JPH06254971A - Formation of three-dimensional shape - Google Patents

Formation of three-dimensional shape

Info

Publication number
JPH06254971A
JPH06254971A JP3006015A JP601591A JPH06254971A JP H06254971 A JPH06254971 A JP H06254971A JP 3006015 A JP3006015 A JP 3006015A JP 601591 A JP601591 A JP 601591A JP H06254971 A JPH06254971 A JP H06254971A
Authority
JP
Japan
Prior art keywords
light beam
section
photo
scanning
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3006015A
Other languages
Japanese (ja)
Other versions
JP2919982B2 (en
Inventor
Yoshiyuki Uchinono
良幸 内野々
Yoshimitsu Nakamura
良光 中村
Yoshikazu Azuma
喜万 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP3006015A priority Critical patent/JP2919982B2/en
Publication of JPH06254971A publication Critical patent/JPH06254971A/en
Application granted granted Critical
Publication of JP2919982B2 publication Critical patent/JP2919982B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To increase a working speed and to realize the enhancement of both of processing accuracy and finish by improving a light irradiation method in the formation of a three-dimensional shape using a photo-setting resin soln. CONSTITUTION:Linear scanning (raster scanning) due to laser beam 31 having an oval cross-sectional shape is repeatedly applied to the inside area of a photo- setting layer and scanning (vector scanning) along a contour shape S due to laser beam 32 having a circular cross-sectional shape is applied to the outer peripheral edge area of the photo-setting layer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、三次元形状の形成方
法に関し、詳しくは、光の照射によって硬化する光硬化
性樹脂を用いて、立体的な三次元形状を有する物品を成
形製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a three-dimensional shape, and more particularly to a method for molding and producing an article having a three-dimensional shape using a photocurable resin which is cured by irradiation with light. It is about.

【0002】[0002]

【従来の技術】光硬化性樹脂を用いて三次元形状を形成
する方法は、複雑な三次元形状を、成形型や特別な加工
工具を用いることなく、簡単かつ正確に成形できる方法
として、各種製品モデルや立体模型の製造等に利用する
ことが考えられている。具体的な従来技術として、例え
ば、特開昭63-145016 号公報や、特開昭62-101408 号公
報に開示された技術がある。
2. Description of the Related Art There are various methods for forming a three-dimensional shape using a photo-curable resin as a method for easily and accurately forming a complicated three-dimensional shape without using a forming die or a special processing tool. It is considered to be used for manufacturing product models and three-dimensional models. As specific conventional techniques, for example, there are techniques disclosed in Japanese Patent Laid-Open No. 63-145016 and Japanese Patent Laid-Open No. 62-101408.

【0003】特開昭63-145016 号公報に開示された技術
は、光ビームの断面形状を楕円にすることにより、光硬
化層のうち、光ビームの主走査方向の端部における面だ
れが小さくなり、主走査方向の全長にわたって、ほぼ均
一な厚さの光硬化層が得られ、硬化層全体が平坦化し、
下層硬化層形状の乱れによる上下層の分離等が防止さ
れ、高精度の立体形状体が形成できるとしている。
In the technique disclosed in Japanese Patent Laid-Open No. 63-145016, by making the cross-sectional shape of the light beam elliptical, the surface curl at the end of the photocuring layer in the main scanning direction of the light beam is small. , A photo-cured layer with a substantially uniform thickness is obtained over the entire length in the main scanning direction, and the entire cured layer is flattened,
It is said that the upper and lower layers can be prevented from being separated from each other due to the disorder of the shape of the lower hardened layer, and a highly accurate three-dimensional body can be formed.

【0004】特開昭62-101408 号公報に開示された技術
は、光ビームすなわち照射光束を、形成すべき三次元形
状の横断面外形に沿う主経路とその周囲とにわたる反復
微小運動を行わせつつ、全体としては前記主経路に沿っ
て移動させて前記横断面外形の外周縁に沿って光を照射
することにより、所望厚みの三次元形状を高い寸法精度
で形成することができるとしている。
The technique disclosed in Japanese Unexamined Patent Publication No. 62-101408 causes a light beam, that is, an irradiation light beam, to perform repetitive micro-movements along a main path along a cross-sectional contour of a three-dimensional shape to be formed and its periphery. On the other hand, as a whole, it is said that a three-dimensional shape having a desired thickness can be formed with high dimensional accuracy by moving along the main path and irradiating light along the outer peripheral edge of the cross-sectional outer shape.

【0005】[0005]

【発明が解決しようとする課題】ところが、前記先行技
術には、それぞれ問題点があり、改善が要望される。ま
ず、光ビームを断面楕円形状にする技術(特開昭62-101
408 号)では、三次元形状の外形精度にとって最も重要
な外周縁を、正確かつ滑らかに形成することができな
い。これは、上記先行技術では、所望の平面形状を有す
る光硬化層を形成するために、光硬化層となる領域の端
から端まで直線的に光ビームを移動させて帯状の光硬化
部分を形成し、つぎに、この帯状光硬化部分の隣で、光
ビームを再び光硬化層となる領域の端から端まで直線的
に移動させ、こうして形成された帯状の光硬化部分の集
合で所望の平面形状をなす光硬化層を形成しており、こ
のような光ビームの運動をラスタ走査と呼んでいる。と
ころが、この場合、光ビームを直線的に移動させる主走
査方向の両端では、隣合う帯状光硬化部分の間に不連続
な段差や凹凸が生じてしまい、光硬化層の外形を滑らか
に形成することができないのである。
However, each of the above-mentioned prior arts has problems, and improvement is desired. First, a technique for forming a light beam into an elliptical cross section (Japanese Patent Laid-Open No. 62-101).
No. 408) cannot accurately and smoothly form the outer peripheral edge, which is most important for the accuracy of the three-dimensional shape. This is because in the above-mentioned prior art, in order to form a photo-cured layer having a desired planar shape, a light beam is linearly moved from one end to the other of the region to be the photo-cured layer to form a band-shaped photo-cured portion. Then, next to this strip-shaped photo-cured portion, the light beam is linearly moved again from one end to the end of the region to be the photo-cured layer, and a desired plane is formed by the set of strip-shaped photo-cured portions thus formed. A photocurable layer having a shape is formed, and the movement of such a light beam is called raster scanning. However, in this case, discontinuous steps and irregularities are formed between the adjacent strip-shaped photo-cured portions at both ends in the main scanning direction in which the light beam is linearly moved, so that the outer shape of the photo-cured layer is formed smoothly. You cannot do it.

【0006】そこで、光硬化層の外周縁については、前
記のようなラスタ走査を行わず、光硬化層の外周縁の輪
郭線に沿って、曲線あるいは屈曲線状に光ビームを移動
させれば、光硬化層の外周縁を滑らかに形成できると考
えられる。このような光ビームの運動は、ベクトル成分
を有するのでベクトル走査と呼ばれる。ところが、断面
楕円形状の光ビームでは、その短軸方向と長軸方向と
で、光ビームの中心から光ビームの最外周までの距離が
異なっている。光ビームのスポットの連なりによって光
硬化層の外周縁が形成されるのであるから、断面楕円形
状の光ビームをベトクル走査させると、光ビームの移動
方向によって光ビームの中心から最外周までの距離が変
わり、光ビームの中心の移動経路と、光ビームの外周で
描かれる輪郭線とが相違してしまい、光硬化層の外周縁
が不正確になる。
Therefore, if the outer peripheral edge of the photo-curing layer is not subjected to the raster scanning as described above, and the light beam is moved along the contour line of the outer peripheral edge of the photo-curing layer in a curved or bent line shape. It is considered that the outer peripheral edge of the photocurable layer can be formed smoothly. Such a movement of the light beam has a vector component and is called a vector scan. However, in a light beam having an elliptical cross section, the distance from the center of the light beam to the outermost circumference of the light beam differs in the minor axis direction and the major axis direction. Since the outer peripheral edge of the photo-cured layer is formed by the concatenation of the spots of the light beam, when a light beam having an elliptical cross section is subjected to a vector scan, the distance from the center of the light beam to the outermost circumference is changed depending on the moving direction of the light beam. In other words, the movement path of the center of the light beam and the contour line drawn on the outer periphery of the light beam are different, and the outer peripheral edge of the photo-curable layer becomes inaccurate.

【0007】つぎに、前記光ビームを反復微小運動させ
る方法(特開昭62-101408 号)では、光硬化層の外周縁
は滑らかに形成できるが、光ビームを反復微小運動させ
ながら前記主経路に沿う複雑な曲線運動を行わせる必要
があるので、光ビームの移動を迅速に行えず、走査時間
が極めて長くかかるという問題がある。そこで、この発
明の課題は、前記した従来の三次元形状の形成方法にお
ける問題点を解消し、高精度な三次元形状を高速かつ能
率的に形成することのできる方法を提供することにあ
る。
[0007] Next, in the method of repetitively making a small movement of the light beam (Japanese Patent Laid-Open No. 62-101408), the outer peripheral edge of the photo-curing layer can be formed smoothly, but the main path can be made by making a small movement of the light beam repeatedly. Since it is necessary to perform a complicated curved motion along the path, there is a problem that the light beam cannot be moved quickly and the scanning time is extremely long. Therefore, an object of the present invention is to provide a method capable of solving the above-mentioned problems in the conventional method for forming a three-dimensional shape and forming a highly accurate three-dimensional shape at high speed and efficiently.

【0008】[0008]

【課題を解決するための手段】上記課題を解決する、こ
の発明にかかる三次元形状の形成方法は、光硬化性樹脂
液の薄層に光を照射して所定形状の光硬化層を形成し、
この光硬化層を複数層積み重ねて所望の三次元形状を形
成する方法において、光硬化層のうち外周縁を除く内側
部分となる領域に光を照射するときには、断面楕円形状
の光ビームを用いて、直線的な走査を繰り返し、光硬化
層のうち外周縁となる領域に光を照射するときには、断
面円形状の光ビームを用いて、外周縁の輪郭形状に沿っ
て走査する。
A method for forming a three-dimensional shape according to the present invention, which solves the above problems, irradiates a thin layer of a photocurable resin liquid with light to form a photocured layer having a predetermined shape. ,
In the method of stacking a plurality of photo-curing layers to form a desired three-dimensional shape, when irradiating light to the inner part of the photo-curing layer excluding the outer peripheral edge, a light beam having an elliptical cross section is used. When linearly scanning is repeated to irradiate light on the area of the photocurable layer which becomes the outer peripheral edge, a light beam having a circular cross section is used to perform scanning along the contour shape of the outer peripheral edge.

【0009】光硬化性樹脂の材料や光硬化性樹脂液の薄
層を形成する手段、あるいは、形成された光硬化層を積
み重ねていく手段などは、従来の通常の光硬化性樹脂を
用いた三次元形状の形成方法の場合と同様でよい。光の
照射手段も、基本的には、従来の通常の三次元形状の形
成方法に用いられているレーザ照射装置などと同様のも
のが使用される。但し、この発明では、照射する光ビー
ムの断面形状を変更可能にしておく必要がある。通常の
レーザ照射装置では、光ビームの断面形状は円形である
ので、光ビームの通過経路に、光ビームの断面形状を楕
円形に変える光ビーム変更機構を備えておき、必要に応
じて、光ビームの断面形状を円形から楕円形に変更する
ようにしておくのが好ましい。
A conventional ordinary photocurable resin was used as a means for forming a thin layer of the photocurable resin material or a photocurable resin liquid, or a means for stacking the formed photocurable layers. This may be the same as in the method of forming a three-dimensional shape. The light irradiation means is basically the same as the laser irradiation device or the like used in the conventional method for forming a three-dimensional shape. However, in the present invention, it is necessary to change the cross-sectional shape of the light beam to be applied. In a normal laser irradiation device, the cross-sectional shape of the light beam is circular, so a light beam changing mechanism that changes the cross-sectional shape of the light beam to an elliptical shape is provided in the passage of the light beam. It is preferable to change the cross-sectional shape of the beam from circular to elliptical.

【0010】光ビーム変更機構の具体的構造としては、
例えば、1面が平坦でその対向面が円弧凸面になったカ
マボコ型のレンズを2枚1組に組み合わせて、相対的に
回転自在に取り付けておけば、互いの円弧凸面を平行に
配置したときには、円弧凸面の軸方向を長軸とする断面
楕円形状の光ビームが得られ、互いの円弧凸面を直交す
るように配置したときには、断面円形状の光ビームが得
られる。互いの円弧凸面の交差角度を調整すれば、楕円
の短軸と長軸の比率を自由に変更できる。
As a concrete structure of the light beam changing mechanism,
For example, by combining two pairs of Kamaboko type lenses, one surface of which is flat and the opposite surface of which is an arcuate convex surface, and the lenses are mounted relatively rotatably, when the arcuate convex surfaces of the two lenses are arranged parallel to each other, A light beam having an elliptical cross section having the major axis in the axial direction of the arc convex surface is obtained, and a light beam having a circular cross section is obtained when the arc convex surfaces are arranged orthogonal to each other. The ratio of the minor axis to the major axis of the ellipse can be freely changed by adjusting the intersection angle of the arc convex surfaces of each other.

【0011】また、断面楕円形状の光ビームを照射する
照射手段と、断面円形状の光ビームを照射する照射手段
を別個に設置して、必要に応じて使い分けるようにして
もよい。光ビームの照射を行う際の走査手段としては、
主走査方向への直線的な運動を、この主走査方向と直交
する副走査方向に順次平行にずらせながら繰り返す、い
わゆるラスタ走査と、任意の曲線もしくは屈折線に沿っ
て平面上を移動する、いわゆるベクトル走査の両方を行
えるようにしておく。このような走査手段は、従来の通
常のレーザ照射装置における走査手段と同様のものが用
いられる。
Further, the irradiation means for irradiating the light beam having an elliptical cross section and the irradiation means for irradiating the light beam having a circular cross section may be separately installed, and may be selectively used as necessary. As the scanning means when irradiating the light beam,
Repeating linear movement in the main scanning direction while shifting in parallel in the sub-scanning direction orthogonal to the main scanning direction, so-called raster scanning, and moving on a plane along an arbitrary curve or refraction line, so-called Be prepared to perform both vector scans. As such a scanning means, one similar to the scanning means in the conventional ordinary laser irradiation apparatus is used.

【0012】この発明では、光硬化性樹脂液に光ビーム
を照射する際に、光硬化層の外周縁となる領域と、外周
縁を除く内側部分となる領域とで、光ビームの断面形状
および走査方法を変える。まず、前記内側領域では、断
面楕円形状の光ビームを用いるとともに、直線的な走査
の繰り返し、すなわちラスタ走査を行う。このとき、光
ビームの断面楕円形状の短軸方向が主走査方向になるよ
うにしておけば、1回の直線的走査で、断面楕円形状の
長軸長さに相当する広い範囲の光硬化部分を形成でき、
作業能率が良好になる。また、断面楕円形状の光ビーム
は、ビーム径を大きく出力も高く設定しておけば、作業
能率が向上する。
According to the present invention, when the photocurable resin liquid is irradiated with the light beam, the cross-sectional shape of the light beam is divided into the outer peripheral region of the photocurable layer and the inner region excluding the outer peripheral region. Change the scanning method. First, in the inner region, a light beam having an elliptical cross section is used, and linear scanning is repeated, that is, raster scanning is performed. At this time, if the minor axis direction of the elliptical cross section of the light beam is set to be the main scanning direction, one linear scan can cover a wide range of the photo-cured portion corresponding to the major axis length of the elliptical cross section. Can be formed
Work efficiency is improved. Further, the work efficiency of the light beam having an elliptical cross section can be improved by setting the beam diameter large and the output high.

【0013】つぎに、外周縁領域では、断面円形状の光
ビームを用いるとともに、外周縁の輪郭形状に沿った曲
線あるいは屈折線状の走査、すなわちベクトル走査を行
う。内側領域に対するラスタ走査は、比較的高速で行っ
て光硬化層の形成を迅速に行うのが好ましい。外周縁領
域に対するベクトル走査は、光硬化層の外形が正確かつ
滑らかに形成されるように、比較的低速で行うのが好ま
しい。また、光ビームのビーム径を小さくするほど、光
硬化層の外周の細かな凹凸まで忠実に成形することがで
きる。
Next, in the outer peripheral area, a light beam having a circular cross section is used, and scanning of a curved line or a refraction line along the contour shape of the outer peripheral edge, that is, vector scanning is performed. Raster scanning of the inner area is preferably performed at a relatively high speed to quickly form the photocurable layer. It is preferable that the vector scanning of the outer peripheral region is performed at a relatively low speed so that the outer shape of the photo-cured layer can be formed accurately and smoothly. Further, as the beam diameter of the light beam is reduced, even the fine irregularities on the outer periphery of the photocurable layer can be faithfully formed.

【0014】光ビームの照射は、前記内側領域を先に行
ってから、形成された光硬化部分の外周形状を滑らかに
つなぐように、外周縁領域への照射を行う方法と、先に
外周縁領域への光ビームの照射を行い、形成された枠状
の光硬化部分の内側を埋めるように内側領域への光ビー
ムの照射を行う方法があり、いずれの方法も採用でき
る。
The irradiation of the light beam is performed on the inner region first and then on the outer peripheral region so as to smoothly connect the outer peripheral shapes of the formed photo-cured portions, and first, the outer peripheral region is irradiated. There is a method of irradiating the region with the light beam and irradiating the inner region with the light beam so as to fill the inside of the formed frame-shaped photo-cured portion, and any method can be adopted.

【0015】通常、内側領域を照射する断面楕円形状の
光ビームは、外周縁領域を照射する断面円形状の光ビー
ムよりも、光硬化性樹脂液を光硬化させる硬化深さを深
くできるので、断面円形状の光ビームで複数層分の外周
縁領域のみを光硬化させた後、その内側に残った内側領
域の光硬化性樹脂液を、断面楕円形状の光ビームによる
1度のラスタ走査で光硬化させることも可能である。
Generally, the light beam having an elliptical cross-section that illuminates the inner region can have a deeper curing depth for photo-curing the photocurable resin liquid than the light beam having a circular cross-section that illuminates the outer peripheral region. After photocuring only the outer peripheral area for multiple layers with a circular cross-section light beam, the photocurable resin liquid in the inner area that remains inside is subjected to a single raster scan with the elliptical cross-section light beam. It can also be photocured.

【0016】[0016]

【作用】断面楕円形状の光ビームを用いると、断面円形
状の光ビームに比べて、光硬化性樹脂液の硬化が迅速に
行われ、ラスタ走査の走査速度を大きくとれ、必要な走
査時間が短くて済む。これは、レーザ発振器などから照
射された段階では円形をなす光ビームを断面楕円形状に
絞り込むと、単位面積当たりの光エネルギーが高くなる
ので、光硬化性樹脂液が短時間で十分に光硬化すること
ができるためである。また、同じ理由で、断面楕円形状
の光ビームは断面円形状の光ビームよりも深い位置まで
光硬化性樹脂液を硬化させることが可能である。
When the light beam having an elliptical cross section is used, curing of the photo-curable resin liquid is performed more quickly than the light beam having a circular cross section, the scanning speed of raster scanning can be increased, and the required scanning time can be increased. It can be short. This is because if the circular light beam is narrowed down to an elliptical cross section when irradiated from a laser oscillator or the like, the light energy per unit area increases, so the photocurable resin liquid is sufficiently photocured in a short time. This is because it is possible. For the same reason, the light beam having an elliptical cross section can cure the photocurable resin liquid to a position deeper than the light beam having a circular cross section.

【0017】しかし、前記したように、断面楕円形状の
光ビームによるラスタ走査では、光硬化層の外周形状に
凹凸がつき外形精度が出ない。そこで、光硬化層のう
ち、外周縁領域のみは、断面円形状の光ビームを用いて
外周縁領域の輪郭形状に沿ったベクトル走査を行えば、
断面円形状の光ビームが連なってできる光硬化層の外周
形状が滑らかになるとともに、光ビームの中心の通過経
路とその最外周の輪郭線は正確に対応するので、光硬化
層の外周形状は極めて正確に形成される。
However, as described above, in raster scanning with a light beam having an elliptical cross section, the outer shape of the photo-curing layer is uneven, and the outer shape accuracy cannot be obtained. Therefore, of the photo-curable layer, only the outer peripheral region is subjected to vector scanning along the contour shape of the outer peripheral region using a light beam having a circular cross section,
The outer peripheral shape of the light-curing layer formed by connecting the circular cross-sectional light beams becomes smooth, and the passage path at the center of the light beam and the contour line of the outermost circumference thereof correspond exactly. It is formed very accurately.

【0018】すなわち、光硬化層の面積のうち大部分を
占める内側領域については、効率の良い断面楕円形状の
光ビームによるラスタ走査を行い、光硬化層すなわち三
次元形状の外形精度や外面の仕上がりに重要な外周縁領
域については、滑らかで精度の良い断面円形状の光ビー
ムによるベクトル走査を行うことによって、従来の方法
では実現できなかった、高速かつ高精度な作業が可能に
なるのである。
That is, the inner region occupying most of the area of the photo-curing layer is raster-scanned by a light beam having an elliptical cross section with good efficiency, and the photo-curing layer, that is, the three-dimensional shape is accurate and the outer surface is finished. For the outer peripheral edge region, which is important for the above, by performing vector scanning with a light beam having a circular cross-sectional shape with high accuracy, it is possible to perform high-speed and high-accuracy work that cannot be realized by the conventional method.

【0019】[0019]

【実施例】ついで、この発明の実施例を、図面を参照し
ながら以下に説明する。図1は、光硬化性樹脂液を用い
た三次元形状の形成方法の基本的な方法を示している。
光硬化性樹脂液20を溜めた樹脂液漕10に、昇降自在
な成形台50が沈められている。樹脂液漕10の上方に
は、レンズ機構35などを通してレーザ光30が照射さ
れるようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a basic method of forming a three-dimensional shape using a photocurable resin liquid.
In a resin liquid tank 10 in which a photocurable resin liquid 20 is stored, a vertically movable molding table 50 is submerged. A laser beam 30 is irradiated above the resin liquid tank 10 through a lens mechanism 35 and the like.

【0020】成形台50を、樹脂液20の液面から少し
下に保持した状態で、液面にレーザ光30を照射すれ
ば、液面と成形台50の間に存在する薄層の光硬化性樹
脂液20が光エネルギーを吸収して光硬化する、レーザ
光30を所定の領域で走査すれば、所望形状の光硬化層
40が形成される。光硬化層40が形成されれば、成形
台50を少し沈め、光硬化層40の上に新たな光硬化性
樹脂液50を供給した後、前記同様のレーザ光30の照
射を行う。このようにして、複数層の光硬化層40が積
み重ねられて、目的とする三次元形状の成形品が得られ
る。
When the molding table 50 is held slightly below the liquid surface of the resin liquid 20, the liquid surface is irradiated with the laser light 30, and the thin layer existing between the liquid surface and the molding table 50 is photocured. The photo-curable layer 40 having a desired shape is formed by scanning the laser light 30 in a predetermined region. When the photo-curable layer 40 is formed, the molding table 50 is slightly submerged, new photo-curable resin liquid 50 is supplied onto the photo-curable layer 40, and then the same laser light 30 irradiation as described above is performed. In this way, the photocurable layers 40 of a plurality of layers are stacked, and a desired molded article having a three-dimensional shape is obtained.

【0021】図2は、光硬化層40を形成する際のレー
ザ光30の走査方法を表している。まず、図2の(I) で
は、レーザ光30の断面形状を楕円形31にするととも
に、光硬化層40を形成しようとする領域の輪郭Sの少
し内側を、断面楕円形状の光ビーム31の短軸方向を主
走査方向として、直線的に走査する。そうすると、図2
の(II)に示すように、断面楕円形状の光ビーム31の長
径を幅とする帯状の光硬化部分41が形成される。1本
の帯状光硬化部分41が形成されると、(I)に示すよう
に、その下で、同じように光ビーム31を直線的に走査
する。このようにして、主走査方向への直線的な走査
と、これと直交する副走査方向への段階的な移動とを交
互に繰り返す、いわゆるラスタ走査を行うことによっ
て、(II)に示すように、複数本の帯状光硬化部分41が
並んで形成される。図では、説明を分かり易くするため
に、帯状光硬化部分41の間に隙間を空けて示している
が、実際には、帯状光硬化部分41が互いに一体化され
た、面状の光硬化部分を形成すればよい。この段階で
は、隣合う帯状光硬化部分41の間には段差があり、外
周形状には凹凸がある。
FIG. 2 shows a scanning method of the laser beam 30 when forming the photocurable layer 40. First, in FIG. 2 (I), the cross-sectional shape of the laser beam 30 is elliptical 31, and the inside of the contour S of the region where the photo-cured layer 40 is to be formed is slightly inside the elliptical light beam 31. Linear scanning is performed with the minor axis direction as the main scanning direction. Then, Figure 2
(II), a band-shaped photo-cured portion 41 having the major axis of the light beam 31 having an elliptical cross section as its width is formed. When one strip-shaped photo-cured portion 41 is formed, as shown in (I), the light beam 31 is similarly linearly scanned thereunder. In this way, by performing so-called raster scanning by alternately repeating linear scanning in the main scanning direction and stepwise movement in the sub-scanning direction orthogonal to this, as shown in (II). , A plurality of strip-shaped photo-cured portions 41 are formed side by side. In the figure, for facilitating the understanding of the explanation, a gap is shown between the strip-shaped photo-curing portions 41, but in reality, the strip-shaped photo-curing portions 41 are integrated with each other to form a planar photo-curing portion. Should be formed. At this stage, there is a step between the adjacent strip-shaped photo-cured portions 41, and the outer peripheral shape is uneven.

【0022】つぎに、(II)に示すように、断面形状が円
形の光ビーム32を用い、前記帯状光硬化部分41の外
周と、光硬化層40の輪郭形状Sとの間を埋めるよう
に、光ビーム32を走査しながら照射する。これによっ
て、輪郭形状Sの全体が光硬化して、所定形状の光硬化
層40が形成される。このような操作を、繰り返して複
数層の光硬化層40を積み重ね形成し、所望の三次元形
状を得る。
Next, as shown in (II), a light beam 32 having a circular cross section is used to fill the space between the outer circumference of the band-shaped photo-cured portion 41 and the contour shape S of the photo-cured layer 40. The light beam 32 is emitted while scanning. As a result, the entire contour shape S is photo-cured, and the photo-cured layer 40 having a predetermined shape is formed. By repeating such an operation, a plurality of photo-curing layers 40 are stacked and formed to obtain a desired three-dimensional shape.

【0023】図3は、光ビーム30の断面形状による硬
化状態の違いを示している。図の下方に表されているよ
うに、(I) に示す断面楕円形状の光ビーム31を照射し
たときに形成される硬化断面40aの深さD1 は、(II)
に示す断面円形状の光ビーム32を照射したときに形成
される硬化断面40bの深さD2 に比べて、はるかに深
くなっている。したがって、レーザ発振器などの光源の
出力が同じであれば、断面楕円形状の光ビーム31のほ
うが、断面円形状の光ビーム32よりも硬化深さを深く
できることがわかる。したがって、1層の光硬化層40
において、断面楕円形状の光ビーム31と断面円形状の
光ビーム32の硬化深さを同じにするには、光源の出力
を調整するのが好ましい。
FIG. 3 shows the difference in the cured state depending on the sectional shape of the light beam 30. As shown in the lower part of the figure, the depth D 1 of the cured cross section 40a formed when the light beam 31 having the elliptical cross section shown in (I) is irradiated is (II)
The depth D 2 is much deeper than the depth D 2 of the cured cross section 40b formed when the light beam 32 having a circular cross section shown in FIG. Therefore, if the outputs of the light sources such as laser oscillators are the same, it can be seen that the light beam 31 having an elliptical cross section can have a deeper curing depth than the light beam 32 having a circular cross section. Therefore, the one-layer photocurable layer 40
In order to make the curing depths of the light beam 31 having an elliptical cross section and the light beam 32 having a circular cross section the same, it is preferable to adjust the output of the light source.

【0024】図4は、断面楕円形状の光ビーム31と断
面円形状光ビーム32の硬化深さの違いを利用して、作
業能率を向上させる方法を示している。まず、断面楕円
形状の光ビーム31の硬化深さD1 を、断面円形状の光
ビーム32の硬化深さD2 の2倍に設定しておく。そし
て、光硬化層40の外周縁領域への断面円形状の光ビー
ム32の照射を、2層分積み重ねて形成した後、2層分
の光硬化部分40bの内側領域に、断面楕円形状の光ビ
ーム31によるラスタ走査を1回行えば、2層分すなわ
ち深さD1 の硬化作業が完了することになる。図5に示
すように、断面円形状の光ビーム32(硬化深さD2
のみを用いる従来の方法に比べて、内側領域の硬化工程
を1回分省略できることになる。光硬化層40の大部分
を占める内側領域の硬化工程を短縮化できれば、作業時
間全体の短縮および能率化に大きな効果を発揮できる。
FIG. 4 shows a method for improving work efficiency by utilizing the difference in curing depth between the light beam 31 having an elliptical cross section and the light beam 32 having a circular cross section. First, the curing depth D 1 of the light beam 31 having an elliptical cross section is set to be twice the curing depth D 2 of the light beam 32 having a circular cross section. Then, irradiation of the light beam 32 having a circular cross-section to the outer peripheral region of the photo-curing layer 40 is formed by stacking two layers, and then light having an elliptical cross-section is formed in the inner region of the photo-curing portion 40b for two layers. If the raster scanning by the beam 31 is performed once, the curing work for two layers, that is, the depth D 1 is completed. As shown in FIG. 5, a light beam 32 having a circular cross section (curing depth D 2 )
This means that the curing process for the inner region can be omitted once, as compared with the conventional method using only one. If the curing process of the inner region, which occupies most of the photo-curable layer 40, can be shortened, it is possible to exert a great effect on shortening the entire working time and improving efficiency.

【0025】つぎに、図6は、レーザ発振器などの光源
から照射される光ビーム30から、断面楕円形状の光ビ
ーム31または断面円形状の光ビーム32を簡単に取り
出すことのできる光ビーム変更機構の構造を示してい
る。光ビーム30の通過経路に、一対のレンズ36、3
7を配置している。レンズ36、37は、1面が平坦f
であるととに、その対向面は断面円弧状に突出した円弧
凸面gとなっており、いわゆるカマボコ型のレンズとな
っている。そして、いずれか一方、もしくは両方のレン
ズ36、37が、光ビーム30と直交する面内で回転自
在であるとともに、光ビーム30の光軸方向に移動自在
で、互いの間隔を変更できるように取り付けられてい
る。
Next, FIG. 6 shows a light beam changing mechanism capable of easily extracting a light beam 31 having an elliptical cross section or a light beam 32 having a circular cross section from a light beam 30 emitted from a light source such as a laser oscillator. The structure of is shown. A pair of lenses 36, 3 are provided in the passage of the light beam 30.
7 are arranged. One surface of the lenses 36 and 37 is flat f
In addition, the opposing surface is a circular arc convex surface g protruding in a circular arc shape in cross section, which is a so-called chamfered lens. One or both of the lenses 36 and 37 are rotatable in a plane orthogonal to the light beam 30 and movable in the optical axis direction of the light beam 30 so that the distance between them can be changed. It is installed.

【0026】このようなレンズ系に光ビーム30を通過
させれば、まず、図6のように、レンズ36と37の円
弧凸面gの軸方向が直交している状態では、図7の(a)
に示すように、通常の断面円形状の光ビーム32が得ら
れる。そして、レンズ36、37の間隔を調整すること
によって、ビーム径が拡大縮小できる。つぎに、レンズ
36と37の円弧凸面gの軸方向が互いに平行で、いず
れも垂直方向を向いていれば、図7の(b) に示すよう
に、長軸が垂直方向を向いた断面楕円形状の光ビーム3
1が得られる。レンズ36と37の円弧凸面gの軸方向
が平行で、水平あるいは斜めを向いていれば、図7の
(c)(d)に示すように、長軸がそれぞれの方向を向いた断
面楕円形状の光ビーム31が得られる。さらに、図示し
ないが、レンズ36と37の円弧凸面gの軸方向を平行
状態と直交状態の間で一定の角度交差した状態にすれ
ば、断面楕円形状の長軸と短軸の比率を任意に調整する
ことができる。
When the light beam 30 is passed through such a lens system, first, as shown in FIG. 6, in the state where the axial directions of the arc convex surfaces g of the lenses 36 and 37 are orthogonal to each other, as shown in FIG. )
As shown in FIG. 5, a light beam 32 having a normal circular cross section is obtained. The beam diameter can be enlarged or reduced by adjusting the distance between the lenses 36 and 37. Next, if the axial directions of the arcuate convex surfaces g of the lenses 36 and 37 are parallel to each other and both face the vertical direction, as shown in FIG. 7 (b), a cross-section ellipse whose major axis faces the vertical direction. Shaped light beam 3
1 is obtained. If the arcuate convex surfaces g of the lenses 36 and 37 are parallel in the axial direction and are oriented horizontally or obliquely,
As shown in (c) and (d), a light beam 31 having an elliptical cross section whose major axis faces each direction is obtained. Further, although not shown, if the axial directions of the arcuate convex surfaces g of the lenses 36 and 37 intersect at a certain angle between the parallel state and the orthogonal state, the ratio between the major axis and the minor axis of the elliptical cross section can be arbitrarily set. Can be adjusted.

【0027】上記のような光ビーム変更機構を用いれ
ば、非常に簡単な構造で、様々な断面形状の光ビーム3
0が簡単に得られる。
If the light beam changing mechanism as described above is used, the light beam 3 having various cross-sectional shapes can be obtained with a very simple structure.
0 is easily obtained.

【0028】[0028]

【発明の効果】以上に述べた、この発明にかかる三次元
形状の形成方法によれば、光硬化層のうち、内側領域は
断面楕円形状の光ビームによる直線的な走査の繰り返
し、すなわちラスタ走査により、能率的に硬化作業を行
うことができるとともに、外周縁領域は、断面円形状の
光ビームによる輪郭形状に沿ったベクトル走査により、
外形が滑らかで外形精度の高い光硬化層を形成すること
ができる。その結果、高速で能率的に作業が行えると同
時に、得られた三次元形状は高精度で仕上がり良好なも
のとなる。しかも、前記のように、光ビームの形状と走
査方法の組み合わせを選択するだけで、使用する装置の
基本的な構造や個々の作業工程は、通常の三次元形状の
形成方法と同じでよいので、作業は容易で設備コストも
掛からず、極めて簡単かつ経済的である。
According to the method for forming a three-dimensional shape of the present invention described above, the inner region of the photo-curing layer is repeatedly scanned linearly by a light beam having an elliptical cross section, that is, raster scanning. Thus, the curing work can be performed efficiently, and the outer peripheral edge region is subjected to vector scanning along the contour shape by the light beam having a circular cross section,
It is possible to form a photocurable layer having a smooth outer shape and a high outer shape accuracy. As a result, the work can be performed efficiently at high speed, and at the same time, the obtained three-dimensional shape is highly accurate and has a good finish. Moreover, as described above, the basic structure of the device to be used and the individual working steps may be the same as those for forming a normal three-dimensional shape by simply selecting the combination of the shape of the light beam and the scanning method. The work is easy and does not require facility cost, and it is extremely simple and economical.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の実施例を示す概略断面図FIG. 1 is a schematic sectional view showing an embodiment of the present invention.

【図2】 光ビームの走査方法を示す説明図FIG. 2 is an explanatory diagram showing a scanning method of a light beam.

【図3】 光ビームによる硬化状態を示す説明図FIG. 3 is an explanatory view showing a cured state by a light beam.

【図4】 作業工程の1例を示す概略断面図FIG. 4 is a schematic sectional view showing an example of a work process.

【図5】 従来の作業工程を示す概略断面図FIG. 5 is a schematic sectional view showing a conventional working process.

【図6】 光ビーム変更機構の斜視図FIG. 6 is a perspective view of a light beam changing mechanism.

【図7】 光ビーム変更機構で得られる光ビームの数例
を示すパターン図
FIG. 7 is a pattern diagram showing several examples of a light beam obtained by the light beam changing mechanism.

【符号の説明】[Explanation of symbols]

20 光硬化性樹脂液 30 光ビーム 31 断面楕円形状の光ビーム 32 断面円形状の光ビーム 40 光硬化層 S 輪郭形状 20 light curable resin liquid 30 light beam 31 light beam having elliptical cross section 32 light beam having circular cross section 40 light curable layer S contour shape

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年10月3日[Submission date] October 3, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0010[Correction target item name] 0010

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0010】光ビーム変更機構の具体的構造としては、
例えば、1面が平坦でその対向面が円弧凸面になったカ
マボコ型のレンズ(シリンドリカルレンズ)を2枚1組
に組み合わせて、相対的に回転自在に取り付けておけ
ば、互いの円弧凸面を平行に配置したときには、円弧凸
面の軸方向を長軸とする断面楕円形状の光ビームが得ら
れ、互いの円弧凸面を直交するように配置したときに
は、断面円形状の光ビームが得られる。互いの円弧凸面
の交差角度を調整すれば、楕円の短軸と長軸の比率を自
由に変更できる。
As a concrete structure of the light beam changing mechanism,
For example, if two pairs of Kamaboko type lenses (cylindrical lenses) , one of which is flat and the opposite surface of which is an arcuate convex surface, are combined so as to be relatively rotatable, the arcuate convex surfaces are parallel to each other. When arranged so as to obtain a light beam having an elliptical cross section whose major axis is the axial direction of the circular arc convex surface, and when arranging so that the circular arc convex surfaces are orthogonal to each other, a light beam having a circular cross section is obtained. The ratio of the minor axis to the major axis of the ellipse can be freely changed by adjusting the intersection angle of the arc convex surfaces of each other.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】図4は、断面楕円形状の光ビーム31と断
面円形状光ビーム32の硬化深さの違いを利用して、作
業能率を向上させる方法を示している。例えば、断面楕
円形状の光ビーム31の硬化深さDを、断面円形状の
光ビーム32の硬化深さDの2倍に設定しておく。そ
して、光硬化層40の外周縁領域への断面円形状の光ビ
ーム32の照射を、2層分積み重ねて形成した後、2層
分の光硬化部分40bの内側領域に、断面楕円形状の光
ビーム31によるラスタ走査を1回行えば、2層分すな
わち深さDの硬化作業が完了することになる。図5に
示すように、断面円形状の光ビーム32(硬化深さ
)のみを用いる従来の方法に比べて、内側領域の硬
化工程を1回省略できることになる。光硬化層40の大
部分を占める内側領域の硬化工程を短縮化できれば、作
業時間全体の短縮および能率化に大きな効果を発揮でき
る。
FIG. 4 shows a method for improving work efficiency by utilizing the difference in curing depth between the light beam 31 having an elliptical cross section and the light beam 32 having a circular cross section. For example , the curing depth D 1 of the light beam 31 having an elliptical cross section is set to twice the curing depth D 2 of the light beam 32 having a circular cross section. Then, irradiation of the light beam 32 having a circular cross-section to the outer peripheral region of the photo-curing layer 40 is formed by stacking two layers, and then light having an elliptical cross-section is formed in the inner region of the photo-curing portion 40b for two layers. If the raster scanning by the beam 31 is performed once, the curing work for two layers, that is, the depth D 1 is completed. As shown in FIG. 5, as compared with the conventional method using only the light beam 32 having a circular cross section (curing depth D 2 ), the curing process for the inner region can be omitted once. If the curing process of the inner region, which occupies most of the photo-curable layer 40, can be shortened, it is possible to exert a great effect on shortening the entire working time and improving efficiency.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光硬化性樹脂液の薄層に光を照射して所
定形状の光硬化層を形成し、この光硬化層を複数層積み
重ねて所望の三次元形状を形成する方法において、光硬
化層のうち外周縁を除く内側部分となる領域に光を照射
するときには、断面楕円形状の光ビームを用いて、直線
的な走査を繰り返し、光硬化層のうち外周縁となる領域
に光を照射するときには、断面円形状の光ビームを用い
て、外周縁の輪郭形状に沿って走査することを特徴とす
る三次元形状の形成方法。
1. A method of irradiating a thin layer of a photocurable resin liquid with light to form a photocurable layer having a predetermined shape, and stacking a plurality of the photocurable layers to form a desired three-dimensional shape. When irradiating light to the inner part of the hardened layer excluding the outer peripheral edge, a linear beam is repeated using a light beam having an elliptical cross section, and the light is applied to the outer peripheral part of the photocured layer. A method for forming a three-dimensional shape, characterized in that, when irradiation is performed, a light beam having a circular cross section is used and scanning is performed along the contour shape of the outer peripheral edge.
JP3006015A 1991-01-22 1991-01-22 3D shape forming method Expired - Fee Related JP2919982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006015A JP2919982B2 (en) 1991-01-22 1991-01-22 3D shape forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006015A JP2919982B2 (en) 1991-01-22 1991-01-22 3D shape forming method

Publications (2)

Publication Number Publication Date
JPH06254971A true JPH06254971A (en) 1994-09-13
JP2919982B2 JP2919982B2 (en) 1999-07-19

Family

ID=11626880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006015A Expired - Fee Related JP2919982B2 (en) 1991-01-22 1991-01-22 3D shape forming method

Country Status (1)

Country Link
JP (1) JP2919982B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885155A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Optically molding apparatus and method therefor
JPH10138349A (en) * 1996-11-11 1998-05-26 Meiko:Kk Method for laminating stereo lithography
JP2000272016A (en) * 1999-02-08 2000-10-03 Three D Syst Inc Stereolithographic method and apparatus for forming three-dimensional object using multiple beams of different diameters
JP2013526349A (en) * 2010-05-12 2013-06-24 ディスカス デンタル,エルエルシー Dental light device with identification means
CN103350572A (en) * 2013-07-18 2013-10-16 符晓友 3D stack printing method and 3D stack printer
US9776243B2 (en) 2014-03-05 2017-10-03 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1442869A4 (en) * 2001-08-16 2008-12-24 Riken Rapid prototyping method and device using v-cad data

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0885155A (en) * 1994-09-20 1996-04-02 Hitachi Ltd Optically molding apparatus and method therefor
JPH10138349A (en) * 1996-11-11 1998-05-26 Meiko:Kk Method for laminating stereo lithography
JP2000272016A (en) * 1999-02-08 2000-10-03 Three D Syst Inc Stereolithographic method and apparatus for forming three-dimensional object using multiple beams of different diameters
JP2013526349A (en) * 2010-05-12 2013-06-24 ディスカス デンタル,エルエルシー Dental light device with identification means
CN103350572A (en) * 2013-07-18 2013-10-16 符晓友 3D stack printing method and 3D stack printer
US9776243B2 (en) 2014-03-05 2017-10-03 Panasonic Intellectual Property Management Co., Ltd. Method for manufacturing three-dimensional shaped object

Also Published As

Publication number Publication date
JP2919982B2 (en) 1999-07-19

Similar Documents

Publication Publication Date Title
JP3378862B2 (en) Method and apparatus for forming a three-dimensional object
JP2715527B2 (en) 3D shape forming method
JPH0342233A (en) Optical shaping method
JPH02111528A (en) Forming method of three-dimensional form
KR102031070B1 (en) 3D printer using DLP mirror
JPH06254971A (en) Formation of three-dimensional shape
JP2002127260A (en) Method for manufacturing three-dimensional item
JP2676838B2 (en) 3D image formation method
JP2000263650A (en) Stereo lithographic apparatus
JPH10119136A (en) Photo-shaping method using selected light sources and stereoscopially shaped article to be obtained by the method
JPH04113828A (en) Manufacture of large-sized stereo-resin model and device therefor
JPH02153722A (en) Optical molding method
JP3782049B2 (en) Stereolithography method and apparatus therefor
JP3458593B2 (en) Method for forming a three-dimensional shape
Pan et al. Dynamic resolution control in a laser projection-based stereolithography system
JPH01228828A (en) Optical shaping method
JP3490491B2 (en) Stereolithography product manufacturing method and stereolithography apparatus
JPS63145016A (en) Device for forming solid shape
JP2000066029A (en) Production of light transmission plate and production of metal mold utilizing the light transmission plate
JPH08238678A (en) Optically molding machine
JP2003181942A (en) Method and apparatus for optically stereoscopically molding
JPH05169551A (en) Method of forming three-dimensional image
JPH0514839Y2 (en)
JPH01237122A (en) Optical shaping method for thick wall section
JPH0224124A (en) Optical shaping method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees