有機添加剤が通常添加される程度添加されてい
てもよい。
The thermoplastic resin B of the present invention may also be blended with another type of polymer within a range that does not impair the object of the present invention, and an antioxidant, a heat stabilizer, a lubricant, an ultraviolet absorber, etc. The organic additive may be added to the extent that it is usually added.

【0033】熱可塑性樹脂Bを主成分とするフィルム中
には不活性粒子を含有している必要は特にないが、平均
粒径が0.007〜2μm、特に0.02〜0.45μ
mの不活性粒子が0.001〜0.2重量%、特に0.
005〜0.15重量%、さらには0.005〜0.1
2重量%含有されていると、耐ダビング性がより一層良
好となるのみならず、フィルムの巻姿が良好となるので
きわめて望ましい。含有する不活性粒子の種類は熱可塑
性樹脂Aに望ましく用いられるものを使用することが望
ましい。熱可塑性樹脂AとBに含有する粒子の種類、大
きさは同じでも異なっていても良い。
It is not necessary for the film containing the thermoplastic resin B as a main component to contain inert particles, but the average particle size is 0.007 to 2 μm, particularly 0.02 to 0.45 μm.
Inactive particles of 0.001 to 0.2% by weight, in particular 0.
005 to 0.15% by weight, and further 0.005 to 0.1
When the content is 2% by weight, not only the dubbing resistance is further improved, but also the winding shape of the film is improved, which is extremely desirable. As for the type of inert particles to be contained, it is desirable to use those which are preferably used for the thermoplastic resin A. The types and sizes of particles contained in the thermoplastic resins A and B may be the same or different.

【0034】上記熱可塑性樹脂Aと熱可塑性樹脂Bの結
晶化パラメータΔTcgの差(A−B)は特に限定され
ないが、−30〜+20℃の場合に、耐ダビング性がよ
り一層良好となるので特に望ましい。
The difference (A-B) in the crystallization parameter ΔTcg between the thermoplastic resin A and the thermoplastic resin B is not particularly limited, but the dubbing resistance is further improved in the case of -30 to + 20 ° C. Especially desirable.

【0035】次に本発明フィルムの製造方法について説
明する。
Next, a method for producing the film of the present invention will be described.

【0036】まず、熱可塑性樹脂Aに不活性粒子を含有
せしめる方法としては、熱可塑性樹脂がポリエステルの
場合には、ジオール成分であるエチレングリコールのス
ラリーの形で分散せしめ、このエチレングリコールを所
定のジカルボン酸成分と重合せしめるのが延伸破れな
く、本発明範囲の厚さと平均粒径の関係、含有量、望ま
しい範囲の配向状態のフィルムを得るのに有効である。
また、不活性粒子を含有するポリエステルの溶融粘度、
共重合成分などを調節して、その結晶化パラメータΔT
cgを40〜65℃の範囲にしておく方法は延伸破れな
く、本発明範囲の厚さと平均粒径の関係、含有量、望ま
しい範囲の配向状態、表層粒子濃度比、平均突起高さ、
Rt/Rp比、Rt/Ra比のフィルムを得るのに有効
である。
First, as a method of incorporating inert particles into the thermoplastic resin A, when the thermoplastic resin is polyester, it is dispersed in the form of a slurry of ethylene glycol which is a diol component, and this ethylene glycol is mixed in a predetermined amount. Polymerization with the dicarboxylic acid component is effective for obtaining a film in which the orientation is not broken and the relationship between the thickness and the average particle diameter in the range of the present invention, the content, and the oriented state of the desired range.
Also, the melt viscosity of the polyester containing inert particles,
The crystallization parameter ΔT can be adjusted by adjusting the copolymerization components.
The method of keeping cg in the range of 40 to 65 ° C. does not cause stretching breakage, and the relationship between the thickness and the average particle diameter in the range of the present invention, the content, the orientation state in a desirable range, the surface layer particle concentration ratio, the average protrusion height,
It is effective for obtaining a film having an Rt / Rp ratio and an Rt / Ra ratio.

【0037】また、不活性粒子のエチレングリコールの
スラリーを140〜200℃、特に180〜200℃の
温度で30分〜5時間、特に1〜3時間熱処理する方法
は延伸破れなく、本発明範囲の厚さと平均粒径の関係、
含有量、望ましい範囲の配向状態、表層粒子濃度比のフ
ィルムを得るのに有効である。
The method of heat-treating a slurry of inert particles of ethylene glycol at a temperature of 140 to 200 ° C., particularly 180 to 200 ° C. for 30 minutes to 5 hours, particularly 1 to 3 hours does not cause stretching breakage and falls within the scope of the present invention. Relationship between thickness and average particle size,
It is effective for obtaining a film having a content, an oriented state within a desired range, and a surface layer particle concentration ratio.

【0038】また熱可塑性樹脂(ポリエステルも含め
て)に不活性粒子を含有せしめる方法として、粒子をエ
チレングリコール中で140〜200℃、特に180〜
200℃の温度で30分〜5時間、特に1〜3時間熱処
理した後、溶媒を水に置換したスラリーの形で熱可塑性
樹脂と混合し、ベント方式の2軸押出機を用いて混練し
て熱可塑性樹脂に練り込む方法も本発明範囲の厚さと平
均粒径の関係、含有量、望ましい範囲の配向状態、表層
粒子濃度比、平均突起高さ、Rt/Rp比、Rt/Ra
比のフィルムを得るのにきわめて有効である。
As a method of incorporating inert particles into a thermoplastic resin (including polyester), the particles are placed in ethylene glycol at 140 to 200 ° C., particularly 180 to 200 ° C.
After heat treatment at a temperature of 200 ° C. for 30 minutes to 5 hours, especially 1 to 3 hours, the solvent is replaced with water to mix with the thermoplastic resin, and the mixture is kneaded using a vent type twin-screw extruder. The method of kneading into the thermoplastic resin is also the relationship between the thickness and the average particle diameter in the range of the present invention, the content, the orientation state in the desired range, the surface layer particle concentration ratio, the average protrusion height, the Rt / Rp ratio, the Rt / Ra.
It is extremely effective in obtaining a ratio film.

【0039】粒子の含有量を調節する方法としては、上
記方法で高濃度マスターを作っておき、それを製膜時に
不活性粒子を実質的に含有しない熱可塑性樹脂で希釈し
て粒子の含有量を調節する方法が有効である。
As a method for controlling the content of particles, a high-concentration master is prepared by the above-mentioned method, and it is diluted with a thermoplastic resin which does not substantially contain inactive particles at the time of film formation, so that the content of particles is reduced. The method of adjusting is effective.

【0040】かくして、不活性粒子を所定量含有するペ
レットを必要に応じて乾燥したのち、公知の溶融押出機
に供給し、熱可塑性樹脂の融点以上、分解点以下でスリ
ット状のダイからシート状に押出し、キャスティングロ
ール上で冷却固化せしめて未延伸フィルムを作る。この
場合、未延伸フィルムに押出し成形する時の、口金スリ
ット間隙/未延伸フィルム厚さの比を5〜30、好まし
くは8〜20の範囲にすることが、延伸破れなく本発明
範囲の厚さと平均粒径の関係、含有量の範囲、望ましい
範囲の配向状態、表層粒子濃度比、全反射ラマン結晶化
指数のフィルムを得るのに有効である。
Thus, the pellets containing a predetermined amount of the inert particles are dried, if necessary, and then fed to a known melt extruder to obtain a sheet form from a slit die at a temperature above the melting point of the thermoplastic resin and below the decomposition point. Then, it is extruded and cooled and solidified on a casting roll to prepare an unstretched film. In this case, the ratio of the die slit gap / the thickness of the unstretched film at the time of extrusion molding into the unstretched film is set to a range of 5 to 30, preferably 8 to 20 in order to obtain a thickness within the range of the present invention without stretching breakage. It is effective for obtaining a film having a relation of average particle diameter, a content range, an orientation state in a desirable range, a surface layer particle concentration ratio, and a total reflection Raman crystallization index.

【0041】次にこの未延伸フィルムを二軸延伸し、二
軸配向せしめる。延伸方法としては、逐次二軸延伸法ま
たは同時二軸延伸法を用いることができる。ただし、最
初に長手方向、次に幅方向の延伸を行なう逐次二軸延伸
法を用い、長手方向の延伸を3段階以上に分けて、総縦
延伸倍率を3.5〜6.5倍で行なう方法は延伸破れな
く、本発明範囲の厚さと平均粒径の関係、含有量、望ま
しい範囲の配向状態、表層粒子濃度比のフィルムを得る
のに有効である。ただし、熱可塑性樹脂が溶融光学異方
性樹脂である場合は長手方向延伸倍率は1〜1.1倍が
適切である。長手方向延伸温度は熱可塑性樹脂の種類に
よって異なり一概には言えないが、通常、その1段目を
50〜130℃とし、2段目以降はそれより高くするこ
とが本発明範囲の厚さと平均粒径の関係、含有量、望ま
しい範囲の配向状態、平均突起高さ、表層粒子濃度比の
フィルムを得るのに有効である。長手方向延伸速度は5
000〜50000%/分の範囲が好適である。幅方向
の延伸方法としてはステンタを用いる方法が一般的であ
る。延伸倍率は、3.0〜5.0倍の範囲が適当であ
る。幅方向の延伸速度は、1000〜20000%/
分、温度は80〜160℃の範囲が好適である。次にこ
の延伸フィルムを熱処理する。この場合の熱処理温度は
170〜200℃、特に170〜190℃、時間は0.
5〜60秒の範囲が好適である。
Next, this unstretched film is biaxially stretched to be biaxially oriented. As a stretching method, a sequential biaxial stretching method or a simultaneous biaxial stretching method can be used. However, a sequential biaxial stretching method of first stretching in the longitudinal direction and then in the width direction is used, and stretching in the longitudinal direction is performed in three or more stages, and the total longitudinal stretching ratio is 3.5 to 6.5 times. The method is effective for obtaining a film having a relationship between the thickness and the average particle size within the range of the present invention, the content, the orientation state within the desired range, and the surface layer particle concentration ratio without stretching breakage. However, when the thermoplastic resin is a molten optically anisotropic resin, the longitudinal stretching ratio is appropriately 1 to 1.1 times. The stretching temperature in the longitudinal direction varies depending on the type of thermoplastic resin and cannot be generally stated, but usually, the first step should be 50 to 130 ° C., and the second step and thereafter should be higher than that. It is effective for obtaining a film having a relationship of particle size, content, orientation in a desired range, average protrusion height, and surface particle concentration ratio. Longitudinal stretching speed is 5
The range of 000 to 50,000% / min is preferable. As a stretching method in the width direction, a method using a stenter is generally used. The stretching ratio is appropriately in the range of 3.0 to 5.0 times. The stretching speed in the width direction is 1000 to 20000% /
The minutes and temperatures are preferably in the range of 80 to 160 ° C. Next, this stretched film is heat-treated. In this case, the heat treatment temperature is 170 to 200 ° C., particularly 170 to 190 ° C., and the time is 0.
A range of 5-60 seconds is preferred.

【0042】次に、熱可塑性樹脂Bを主成分とするフィ
ルムの少なくとも片面に熱可塑性樹脂Aを主成分とする
フィルムを積層する方法としては、次の方法が有効であ
る。
Next, as a method of laminating the film containing the thermoplastic resin A as the main component on at least one surface of the film containing the thermoplastic resin B as the main component, the following method is effective.

【0043】所定の熱可塑性樹脂A組成物と熱可塑性樹
脂B(A、Bは同種、異種どちらでもよい)を公知の溶
融積層用押出機に供給し、スリット状のダイからシート
状に押出し、キャスティングロール上で冷却固化せしめ
て未延伸フィルムを作る。すなわち、2または3台の押
出機、2または3層のマニホールドまたは合流ブロック
を用いて、熱可塑性樹脂A、Bを積層し、口金から2ま
たは3層のシートを押出し、キャスティングロールで冷
却して未延伸フィルムを作る。この場合、熱可塑性樹脂
Aのポリマ流路に、スタティックミキサー、ギヤポンプ
を設置する方法は延伸破れなく、本発明範囲の厚さと平
均粒径の関係、含有量、望ましい範囲の配向状態、平均
突起高さ、Rt/Rp比、Rt/Ra比、表層粒子濃度
比のフィルムを得るのに有効である。また、熱可塑性樹
脂A側の押出機の溶融温度を、熱可塑性樹脂B側より、
10〜40℃高くすることが、延伸破れなく、本発明範
囲の厚さと平均粒径の関係、含有量、望ましい範囲の配
向状態、平均突起高さ、Rt/Rp比、Rt/Ra比、
表層粒子濃度比、全反射ラマン結晶化指数のフィルムを
得るのに有効である。
A predetermined thermoplastic resin A composition and a thermoplastic resin B (A and B may be the same or different) may be supplied to a known melt laminating extruder and extruded into a sheet form from a slit die. An unstretched film is prepared by cooling and solidifying on a casting roll. That is, using two or three extruders, a two- or three-layer manifold or a merging block, thermoplastic resins A and B are laminated, two or three-layer sheets are extruded from a die, and cooled by a casting roll. Make an unstretched film. In this case, the method of installing a static mixer and a gear pump in the polymer flow path of the thermoplastic resin A does not cause stretching breakage, and the relationship between the thickness and the average particle diameter within the range of the present invention, the content, the orientation state within the desirable range, and the average protrusion height. It is effective for obtaining a film having an Rt / Rp ratio, an Rt / Ra ratio, and a surface layer particle concentration ratio. In addition, the melting temperature of the extruder on the side of the thermoplastic resin is
It is possible to increase the temperature by 10 to 40 ° C. without stretching breakage, the relationship between the thickness and the average particle diameter in the range of the present invention, the content, the orientation state in the desired range, the average protrusion height, the Rt / Rp ratio, the Rt / Ra ratio,
It is effective for obtaining a film having a surface layer particle concentration ratio and a total reflection Raman crystallization index.

【0044】次にこの未延伸フィルムを二軸延伸し、二
軸配向せしめる方法のポイントは、基本的に上述した単
層フィルムと同様である。ただし、積層フィルムの場合
の延伸温度の設定は熱可塑性樹脂Bを基準として設定す
る必要がある。さらに2層積層フィルムの熱処理工程
は、熱可塑性樹脂A層に吹き付ける熱風温度を熱可塑性
樹脂B層よりも3〜20℃低くすることが、本発明範囲
の厚さと平均粒径の関係、含有量、望ましい範囲の配向
状態、平均突起高さ、Rt/Rp比、Rt/Ra比、表
層粒子濃度比、全反射ラマン結晶化指数のフィルムを得
るのに有効である。
Next, the point of the method of biaxially stretching this unstretched film and making it biaxially oriented is basically the same as that of the above-mentioned single layer film. However, in the case of a laminated film, it is necessary to set the stretching temperature based on the thermoplastic resin B. Further, in the heat treatment step of the two-layer laminated film, the temperature of the hot air blown to the thermoplastic resin A layer is set to be 3 to 20 ° C. lower than that of the thermoplastic resin B layer. It is effective for obtaining a film having an alignment state in a desired range, an average protrusion height, an Rt / Rp ratio, an Rt / Ra ratio, a surface layer particle concentration ratio, and a total reflection Raman crystallization index.

【0045】[0045]

【作用】本発明は含有する粒子の大きさとフィルム厚さ
の関係、含有量、フィルム厚さを特定範囲とした熱可塑
性樹脂フィルムあるいはその積層フィルムとしたので、
従来の溶融製膜/二軸延伸プロセスでは得られない表面
形態とすることができたため、本発明の効果が得られた
ものと推定される。
The present invention provides a thermoplastic resin film or a laminated film thereof in which the relationship between the size of the particles contained and the film thickness, the content, and the film thickness are within the specified ranges.
Since the surface morphology could not be obtained by the conventional melt film formation / biaxial stretching process, it is presumed that the effect of the present invention was obtained.

【0046】[物性の測定方法ならびに効果の評価方
法]本発明の特性値の測定方法並びに効果の評価方法は
次の通りである。
[Physical property measuring method and effect evaluating method] The characteristic value measuring method and effect evaluating method of the present invention are as follows.

【0047】(1)粒子の平均粒径 フィルムからポリエステルをプラズマ低温灰化処理法
(たとえばヤマト科学製PR−503型)で除去し粒子
を露出させる。処理条件はポリエステルは灰化されるが
粒子はダメージを受けない条件を選択する。これをSE
M(走査型電子顕微鏡)で観察し、粒子の画像(粒子に
よってできる光の濃淡)をイメージアナライザー(たと
えばケンブリッジインストルメント製QTM900)に
結び付け、観察箇所を変えて粒子数5000個以上で次
の数値処理を行ない、それによって求めた数平均径Dを
平均粒径とする。
(1) Average Particle Size of Particles Polyester is removed from the film by a plasma low temperature ashing method (for example, PR-503 type manufactured by Yamato Scientific Co., Ltd.) to expose the particles. The processing conditions are selected such that polyester is incinerated but particles are not damaged. This is SE
Observe with M (scanning electron microscope), connect the image of the particles (light and shade of light produced by the particles) to an image analyzer (for example, QTM900 made by Cambridge Instruments), change the observation point and the number of particles is 5000 or more. The number average diameter D obtained by the treatment is used as the average particle diameter.

【0048】D=ΣDi /N ここでDi は粒子の円相当径、Nは個数である。D = ΣD i / N where D i is the equivalent circle diameter of the particles, and N is the number.

【0049】(2)粒子の含有量 ポリエステルは溶解し粒子は溶解させない溶媒を選択
し、粒子をポリエステルから遠心分離し、粒子の全体重
量に対する比率(重量%)をもって粒子含有量とする。
場合によっては赤外分光法の併用も有効である。
(2) Content of Particles A solvent in which the polyester is dissolved but the particles are not dissolved is selected, the particles are centrifuged from the polyester, and the ratio (% by weight) to the total weight of the particles is taken as the particle content.
In some cases, the combined use of infrared spectroscopy is also effective.

【0050】(3)結晶化パラメータΔTcg、融解熱 パーキンエルマー社製のDSC(示差走査熱量計)II
型を用いて測定した。DSCの測定条件は次の通りであ
る。すなわち、試料10mgをDSC装置にセットし、3
00℃の温度で5分間溶融した後、液体窒素中に急冷す
る。この急冷試料を10℃/分で昇温し、ガラス転移点
Tgを検知する。さらに昇温を続け、ガラス状態からの
結晶化発熱ピーク温度をもって結晶化温度Tccとし
た。さらに昇温を続け、融解ピークから融解熱を求め
た。ここでTccとTgの差(Tcc−Tg)を結晶化
パラメータΔTcgと定義する。
(3) Crystallization parameter ΔTcg, heat of fusion DSC (Differential Scanning Calorimeter) II manufactured by Perkin Elmer Co., Ltd. II
It was measured using a mold. The measurement conditions of DSC are as follows. That is, 10 mg of the sample was set in the DSC device, and 3
After melting for 5 minutes at a temperature of 00 ° C., it is quenched in liquid nitrogen. The temperature of this quenched sample is raised at 10 ° C./min, and the glass transition point Tg is detected. The temperature was further raised, and the crystallization exothermic peak temperature from the glass state was defined as the crystallization temperature Tcc. The temperature was further raised and the heat of fusion was determined from the melting peak. Here, the difference between Tcc and Tg (Tcc-Tg) is defined as the crystallization parameter ΔTcg.

【0051】(4)表面の分子配向(屈折率) ナトリウムD線(589nm)を光源として、アッベ屈
折率計を用いて測定した。マウント液にはヨウ化メチレ
ンを用い、25℃、65%RHにて測定した。ポリマの
二軸配向性は長手方向、幅方向、厚さ方向の屈折率をN
1 、N2 、N3とした時、(N1 −N2 )の絶対値が
0.07以下、かつ、N3 /[(N1 +N2 )/2]が
0.95以下であることをひとつの基準とできる。ま
た、レーザー型屈折率計を用いて屈折率を測定しても良
い。さらに、この方法では測定が難しい場合は全反射レ
ーザーラマン法を用いることもできる。レーザー全反射
ラマンの測定は、Jobin-Yvon社製Ramanor U−1000
ラマンシステムにより、全反射ラマンスペクトルを測定
し、例えばPETの場合では、1615-1(ベンゼン環
の骨格振動)と1730-1(カルボニル基の伸縮振動)
のバンド強度比の偏光測定比(YY/XX比など。ここ
でYY:レーザーの偏光方向をYにしてYに対して平行
なラマン光検出、XX:レーザーの偏光方向をXにして
Xに対して平行なラマン光検出)が分子配向と対応する
ことを利用できる。ポリマの二軸配向性はラマン測定か
ら得られたパラメータを長手方向、幅方向の屈折率に換
算して、その絶対値、差などから判定できる。この場合
の測定条件は次のとおりである。
(4) Surface molecular orientation (refractive index) The measurement was carried out using an Abbe refractometer with sodium D line (589 nm) as a light source. Methylene iodide was used as the mount solution, and measurement was performed at 25 ° C. and 65% RH. The biaxial orientation of a polymer has a refractive index of N in the longitudinal direction, the width direction, and the thickness direction.
When 1 , N 2 and N 3 are used, the absolute value of (N 1 −N 2 ) is 0.07 or less, and N 3 / [(N 1 + N 2 ) / 2] is 0.95 or less. Can be a standard. Further, the refractive index may be measured using a laser type refractometer. Further, when the measurement is difficult by this method, the total reflection laser Raman method can be used. The Ramanor U-1000 manufactured by Jobin-Yvon was used for the measurement of laser total reflection Raman.
Raman system was used to measure the total reflection Raman spectrum. For example, in the case of PET, 1615 -1 (skeleton vibration of benzene ring) and 1730 -1 (stretching vibration of carbonyl group)
Polarization measurement ratio of band intensity ratio (YY / XX ratio, etc. where YY: Raman light detection parallel to Y with laser polarization direction Y, XX: laser polarization direction X with respect to X Parallel Raman light detection) can be used to correspond to the molecular orientation. The biaxial orientation of a polymer can be determined by converting the parameters obtained from Raman measurement into the refractive index in the longitudinal direction and the refractive index in the width direction, and the absolute value or difference thereof. The measurement conditions in this case are as follows.

【0052】光源 アルゴンイオンレーザー(5145オングストローム) 試料のセッティング フィルム表面を全反射プリズムに圧着させ、レーザのプ
リズムへの入射角(フィルム厚さ方向との角度)は60
゜とした。
Light source Argon ion laser (5145 Å) Setting of sample The surface of the film was pressure-bonded to the total reflection prism, and the incident angle of the laser to the prism (angle with the film thickness direction) was 60.
It was ゜.

【0053】検出器 PM:RCA31034/Photon Counting System (Hamamatsu C
1230) (supply 1600V) 測定条件 SLIT 1000μm LASER 100mW GATE TIME 1.0sec SCAN SPEED 12cm-1/min SAMPLING INTERVAL 0.2 cm -1 REPEAT TIME 6 (5)全反射ラマン結晶化指数 Jobin-Yvon社製Ramanor U−1000ラマンシステムに
より、全反射ラマンスペクトルを測定し、カルボニル基
の伸縮振動である1730cm-1の半価幅をもって表面の
全反射ラマン結晶化指数とした。測定条件は次のとおり
である。測定深さは、表面から500〜1000オング
ストローム程度である。
Detector PM: RCA31034 / Photon Counting System (Hamamatsu C
1230) (supply 1600V) Measurement condition SLIT 1000μm LASER 100mW GATE TIME 1.0sec SCAN SPEED 12cm -1 / min SAMPLING INTERVAL 0.2 cm -1 REPEAT TIME 6 (5) Total reflection Raman crystallization index Jobin-Yvon Ramanor The total reflection Raman spectrum was measured with a U-1000 Raman system, and the half-value width of 1730 cm -1 , which is the stretching vibration of the carbonyl group, was used as the total reflection Raman crystallization index of the surface. The measurement conditions are as follows. The measurement depth is about 500 to 1000 angstroms from the surface.

【0054】光源 アルゴンイオンレーザー(5145オングストローム) 試料のセッティング レーザー偏光方向(S偏光)とフィルム長手方向が平行
となるようにフィルム表面を全反射プリズムに圧着さ
せ、レーザのプリズムへの入射角(フィルム厚さ方向と
の角度)は60゜とした。
Light source Argon ion laser (5145 Å) Setting of sample The film surface was pressure-bonded to the total reflection prism so that the laser polarization direction (S polarization) and the film longitudinal direction were parallel, and the incident angle of the laser to the prism (film The angle with the thickness direction) was set to 60 °.

【0055】検出器 PM:RCA31034/Photon Counting System (Hamamatsu C
1230) (supply 1600V) 測定条件 SLIT 1000μm LASER 100mW GATE TIME 1.0sec SCAN SPEED 12cm-1/min SAMPLING INTERVAL 0.2 cm -1 REPEAT TIME 6 (6)表面突起の平均高さ 2検出器方式の走査型電子顕微鏡[ESM−3200、
エリオニクス(株)製]と断面測定装置[PMS−1、
エリオニクス(株)製]においてフィルム表面の平坦面
の高さを0として走査した時の突起の高さ測定値を画像
処理装置[IBAS2000、カールツァイス(株)
製]に送り、画像処理装置上にフィルム表面突起画像を
再構築する。次に、この表面突起画像で突起部分を2値
化して得られた個々の突起の面積から円相当径を求めこ
れをその突起の平均径とする。また、この2値化された
個々の突起部分の中で最も高い値をその突起の高さと
し、これを個々の突起について求める。この測定を場所
をかえて500回繰返し、突起個数を求め、測定された
全突起についてその高さの平均値を平均高さとした。ま
た個々の突起の高さデータをもとに、高さ分布の標準偏
差を求めた。また走査型電子顕微鏡の倍率は、1000
〜8000倍の間の値を選択する。なお、場合によって
は、高精度光干渉式3次元表面解析装置(WYKO社製
TOPO−3D、対物レンズ:40〜200倍、高解像
度カメラ使用が有効)を用いて得られる高さ情報を上記
SEMの値に読み替えて用いてもよい。
Detector PM: RCA31034 / Photon Counting System (Hamamatsu C
1230) (supply 1600V) Measurement condition SLIT 1000μm LASER 100mW GATE TIME 1.0sec SCAN SPEED 12cm -1 / min SAMPLING INTERVAL 0.2cm -1 REPEAT TIME 6 (6) Average height of surface protrusion 2 Scanning with detector method Electron microscope [ESM-3200,
Elionix Co., Ltd.] and cross-section measuring device [PMS-1,
Elionix Co., Ltd.], the measurement value of the height of the projection when scanning is performed with the height of the flat surface of the film as 0, and the measured value of the height of the projection is image processing apparatus [IBAS2000, Carl Zeiss Co., Ltd.
Manufactured] to reconstruct the film surface protrusion image on the image processing device. Next, the equivalent circle diameter is calculated from the area of each protrusion obtained by binarizing the protrusion portion in this surface protrusion image, and this is made the average diameter of the protrusion. In addition, the highest value among the binarized individual projection portions is set as the height of the projection, and this is obtained for each projection. This measurement was repeated 500 times at different places to determine the number of protrusions, and the average value of the heights of all the measured protrusions was taken as the average height. In addition, the standard deviation of the height distribution was calculated based on the height data of each protrusion. The magnification of the scanning electron microscope is 1000
Select a value between ~ 8000 times. In some cases, the height information obtained using a high-precision optical interference type three-dimensional surface analyzer (TOPO-3D manufactured by WYKO, objective lens: 40 to 200 times, use of a high resolution camera is effective) is used for the SEM. You may read and use it for the value of.

【0056】(7)中心線平均表面粗さRa、中心線深
さRp、最大高さRt、突起間隔Sm小坂研究所製の高
精度薄膜段差測定器ET−10を用いて測定した。条件
は下記のとおりであり、20回の測定の平均値をもって
値とした。
(7) Center line average surface roughness Ra, center line depth Rp, maximum height Rt, protrusion interval Sm Measurement was performed using a high precision thin film step measuring instrument ET-10 manufactured by Kosaka Laboratory. The conditions are as follows, and the average value of 20 measurements was used as the value.

【0057】・触針先端半径:0.5μm ・触針荷重 :5mg ・測定長 :1mm ・カットオフ値:0.08mm なお、Ra、Rp、Rt、Smの定義は、たとえば、奈
良治郎著「表面粗さの測定・評価法」(総合技術センタ
ー、1983)に示されているものである。
-Stylus tip radius: 0.5 μm-Stylus load: 5 mg-Measurement length: 1 mm-Cut-off value: 0.08 mm The definition of Ra, Rp, Rt, Sm is given, for example, by Jiro Nara. Surface roughness measurement and evaluation method "(General Technology Center, 1983).

【0058】(8)ヤング率 JIS−Z−1702に規定された方法にしたがって、
インストロンタイプの引っ張り試験機を用いて、25
℃、65%RHにて測定した。
(8) Young's modulus According to the method specified in JIS-Z-1702,
25 using an Instron type tensile tester
It was measured at 65 ° C. and 65% RH.

【0059】(9)固有粘度[η](単位はdl/g) オルソクロルフェノール中、25℃で測定した溶液粘度
から下記式から計算される値を用いる。すなわち、 ηsp/C=[η]+K[η]2 ・C ここで、ηsp=(溶液粘度/溶媒粘度)−1、Cは溶媒
100mlあたりの溶解ポリマ重量(g/100ml、通常
1.2)、Kはハギンス定数(0.343とする)。ま
た、溶液粘度、溶媒粘度はオストワルド粘度計を用いて
測定した。
(9) Intrinsic viscosity [η] (unit: dl / g) The value calculated from the following formula from the solution viscosity measured at 25 ° C. in orthochlorophenol is used. That is, η sp / C = [η] + K [η] 2 · C, where η sp = (solution viscosity / solvent viscosity) -1, C is the weight of dissolved polymer per 100 ml of solvent (g / 100 ml, usually 1. 2) and K are Huggins constants (0.343). The solution viscosity and the solvent viscosity were measured using an Ostwald viscometer.

【0060】(10)表層粒子濃度比 2次イオンマススペクトル(SIMS)を用いて、フィ
ルム中の粒子に起因する元素の内のもっとも高濃度の元
素とポリエステルの炭素元素の濃度比を粒子濃度とし、
厚さ方向の分析を行なう。SIMSによって測定される
最表層粒子濃度(深さ0の点)における粒子濃度Aとさ
らに深さ方向の分析を続けて得られる最高濃度Bの比、
A/Bを表層濃度比と定義した。測定装置、条件は下記
のとおりである。
(10) Surface Layer Particle Concentration Ratio Using a secondary ion mass spectrum (SIMS), the particle concentration is defined as the concentration ratio of the highest concentration element of the particles in the film and the carbon element of the polyester. ,
Analyze in the thickness direction. The ratio of the particle concentration A at the outermost surface particle concentration (point at depth 0) measured by SIMS and the maximum concentration B obtained by continuing the analysis in the depth direction,
A / B was defined as the surface layer concentration ratio. The measuring device and conditions are as follows.

【0061】 測定装置 2次イオン質量分析装置(SIMS) ***、ATOMIKA 社製 A-DIDA3000 測定条件 1次イオン種 :O2 + 1次イオン加速電圧:12KV 1次イオン電流 :200nA ラスター領域 :400μm□ 分析領域 :ゲート30% 測定真空度 :6.0×10-9Torr E−GUN :0.5KV−3.0A (11)単一粒子指数 フィルムの断面を透過型電子顕微鏡(TEM)で写真観
察し、粒子を検知する。観察倍率を100000倍程度
にすれば、それ以上分けることができない1個の粒子が
観察できる。粒子の占める全面積をA、そのうち2個以
上の粒子が凝集している凝集体の占める面積をBとした
時、(A−B)/Aをもって、単一粒子指数とする。T
EM条件は下記のとおりであり1視野面積:2μm2
測定を場所を変えて、500視野測定する。
Measuring device Secondary ion mass spectrometer (SIMS) A-DIDA3000 manufactured by ATOMIKA, West Germany Measuring conditions Primary ion species: O 2 + Primary ion accelerating voltage: 12 KV Primary ion current: 200 nA Raster area: 400 μm □ Analysis area: 30% gate Vacuum degree: 6.0 × 10 -9 Torr E-GUN: 0.5KV-3.0A (11) Single particle index The cross section of the film was photographically observed with a transmission electron microscope (TEM). And detect the particles. If the observation magnification is set to about 100,000, one particle that cannot be further divided can be observed. When the total area occupied by particles is A and the area occupied by aggregates in which two or more particles are aggregated is B, (AB) / A is taken as a single particle index. T
The EM conditions are as follows, and one visual field area: 2 μm 2 is measured for 500 visual fields by changing the place.

【0062】・装置:日本電子製JEM−1200EX ・観察倍率:100000倍 ・加速電圧:100kV ・切片厚さ:約1000オングストローム (12)粒径比 上記(1)の測定において個々の粒子の長径の平均値/
短径の平均値の比である。
-Device: JEM-1200EX manufactured by JEOL-Observation magnification: 100,000 times-Acceleration voltage: 100 kV-Section thickness: about 1000 angstroms (12) Particle size ratio In the measurement of the above (1), the major axis of individual particles Average value/
It is the ratio of the average value of the minor axis.

【0063】すなわち、下式で求められる。That is, it is obtained by the following equation.

【0064】長径=ΣD1i /N 短径=ΣD2i /N D1i 、D2i はそれぞれ個々の粒子の長径(最大
径)、短径(最短径)、Nは総個数である。
[0064] major axis = ΣD1 i / N long diameter short diameter = ΣD2 i / N D1 i, D2 i each individual particle (maximum diameter), short diameter (the shortest diameter), N is the total number.

【0065】(13)粒径の相対標準偏差 上記(1)の方法で測定された個々の突起径Di 、平均
径D、粒子総数Nから計算される標準偏差σ(={Σ
(Di −D)2 /N}1/2 )を平均径Dで割った値(σ
/D)で表わした。
(13) Relative standard deviation of particle size Standard deviation σ (= {Σ, calculated from the individual projection diameter D i , the average diameter D, and the total number N of particles measured by the method (1) above.
(D i −D) 2 / N} 1/2 ) divided by the average diameter D (σ
/ D).

【0066】(14)低分子成分含有量 試料ポリマを粉砕しソックスレー抽出器を用いて、クロ
ロホルムを溶媒として、還流下で24時間抽出を行な
う。クロロホルムを蒸発させて得られた抽出物の重量の
もとの試料の重量に対する比率(重量%)をもって低分
子成分含有量とした。
(14) Content of low-molecular component The sample polymer is pulverized and extracted using a Soxhlet extractor under reflux with chloroform as a solvent for 24 hours. The low molecular weight component was defined as the ratio (% by weight) of the weight of the extract obtained by evaporating chloroform to the weight of the original sample.

【0067】(15)結晶化促進係数 上記(3)の方法で粒子を1重量%含有するポリエステ
ルのΔTcg(I)、およびこれから粒子を除去した同
粘度のポリエステルのΔTcg(II)を測定し、ΔT
cg(II)とΔTcg(I)の差[ΔTcg(II)
−ΔTcg(I)]をもって、結晶化促進係数とした。
(15) Crystallization acceleration coefficient ΔTcg (I) of the polyester containing 1% by weight of the particles and ΔTcg (II) of the polyester having the same viscosity after removing the particles were measured by the method of the above (3), ΔT
Difference between cg (II) and ΔTcg (I) [ΔTcg (II)
-ΔTcg (I)] was used as the crystallization acceleration coefficient.

【0068】(16)積層フィルム中の熱可塑性樹脂A
層の厚さ 2次イオン質量分析装置(SIMS)を用いて、フィル
ム中の粒子の内最も高濃度の粒子に起因する元素とポリ
エステルの炭素元素の濃度比(M+ /C+ )を粒子濃度
とし、熱可塑性樹脂A層の表面から深さ(厚さ)方向の
分析を行なう。表層では表面という界面のために粒子濃
度は低く表面から遠ざかるにつれて粒子濃度は高くな
る。本発明フィルムの場合は深さ[I]でいったん極大
値となった粒子濃度がまた減少し始める。この濃度分布
曲線をもとに極大値の粒子濃度の1/2になる深さ[I
I](ここでII>I)を積層厚さとした。条件は測定
法(10)と同様である。
(16) Thermoplastic resin A in laminated film
Layer thickness By using a secondary ion mass spectrometer (SIMS), the concentration ratio (M + / C + ) of the element due to the highest concentration of particles in the film and the carbon element of the polyester is measured. Then, the analysis in the depth (thickness) direction from the surface of the thermoplastic resin A layer is performed. In the surface layer, the particle concentration is low due to the interface of the surface, and the particle concentration increases as the distance from the surface increases. In the case of the film of the present invention, the particle concentration once reaching the maximum value at the depth [I] starts to decrease again. Based on this concentration distribution curve, the depth [I
I] (II> I here) was taken as the laminated thickness. The conditions are the same as in measurement method (10).

【0069】なお、フィルム中にもっとも多く含有する
粒子が有機高分子粒子の場合はSIMSでは測定が難し
いので、表面からエッチングしながらXPS(X線光電
子分光法)、IR(赤外分光法)あるいはコンフォーカ
ル顕微鏡などで、その粒子濃度のデプスプロファイルを
測定し、上記同様の手法から積層厚さを求めても良い。
さらに、上述した粒子濃度のデプスプロファイルから
ではなく、フィルムの断面観察あるいは薄膜段差測定機
等によって熱可塑性樹脂Aの積層厚さを求めても良い。
When the most abundant particles in the film are organic polymer particles, it is difficult to measure by SIMS. Therefore, while etching from the surface, XPS (X-ray photoelectron spectroscopy), IR (infrared spectroscopy) or The depth profile of the particle concentration may be measured with a confocal microscope or the like, and the laminated thickness may be determined by the same method as above.
Further, the laminated thickness of the thermoplastic resin A may be obtained by observing the cross section of the film or by a thin film level difference measuring device instead of using the depth profile of the particle concentration described above.

【0070】なお、単層フィルムの場合の厚さは、公知
の方法、例えばダイヤルゲージ法、光干渉法、重量法、
薄膜段差測定法等によって求めることができる。
The thickness of the monolayer film can be determined by a known method such as dial gauge method, optical interference method, gravimetric method,
It can be determined by a thin film step measuring method or the like.

【0071】(17)耐ダビング性 フィルムに下記組成の磁性塗料をグラビヤロールにより
塗布し、磁気配向させ、乾燥させる。さらに、小型テス
トカレンダー装置(スチールロール/ナイロンロール、
5段)で、温度:70℃、線圧:200kg/cmでカ
レンダー処理した後、70℃、48時間キュアリングす
る。上記テープ原反を1/2インチにスリットし、パン
ケーキを作成した。このパンケーキから長さ250mの
長さをVTRカセットに組み込みVTRカセットテープ
とした。
(17) Dubbing resistance A magnetic coating composition having the following composition is applied to a film by a gravure roll, magnetically oriented, and dried. In addition, a small test calendar device (steel roll / nylon roll,
(5 stages), temperature: 70 ° C., linear pressure: 200 kg / cm, and then calendaring is performed at 70 ° C. for 48 hours. The above tape raw material was slit to 1/2 inch to prepare a pancake. A length of 250 m from this pancake was incorporated into a VTR cassette to obtain a VTR cassette tape.

【0072】 (磁性塗料の組成) ・Co含有酸化鉄(BET値50m2 /g) :100重量部 ・エスレックA(積水化学製塩化ビニル/酢酸ビニル共重合体) :10重量部 ・ニッポラン2304(日本ポリウレタン製ポリウレタンエラストマ) :10重量部 ・コロネートL(日本ポリウレタン製ポリイソシアネート):5重量部 ・レシチン :1重量部 ・メチルエチルケトン :75重量部 ・メチルイソブチルケトン :75重量部 ・トルエン :75重量部 ・カーボンブラック :2重量部 ・ラウリン酸 :1.5重量部 このテープに家庭用VTRを用いてシバソク製のテレビ
試験波形発生器(TG7/U706)により100%ク
ロマ信号を記録し、その再生信号からシバソク製カラー
ビデオノイズ測定器(925D/1)でクロマS/Nを
測定しAとした。また上記と同じ信号を記録したマスタ
ーテープのパンケーキを磁界転写方式のビデオソフト高
速プリントシステム(たとえばソニーマグネスケール
(株)製のスプリンタ)を用いてAを測定したのと同じ
試料テープ(未記録)のパンケーキへダビングした後の
テープのクロマS/Nを上記と同様にして測定し、Bと
した。このダビングによるクロマS/Nの低下(A−
B)が3dB未満の場合は耐ダビング性:優、3dB以
上5dB未満の場合は良、5dB以上は不良と判定し
た。優が望ましいが、良でも実用的には使用可能であ
る。
(Composition of Magnetic Paint) Co-containing iron oxide (BET value 50 m 2 / g): 100 parts by weight S-REC A (vinyl chloride / vinyl acetate copolymer manufactured by Sekisui Chemical Co., Ltd.): 10 parts by weight ・ Nipporan 2304 ( Polyurethane elastomer made by Nippon Polyurethane): 10 parts by weight Coronate L (polyisocyanate made by Nippon Polyurethane): 5 parts by weight Lecithin: 1 part by weight Methyl ethyl ketone: 75 parts by weight Methyl isobutyl ketone: 75 parts by weight Toluene: 75 parts by weight -Carbon black: 2 parts by weight-Lauric acid: 1.5 parts by weight A 100% chroma signal was recorded on this tape by a TV test waveform generator (TG7 / U706) made by Shibasoku using a home VTR, and its playback signal was recorded. From Shiba Soku color video noise measuring instrument (925D / 1) with chroma S To measure the N was A. In addition, the same sample tape (not yet measured) for measuring the A of the pancake of the master tape recording the same signal as above using a video software high-speed printing system of the magnetic field transfer system (for example, Sprinter manufactured by Sony Magnescale Co., Ltd.) Chroma S / N of the tape after dubbing to the pancake (recording) was measured in the same manner as above and designated as B. Chroma S / N decrease due to this dubbing (A-
When B) was less than 3 dB, dubbing resistance was excellent: when 3 dB or more and less than 5 dB, it was judged to be good, and 5 dB or more was judged to be poor. Good is desirable, but good is practically usable.

【0073】[0073]

【実施例】本発明を実施例に基づいて説明する。EXAMPLES The present invention will be described based on examples.

【0074】実施例1,比較例1〜4 平均粒径の異なる架橋ポリスチレン粒子、コロイダルシ
リカに起因するシリカ粒子を含有するエチレングリコー
ルスラリーを調製し、このエチレングリコールスラリー
を190℃で1.5時間熱処理した後、テレフタル酸ジ
メチルとエステル交換反応後、重縮合し、該粒子を4.
5〜55重量%含有するポリエチレンテレフタレート
(以下PETと略記する)のペレットを作った。この
時、重縮合時間を調節し固有粘度を0.70とした(熱
可塑性樹脂A)。また、常法によって、固有粘度0.6
2の実質的に不活性粒子を含有しないPETを製造し、
熱可塑性樹脂Bとした。これらのポリマをそれぞれ18
0℃で3時間減圧乾燥(3Torr)した。熱可塑性樹脂A
を押出機1に供給し310℃で溶融し、さらに、熱可塑
性樹脂Bを押出機2に供給、280℃で溶融し、これら
のポリマを合流ブロック(フィードブロック)で合流積
層し、静電印加キャスト法を用いて表面温度30℃のキ
ャスティング・ドラムに巻きつけて冷却固化し、2層構
造の未延伸フィルムを作った。この時、口金スリット間
隙/未延伸フィルム厚さの比を10として未延伸フィル
ムを作った。また、それぞれの押出機の吐出量を調節し
総厚さ、熱可塑性樹脂A層の厚さを調節した。この未延
伸フィルムを温度80℃にて長手方向に4.5倍延伸し
た。この延伸は2組ずつのロールの周速差で、4段階で
行なった。この一軸延伸フィルムをステンタを用いて延
伸速度2000%/分で100℃で幅方向に4.0倍延
伸し、定長下で、200℃にて5秒間熱処理し、総厚さ
15μm、熱可塑性樹脂A層厚さ0.003〜15μm
の二軸配向積層フィルムを得た。これらのフィルムの本
発明のパラメータは表1に示したとおりであり、本発明
のパラメータが範囲内の場合は耐ダビング性は表1に示
したとおりであったが、そうでない場合は耐ダビング性
を満足するフィルムは得られなかった。
Example 1, Comparative Examples 1 to 4 Ethylene glycol slurries containing cross-linked polystyrene particles having different average particle diameters and silica particles derived from colloidal silica were prepared, and the ethylene glycol slurries were heated at 190 ° C. for 1.5 hours. After heat treatment, transesterification reaction with dimethyl terephthalate and polycondensation were performed to obtain the particles.
Pellets of polyethylene terephthalate (hereinafter abbreviated as PET) containing 5 to 55% by weight were prepared. At this time, the polycondensation time was adjusted so that the intrinsic viscosity was 0.70 (thermoplastic resin A). In addition, an inherent viscosity of 0.6
2 to produce PET that is substantially free of inert particles,
This is thermoplastic resin B. 18 of each of these polymers
It was dried under reduced pressure (3 Torr) at 0 ° C. for 3 hours. Thermoplastic resin A
Is supplied to the extruder 1 and melted at 310 ° C., the thermoplastic resin B is further supplied to the extruder 2 and melted at 280 ° C., and these polymers are combined and laminated by a combination block (feed block), and electrostatic application is performed. The film was wound around a casting drum having a surface temperature of 30 ° C. by a casting method and cooled and solidified to prepare an unstretched film having a two-layer structure. At this time, an unstretched film was prepared by setting the ratio of the slit gap of the die / the thickness of the unstretched film to 10. The total thickness and the thickness of the thermoplastic resin A layer were adjusted by adjusting the discharge rate of each extruder. This unstretched film was stretched 4.5 times in the longitudinal direction at a temperature of 80 ° C. This stretching was carried out in four stages with the difference in peripheral speed between each pair of rolls. This uniaxially stretched film was stretched 4.0 times in the width direction at 100 ° C. at a stretching rate of 2000% / min using a stenter and heat-treated at 200 ° C. for 5 seconds under a constant length to give a total thickness of 15 μm and thermoplasticity. Resin A layer thickness 0.003 to 15 μm
A biaxially oriented laminated film of was obtained. The parameters of the present invention for these films are as shown in Table 1, and the dubbing resistance was as shown in Table 1 when the parameters of the present invention were within the range, but otherwise the dubbing resistance was shown. No film satisfying the above conditions was obtained.

【0075】[0075]

【表1】 実施例2,比較例5 実施例1に用いた熱可塑性樹脂Aの原料を押出機1に供
給し、平均粒径0.3〜1.0μmの架橋ポリスチレン
の粒子を所定量含有する固有粘度0.6のPETを熱可
塑性樹脂Bとしてこれを押出機2に供給して、実施例1
と同様にして、ただしA/B/Aの3層構造の総厚さ1
5μm、熱可塑性樹脂A層(片側)の厚さが4μmのフ
ィルムを作った。
[Table 1] Example 2 and Comparative Example 5 The raw material of the thermoplastic resin A used in Example 1 was supplied to the extruder 1, and an inherent viscosity of 0 containing a predetermined amount of particles of crosslinked polystyrene having an average particle size of 0.3 to 1.0 μm. EXAMPLE 1 PET as a thermoplastic resin B was supplied to the extruder 2 and Example 1 was used.
In the same manner as above, except that the total thickness of the three-layer structure of A / B / A is 1
A film having a thickness of 5 μm and a thermoplastic resin A layer (one side) of 4 μm was prepared.

【0076】[0076]

【表2】 実施例3,比較例6 平均粒径の異なるコロイダルシリカに起因するシリカ粒
子を含有するエチレングリコールを調製し、ナトリウム
含有量を粒子に対し0.02〜1.5重量%とした。こ
のエチレングリコールスラリーを190℃で1.5時間
熱処理した後、テレフタル酸ジメチルとエステル交換反
応後、重縮合し、コロイダルシリカに起因するシリカ粒
子を所定量含有するPETのペレットを作った。この
時、重縮合時間を調節し固有粘度を0.7とした。これ
らのペレットをそれぞれ180℃で3時間減圧乾燥(3
Torr)し、押出機に供給し、300℃で溶融し、静電印
加キャスト法を用いて表面温度30℃のキャスティング
・ドラムに巻きつけて冷却固化し未延伸フィルムを作っ
た。この未延伸フィルムを温度80℃にて長手方向に
4.5倍延伸した。この延伸は2組ずつのロールの周速
差で、延伸段数を4段階で行なった。この一軸延伸フィ
ルムをステンタを用いて延伸速度2000%/分で10
0℃で幅方向に4.0倍延伸し、定長下で、190℃に
て5秒間熱処理し、厚さ4μmの二軸配向フィルムを得
た。これらのフィルムの本発明のパラメータおよび性能
は表3に示したとおりである。
[Table 2] Example 3, Comparative Example 6 Ethylene glycol containing silica particles derived from colloidal silica having different average particle diameters was prepared, and the sodium content was 0.02 to 1.5% by weight based on the particles. This ethylene glycol slurry was heat-treated at 190 ° C. for 1.5 hours, transesterified with dimethyl terephthalate, and then polycondensed to produce PET pellets containing a predetermined amount of silica particles derived from colloidal silica. At this time, the polycondensation time was adjusted so that the intrinsic viscosity was 0.7. Each of these pellets was dried under reduced pressure at 180 ° C for 3 hours (3
Torr), fed to an extruder, melted at 300 ° C., wound around a casting drum having a surface temperature of 30 ° C. by an electrostatic cast method, cooled and solidified to form an unstretched film. This unstretched film was stretched 4.5 times in the longitudinal direction at a temperature of 80 ° C. This stretching was carried out in four stages with the difference in peripheral speed between the rolls of two sets each. This uniaxially stretched film was stretched at a stretching rate of 2000% / min using a stenter for 10
The film was stretched 4.0 times in the width direction at 0 ° C. and heat-treated at 190 ° C. for 5 seconds under a constant length to obtain a biaxially oriented film having a thickness of 4 μm. The parameters and performance of the invention for these films are as shown in Table 3.

【0077】[0077]

【表3】 [Table 3]

【0078】[0078]

【発明の効果】本発明は、製法の工夫により、不活性粒
子を含有する熱可塑性樹脂を用いて、粒子の大きさとフ
ィルム厚さの関係、含有量、フィルム厚さを特定範囲と
したフィルムあるいはその積層フィルムとしたので、磁
気記録媒体用に用いた時の耐ダビング性に優れたフィル
ムが得られたものであり、本発明フィルムの用途は特に
限定されないが、磁気記録媒体用ベースフィルムとして
特に有用である。また、本発明フィルムのうち2層構造
のものは熱可塑性樹脂A面が走行面(磁気記録媒体用で
は磁性層を塗布しない面、その他の用途では印刷やその
他塗材の塗布などの処理がほどこされない面)として用
いることが好ましい。
EFFECTS OF THE INVENTION The present invention has been devised by a manufacturing method so that a thermoplastic resin containing inert particles is used to form a film having a relationship between particle size and film thickness, content, and film thickness within a specific range. As the laminated film, a film having excellent dubbing resistance when used for a magnetic recording medium is obtained, and the use of the film of the present invention is not particularly limited, but particularly as a base film for a magnetic recording medium. It is useful. In the film of the present invention having a two-layer structure, the thermoplastic resin A surface is the running surface (the surface on which the magnetic layer is not applied for magnetic recording media, and for other applications, treatment such as printing or application of other coating material is applied. It is preferable to use it as a non-coated surface.

【0079】また、本発明は製膜工程内で、コーティン
グなどの操作なしで直接複合積層によって作ったフィル
ムであり、製膜工程中あるいはその後のコーティングに
よって作られる積層フィルムに比べて、最表層の分子も
二軸配向であるため、上述した特性以外、例えば、表面
の耐削れ性もはるかに優れ、しかもコスト面、品質の安
定性などにおいて有利であるものである。
Further, the present invention is a film produced by composite laminating directly in the film forming process without an operation such as coating, and has a surface layer higher than that of a laminated film formed by coating during or after the film forming process. Since the molecules are also biaxially oriented, in addition to the above-mentioned characteristics, for example, the abrasion resistance of the surface is far superior, and moreover, it is advantageous in terms of cost and stability of quality.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:16 B29L 7:00 4F 9:00 4F C08L 67:02 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display area B29K 105: 16 B29L 7:00 4F 9:00 4F C08L 67:02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂Aと不活性粒子とを主成分
とするフィルムであって、該フィルム中に含有される不
活性粒子の平均粒径がフィルム厚さの0.1〜10倍、
該粒子の含有量が0.5〜50重量%であることを特徴
とする厚さ3μmを越え10μm以下の二軸配向熱可塑
性樹脂フィルム。
1. A film comprising a thermoplastic resin A and inert particles as main components, wherein the average particle diameter of the inert particles contained in the film is 0.1 to 10 times the film thickness,
A biaxially oriented thermoplastic resin film having a thickness of more than 3 μm and not more than 10 μm, characterized in that the content of the particles is 0.5 to 50% by weight.
【請求項2】 実質的に不活性粒子を含有しない熱可塑
性樹脂Bを主成分とするフィルムの少なくとも片面に、
請求項1に記載の熱可塑性樹脂フィルムが積層されてな
ることを特徴とする二軸配向熱可塑性樹脂フィルム。
2. A film containing a thermoplastic resin B as a main component, which contains substantially no inert particles, on at least one surface thereof,
A biaxially oriented thermoplastic resin film, comprising the thermoplastic resin film according to claim 1 laminated.
【請求項3】 熱可塑性樹脂Bと平均粒径0.007〜
2μmの不活性粒子とを主成分とし、該不活性粒子の含
有量が0.001〜0.2重量%であるフィルムの少な
くとも片面に、請求項1に記載の熱可塑性樹脂フィルム
が積層されてなることを特徴とする二軸配向熱可塑性樹
脂フィルム。
3. A thermoplastic resin B and an average particle size of 0.007 to
The thermoplastic resin film according to claim 1 is laminated on at least one surface of a film containing 2 μm of inert particles as a main component and the content of the inert particles being 0.001 to 0.2% by weight. A biaxially oriented thermoplastic resin film, characterized in that
【請求項4】 熱可塑性樹脂Aが結晶性ポリエステルで
あり、かつ、熱可塑性樹脂Aを主成分とするフィルムの
表面の全反射ラマン結晶化指数が20cm-1以下である
ことを特徴とする請求項1〜3のいずれかに記載の二軸
配向熱可塑性樹脂フィルム。
4. The thermoplastic resin A is a crystalline polyester, and the total reflection Raman crystallization index of the surface of the film containing the thermoplastic resin A as a main component is 20 cm -1 or less. Item 2. The biaxially oriented thermoplastic resin film according to any one of Items 1 to 3.
【請求項5】 熱可塑性樹脂Aを主成分とするフィルム
に含有される不活性粒子が粒径比1.0〜1.3の粒子
であることを特徴とする請求項1〜4のいずれかに記載
の二軸配向熱可塑性樹脂フィルム。
5. The inert particles contained in the film containing the thermoplastic resin A as a main component are particles having a particle size ratio of 1.0 to 1.3. The biaxially oriented thermoplastic resin film according to.
【請求項6】 熱可塑性樹脂Aを主成分とするフィルム
に含有される不活性粒子の相対標準偏差が0.6以下で
あることを特徴とする請求項1〜5のいずれかに記載の
二軸配向熱可塑性樹脂フィルム。
6. The relative standard deviation of the inert particles contained in the film containing the thermoplastic resin A as a main component is 0.6 or less, and the two particles according to claim 1. Axial oriented thermoplastic resin film.
JP1749894A 1988-06-08 1994-02-14 Biaxially oriented thermoplastic resin film Expired - Fee Related JP2892273B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1749894A JP2892273B2 (en) 1988-06-08 1994-02-14 Biaxially oriented thermoplastic resin film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-141972 1988-06-08
JP14197288 1988-06-08
JP1749894A JP2892273B2 (en) 1988-06-08 1994-02-14 Biaxially oriented thermoplastic resin film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP64000775A Division JPH0780282B2 (en) 1988-06-08 1989-01-05 Biaxially oriented thermoplastic resin film

Publications (2)

Publication Number Publication Date
JPH06256543A true JPH06256543A (en) 1994-09-13
JP2892273B2 JP2892273B2 (en) 1999-05-17

Family

ID=26354024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1749894A Expired - Fee Related JP2892273B2 (en) 1988-06-08 1994-02-14 Biaxially oriented thermoplastic resin film

Country Status (1)

Country Link
JP (1) JP2892273B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341268A (en) * 2000-03-27 2001-12-11 Fuji Photo Film Co Ltd Laminated polyester film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341268A (en) * 2000-03-27 2001-12-11 Fuji Photo Film Co Ltd Laminated polyester film
JP4669619B2 (en) * 2000-03-27 2011-04-13 富士フイルム株式会社 Laminated polyester film

Also Published As

Publication number Publication date
JP2892273B2 (en) 1999-05-17

Similar Documents

Publication Publication Date Title
US5069962A (en) Biaxially oriented laminated film
JPH0780282B2 (en) Biaxially oriented thermoplastic resin film
US4952449A (en) Biaxially oriented polyester film
JP2817302B2 (en) Biaxially oriented polyester film
JP2892273B2 (en) Biaxially oriented thermoplastic resin film
JP2569941B2 (en) Biaxially oriented polyester film
JP2804434B2 (en) Biaxially oriented thermoplastic resin film
JP2510791B2 (en) Biaxially oriented polyester film
JP2827880B2 (en) Biaxially oriented thermoplastic resin film
JP2527246B2 (en) Biaxially oriented thermoplastic resin film
JPH0912745A (en) Biaxially oriented thermoplastic resin film
JP2569838B2 (en) Method for producing biaxially oriented thermoplastic resin film
JP2576215B2 (en) Biaxially oriented polyester film
JP2581287B2 (en) Biaxially oriented thermoplastic resin film
JP2922070B2 (en) Biaxially oriented thermoplastic resin film
JP2510741B2 (en) Biaxially oriented thermoplastic resin film
JP2803274B2 (en) Oxide coated magnetic recording media
JP2666500B2 (en) Video tape for high density recording
JPH03140336A (en) Biaxially oriented thermoplastic resin film
JP2570444B2 (en) Biaxially oriented thermoplastic resin film
JP2525446B2 (en) Polyester film for magnetic recording media
JP2666499B2 (en) Audio tape
JP2650441B2 (en) Biaxially oriented laminated film
JP2745752B2 (en) floppy disk
JPH1052890A (en) Biaxialy oriented thermoplastic resin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees