JPH0625448B2 - Insulation structure - Google Patents

Insulation structure

Info

Publication number
JPH0625448B2
JPH0625448B2 JP58164414A JP16441483A JPH0625448B2 JP H0625448 B2 JPH0625448 B2 JP H0625448B2 JP 58164414 A JP58164414 A JP 58164414A JP 16441483 A JP16441483 A JP 16441483A JP H0625448 B2 JPH0625448 B2 JP H0625448B2
Authority
JP
Japan
Prior art keywords
film
heat insulating
vacuum
container
thermal conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58164414A
Other languages
Japanese (ja)
Other versions
JPS6055148A (en
Inventor
寛 米野
將市 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58164414A priority Critical patent/JPH0625448B2/en
Publication of JPS6055148A publication Critical patent/JPS6055148A/en
Publication of JPH0625448B2 publication Critical patent/JPH0625448B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Building Environments (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は断熱板、特に真空充填断熱構造体に関するもの
である。
Description: FIELD OF THE INVENTION The present invention relates to a heat insulating plate, and more particularly to a vacuum filled heat insulating structure.

従来例の構成とその問題点 従来、断熱材としてガラス繊維,石綿,珪酸カルシウム
などの無機材料や、発泡ポリウレタン,発泡ポリスチレ
ンなどの有機材料が知られている。このような無機材料
は耐熱性や機械的強度は良好であるが、熱伝導率は0.
03〜0.05Kcal/mh℃で、断熱効果はあまりよく
ない。低温用保温断熱材としては硬質発泡ポリウレタン
が一般に使用され、0.015Kcal/mh℃の熱伝導率
が達成されているが、これ以上の断熱性能を向上するこ
とは容易でない状況にある。また、液化窒素タンクや冷
凍庫などの極低温用保冷材として、二重壁構成の容器の
間隙に発泡パーライト等を充填し、0.001Torr
以下の高真空に排気した粉末真空断熱法が知られている
が、高真空に耐えるよう厚肉にする必要があり、その結
果、重量が重くなり、また、密封部を通じる熱伝導が多
くなるため、断熱性能が悪くなるなどの欠点がある。
Conventional Structure and Problems Thereof Inorganic materials such as glass fiber, asbestos and calcium silicate, and organic materials such as expanded polyurethane and expanded polystyrene are known as heat insulating materials. Such an inorganic material has good heat resistance and mechanical strength, but has a thermal conductivity of 0.
At 03-0.05Kcal / mh ℃, the heat insulation effect is not so good. Hard foamed polyurethane is generally used as a heat insulating material for low temperature, and a thermal conductivity of 0.015 Kcal / mh ° C has been achieved, but it is not easy to improve the heat insulating performance further. Further, as a cryogenic material for cryogenic temperatures such as a liquefied nitrogen tank and a freezer, foamed perlite or the like is filled in the gap of a double-walled container to obtain 0.001 Torr.
The following powder vacuum adiabatic method is known in which the material is evacuated to a high vacuum, but it needs to be thick to withstand the high vacuum, resulting in a heavy weight and increased heat conduction through the sealed portion. Therefore, there are drawbacks such as poor heat insulation performance.

この欠点を除去する対策として、真空容器として、ポリ
塩化ビニリデンや延伸ポリビニルアルコールなどの気体
遮断性フィルムを使用した多層ラミネートフィルムを使
用することが提案されているが、気体遮断性が完全でな
く、空気や湿気が真空容器の内部に徐々に侵入して真空
容器内の気圧が高くなるため、断熱性能が劣化するとい
う欠点がある。また、30μm厚以上のアルミニウム箔
を使用したラミネートフィルムの使用も提案されている
が、このアルミニウム部を通じて熱が移動し、断熱性能
の向上効果は非常に少ないという欠点がある。特に硬質
発泡ポリウレタンの熱伝導率0.015Kcal/mh℃よ
りも断熱性能を向上して、0.010Kcal/mh℃より
も小さい熱伝導率の断熱板を得るためには、このアルミ
ニウム箔の厚さが熱伝導率に大きく悪影響を与えるとい
う欠点があった。
As a measure to eliminate this drawback, it has been proposed to use a multilayer laminate film using a gas barrier film such as polyvinylidene chloride or stretched polyvinyl alcohol as a vacuum container, but the gas barrier property is not perfect, Since air and humidity gradually enter the inside of the vacuum container to increase the atmospheric pressure inside the vacuum container, there is a drawback that the heat insulating performance deteriorates. Further, it has been proposed to use a laminated film using an aluminum foil having a thickness of 30 μm or more, but there is a drawback that heat is transferred through the aluminum portion and the effect of improving the heat insulating performance is very small. In particular, in order to improve the heat insulation performance of hard foamed polyurethane to 0.015 Kcal / mh ° C and to obtain a heat insulation plate having a heat conductivity of less than 0.010 Kcal / mh ° C, the thickness of this aluminum foil Has a drawback that it greatly affects the thermal conductivity.

また、アルミニウム箔を使用したラミネートフィルムを
使用して真空密封したときに、内容物の形状に密着して
ラミネートフィルムが折れ曲がるが、このとき、折れ曲
がった部分にピンホールまたは小さな亀裂が発生しやす
く、真空漏れが起こる結果断熱性能が悪化するという欠
点もある。
Also, when vacuum-sealing using a laminate film using aluminum foil, the laminate film bends in close contact with the shape of the contents, but at this time, pinholes or small cracks easily occur in the bent portion, There is also a drawback that the heat insulation performance is deteriorated as a result of vacuum leakage.

発明の目的 本発明は上記従来の欠点を除去し、断熱特性が優れ、さ
らに真空漏れが少なく断熱性能が劣化しない断熱構造体
を提供することを目的とする。
OBJECT OF THE INVENTION It is an object of the present invention to eliminate the above-mentioned conventional drawbacks and to provide a heat insulating structure having excellent heat insulating properties, less vacuum leakage, and no deterioration in heat insulating performance.

発明の構成 本発明はラミネートフィルム容器内に断熱材が充填さ
れ、その容器内が真空に排気され、密封された断熱構造
体において、ラミネートフィルムとして、金属膜が蒸着
されたブラスチックフィルムを、少なくとも2層を含有
してなるラミネートフィルムを使用するものであり、ラ
ミネートフィルム容器を伝わる熱伝導が小さく、真空充
填断熱構造体の見かけの熱伝導率が小さくなるという利
点があり、さらにラミネートフィルムの気体透過性や湿
度透過性が小さくなるなど真空保持性が優れているため
に、熱伝導率の経時劣化が少ないという効果を有する。
Configuration of the Invention The present invention is a laminated film container filled with a heat insulating material, the container is evacuated to a vacuum, in a sealed heat insulating structure, as a laminate film, at least a metal film-deposited plastic film, A laminated film containing two layers is used, which has the advantages that thermal conductivity transmitted through the laminated film container is small and the apparent thermal conductivity of the vacuum-filled heat insulating structure is small. Since the vacuum holding property is excellent such that the permeability and the humidity permeability are reduced, the thermal conductivity is less deteriorated with time.

実施例の説明 以下、本発明の実施例を図面を参照しながら説明する。
第1図は本発明の断熱構造体の基本構成の断面図であ
る。1はラミネートフィルム容器であり、2は断熱材で
あり、ラミネートフィルム容器1の内部に充填され、そ
の空隙は真空に保持されている。3はラミネートフイル
ムの密封部である。
Description of Embodiments Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view of the basic structure of the heat insulating structure of the present invention. Reference numeral 1 denotes a laminated film container, 2 denotes a heat insulating material, which is filled inside the laminated film container 1 and its void is kept in a vacuum. Reference numeral 3 is a sealed portion of the laminate film.

断熱材2の材質については特に制限はないが、シリカ,
パーライト,珪藻土などの粉末,ガラス繊維,セラミッ
ク繊維,ポリエステル繊維,アスベストなどの繊維集合
体,発泡プラスチック成形体,発泡パーライト,シリカ
マイクロバルーンなどの中空球殻状粉末などを使用すれ
ばよく、その断熱材の種類によって断熱構造体の熱伝導
率は異なってくる。
The material of the heat insulating material 2 is not particularly limited, but silica,
It is sufficient to use powders such as perlite and diatomaceous earth, glass fibers, ceramic fibers, polyester fibers, fiber aggregates such as asbestos, foamed plastic moldings, foamed perlite, hollow spherical shell powders such as silica microballoons, etc. The thermal conductivity of the heat insulating structure varies depending on the type of material.

第2図はラミネートフィルム1の基本構成の拡大断面図
である。4は内層の熱融着密封層で、材質に特に制限は
ないが、ポリエチレンやポリプロピレンなどの10〜2
00μm厚のフィルム層である。5は金属膜が蒸着され
たプラスチックフィルムで、プラスチックフィルム6の
上に金属膜7が蒸着されている。8は金属膜が蒸着され
たプラスチックフィルムで、プラスチックフィルム9の
上記金属膜10が蒸着されている。金属膜7,10につ
いては特にアルミニウム膜が望ましい。また金属膜7、
10の膜厚は0.02μm以上が望ましく、0.02μ
mよりも薄い場合には、気体透過が多いために真空漏れ
が生じて、断熱特性の劣化が起こる。なお、一般に、金
属膜の厚さが厚くなるに従って断熱構造体の断熱性能が
低下する傾向にあるが、蒸着による金属膜厚は後述する
実施例に示すごとく0.2μm程度のものまで形成可能
である。0.2μm程度の厚さであれば断熱性能上の問
題もない。プラスチックフィルム6、9は材質に特に制
限がなく、ポリエステル,ポリアミド,延伸ポリエステ
ル,延伸ポリプロピレン,延伸ポリビニルアルコール,
ポリ塩化ビニリデン,ポリアクリル,ポリエチレン−ビ
ニルアルコール共重合体などのフィルムが使用される。
金属膜が蒸着されたフィルム5、8は同じ材質であって
も,また異なる材質であっても、いずれも使用可能であ
る。これらの内層4と金属膜が蒸着されたフィルム5、
8の各層は接着剤で接着されてラミネートフィルムを構
成する。
FIG. 2 is an enlarged cross-sectional view of the basic structure of the laminated film 1. Reference numeral 4 denotes an inner heat-sealing layer, which is not particularly limited in material, but is made of polyethylene, polypropylene or the like 10-2.
It is a film layer having a thickness of 00 μm. Reference numeral 5 denotes a plastic film having a metal film deposited thereon, and a metal film 7 is deposited on the plastic film 6. Reference numeral 8 is a plastic film having a metal film deposited thereon, and the metal film 10 of the plastic film 9 is deposited thereon. The metal films 7 and 10 are preferably aluminum films. In addition, the metal film 7,
The film thickness of 10 is preferably 0.02 μm or more, 0.02 μm
When the thickness is less than m, a large amount of gas permeates, resulting in vacuum leakage and deterioration of heat insulating properties. Generally, as the thickness of the metal film becomes thicker, the heat insulating performance of the heat insulating structure tends to decrease, but the metal film thickness by vapor deposition can be formed up to about 0.2 μm as shown in Examples described later. is there. If the thickness is about 0.2 μm, there is no problem in heat insulation performance. The material of the plastic films 6 and 9 is not particularly limited, and polyester, polyamide, stretched polyester, stretched polypropylene, stretched polyvinyl alcohol,
Films of polyvinylidene chloride, polyacrylic, polyethylene-vinyl alcohol copolymer, etc. are used.
The films 5 and 8 on which the metal film is vapor-deposited can be made of the same material or different materials. The inner layer 4 and the film 5 on which the metal film is deposited,
Each layer of 8 is adhered with an adhesive to form a laminated film.

つぎに、具体的な実施例によってさらに詳しく説明す
る。なお本実施例において、熱伝導率の測定はダイナテ
ック社のK−マチック熱伝導率測定装置を用いて、AS
TM−C518に準拠した方法で13℃と35℃との温
度差における熱伝導率を測定した。
Next, a more detailed description will be given with reference to specific examples. In this example, the thermal conductivity was measured using a K-matic thermal conductivity measuring device manufactured by Dynatec Co., Ltd.
The thermal conductivity in the temperature difference between 13 ° C. and 35 ° C. was measured by the method based on TM-C518.

実施例1 発泡パーライト粉砕粉末(平均粒径10μm)をポリエ
ステル不織布袋に充填し、それを熱融着層がポリエチレ
ン(厚さ60μm),中間層および表面層がアルミニウ
ム蒸着(蒸着厚さ0.01μm,0.02μm,0.0
4μm,0.06μm,0.1μmおよび0.2μm)
されたポリエチレンテレフタレート(厚さ12μm)の
三層のフィルムをポリウレタン系の接着剤で貼り合わせ
たそれぞれのラミネートフィルム容器に充填し、これを
熱融着密封装置を具備した真空用容器に置いて、0.1
Torrの真空度に排気した状態で、フィルム容器の開
放部を加熱融着密封を行なった後、真空用容器内に大気
を導入して大気圧に戻し、厚さ2cm,横幅30cm,縦幅
30cmの内部が真空に排気された真空充填断熱板を得
た。
Example 1 A crushed powder of expanded perlite (average particle size: 10 μm) was filled in a polyester non-woven bag, and the heat-sealing layer was polyethylene (thickness: 60 μm), and the intermediate layer and the surface layer were vapor-deposited with aluminum (deposition thickness: 0.01 μm) , 0.02 μm, 0.0
4 μm, 0.06 μm, 0.1 μm and 0.2 μm)
The polyethylene terephthalate (thickness: 12 μm) three-layered film thus prepared was filled into each laminated film container bonded with a polyurethane adhesive, and the container was placed in a vacuum container equipped with a heat-sealing device. 0.1
After evacuating to a vacuum degree of Torr, the open part of the film container was heat-sealed and sealed, and then the atmosphere was introduced into the vacuum container to return to atmospheric pressure, and the thickness was 2 cm, the width was 30 cm, and the length was 30 cm. A vacuum-filled heat insulating plate whose inside was evacuated to vacuum was obtained.

得られたそれぞれの真空充填断熱板について初期の熱伝
導率,温度50℃、相対湿度90%雰囲気中で30日間
放置後の熱伝導および50℃フロン−11ガス雰囲気で
30日間放置後の熱伝導率を第1表に示した。
Regarding each of the obtained vacuum-filled heat insulating plates, the initial thermal conductivity, the thermal conductivity after being left for 30 days in an atmosphere of 50 ° C. and a relative humidity of 90%, and the thermal conductivity after being left for 30 days in a 50 ° C. Freon-11 gas atmosphere. The rates are shown in Table 1.

アルミニウム蒸着膜の厚さが0.01μm,0.02μ
m,0.04μm,0.06μm,0.1μmおよび
0.2μmのポリエステルフィルムの二層を含有するラ
ミネートフィルムを使用して得た真空断熱板(試料2,
3,4,5,6,7)の場合、温度50℃、相対湿度9
0%の雰囲気中30日放置後および50℃フロン−11
ガス中30日間放置後の熱伝導率は、アルミニウム蒸着
膜の厚さが厚くなるにしたがって小さくなり、断熱性能
の経時劣化は少なくなる。アルミニウム蒸着膜の厚さが
0.01μm厚以下のときには30日後の熱伝導率が
0.01Kcal/mh℃より大きくなり、経時劣化が大き
い。またアルミニウム蒸着フィルムを1層だけ含有する
ラミネートフィルム容器を使用した場合(試料8,
9)、30日放置後の熱伝導率はいずれも大きく劣化し
た。
Aluminum vapor deposition film thickness is 0.01μm, 0.02μ
Vacuum insulation board obtained using a laminated film containing two layers of polyester film of m, 0.04 μm, 0.06 μm, 0.1 μm and 0.2 μm (Sample 2,
In the case of 3, 4, 5, 6, 7), the temperature is 50 ° C and the relative humidity is 9
After standing in 0% atmosphere for 30 days and at 50 ° C CFC-11
The thermal conductivity after being left in gas for 30 days becomes smaller as the thickness of the aluminum vapor deposition film becomes thicker, and the heat insulating performance is less deteriorated with time. When the thickness of the vapor-deposited aluminum film is 0.01 μm or less, the thermal conductivity after 30 days becomes larger than 0.01 Kcal / mh ° C., and deterioration with time is large. When a laminated film container containing only one aluminum vapor deposition film is used (Sample 8,
9), the thermal conductivity after being left for 30 days significantly deteriorated.

また、真空充填断熱板のアルミニウム蒸着膜には、アル
ミニウムのクラックやピンホールの発生は認められなか
った。
No aluminum cracks or pinholes were found in the aluminum vapor deposition film on the vacuum-filled heat insulating plate.

実施例2 第2表に示すような種々の断熱材およびアルミニウム蒸
着フィルムのラミネートフィルムを使用して、実施例1
と同じ方法で真空密封を行なって厚さ2cm,横幅30c
m,縦幅30cmのそれぞれの真空充填断熱板を得た。得
られたそれぞれの真空充填断熱板について初期の熱伝導
率,温度50℃、相対湿度90%雰囲気中30日間放置
後およ50℃フロン−11ガス雰囲気中30日間放置後
の熱伝導率を第2表に示した。
Example 2 Example 1 using various heat insulation materials and laminated films of aluminum vapor deposited film as shown in Table 2.
Vacuum-sealed in the same way as the above, thickness 2cm, width 30c
Each vacuum-filled heat insulating plate having a length of m and a height of 30 cm was obtained. For each of the obtained vacuum-filled heat insulating plates, the initial thermal conductivity, the thermal conductivity after leaving for 30 days in an atmosphere of 50 ° C. and a relative humidity of 90% and after leaving for 30 days in a 50 ° C. Freon-11 gas atmosphere were measured. The results are shown in Table 2.

第2表から明らかなように、アルミニウムが蒸着された
フィルムを少なくとも二層を含有するラミネートフィル
ムを使用した場合(試料10,13,15)、熱伝導率
の30日後の経時劣化が少ない。これに対してアルミニ
ウム蒸着層を1層だけ含有する場合(試料12)および
アルミニウム蒸着層を含有しない場合(試料11,1
4,16)30日間経過後の熱伝導率の劣化はいずれも
大きい。
As is clear from Table 2, when a laminate film containing at least two layers of aluminum vapor-deposited film is used (Samples 10, 13, and 15), thermal conductivity is less deteriorated after 30 days. On the other hand, when only one aluminum vapor deposition layer is included (Sample 12) and when no aluminum vapor deposition layer is included (Samples 11 and 1)
4, 16) The thermal conductivity deteriorates significantly after 30 days.

発明の効果 以上のように本発明は、ラミネートフィルム容器内に断
熱材が充填され、その容器内が真空に排気され、密封さ
れた断熱構造体において、ラミネートフィルムとして、
金属膜が蒸着されたプラスチックフィルム層を、少なく
とも二層を含有してなるラミネートフィルムを使用する
ことを特徴とする断熱構造体であり、初期の断熱性能を
悪化させることなく、ラミネートフィルムの気体透過や
湿気透過性が小さく、また真空封止後のアルミニウム蒸
着膜に亀裂やピンホールの発生がないなど真空保持性に
優れ、断熱性能の経時劣化が非常に少ない効果を有す
る。
Effects of the Invention As described above, the present invention is a laminate film container filled with a heat insulating material, the container is evacuated to a vacuum, in a sealed heat insulating structure, as a laminate film,
A heat insulating structure characterized by using a laminate film comprising at least two layers of a plastic film layer on which a metal film is vapor-deposited, and gas permeation of the laminate film without deteriorating the initial heat insulation performance. It has low moisture permeability, has excellent vacuum retention properties such as no cracks or pinholes in the aluminum vapor deposition film after vacuum sealing, and has the effect of significantly reducing deterioration of heat insulating performance over time.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の断熱構造体によって得られた断熱構造
体の基本構成を示す断面図、第2図は本発明の主要部で
あるラミネートフィルムの基本構成の拡大断面図であ
る。 1……ラミネートフィルム容器、2……断熱材、3……
ラミネートフィルムの密封部、4……熱融着内層、5,
8……金属膜が蒸着されたプラスチックフィルム、6,
9……プラスチックフィルム、7,10……金属膜。
FIG. 1 is a cross-sectional view showing the basic structure of a heat insulating structure obtained by the heat insulating structure of the present invention, and FIG. 2 is an enlarged cross-sectional view of the basic structure of a laminate film which is the main part of the present invention. 1 ... Laminated film container, 2 ... Insulation material, 3 ...
Laminated film sealing part, 4 ... Thermal fusion inner layer, 5,
8 ... Plastic film with metal film deposited 6,
9 ... Plastic film, 7, 10 ... Metal film.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ラミネートフィルム容器内に断熱材が充填
され、その容器内が真空に排気されて密封されてなる断
熱構造体において、前記ラミネートフィルム容器が、金
属膜が蒸着されたプラスチックフィルム層を、少なくと
も2層含有してなることを特徴とする断熱構造体。
1. A heat insulating structure in which a laminated film container is filled with a heat insulating material and the inside of the container is evacuated to a vacuum and sealed, wherein the laminated film container comprises a plastic film layer having a metal film deposited thereon. , A heat insulating structure comprising at least two layers.
【請求項2】金属膜がアルミニウム膜であることを特徴
とする特許請求の範囲第1項記載の断熱構造体。
2. The heat insulating structure according to claim 1, wherein the metal film is an aluminum film.
JP58164414A 1983-09-06 1983-09-06 Insulation structure Expired - Lifetime JPH0625448B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58164414A JPH0625448B2 (en) 1983-09-06 1983-09-06 Insulation structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58164414A JPH0625448B2 (en) 1983-09-06 1983-09-06 Insulation structure

Publications (2)

Publication Number Publication Date
JPS6055148A JPS6055148A (en) 1985-03-30
JPH0625448B2 true JPH0625448B2 (en) 1994-04-06

Family

ID=15792687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58164414A Expired - Lifetime JPH0625448B2 (en) 1983-09-06 1983-09-06 Insulation structure

Country Status (1)

Country Link
JP (1) JPH0625448B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032066A (en) * 2005-07-26 2007-02-08 Meisei Ind Co Ltd Heat insulating structure and heat insulating panel

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0746022B2 (en) * 1985-09-09 1995-05-17 松下冷機株式会社 Insulation
JP2837937B2 (en) * 1990-08-24 1998-12-16 松下電工株式会社 Sound insulation panel
JP2573351Y2 (en) * 1992-06-11 1998-05-28 象印マホービン株式会社 Vacuum insulation panel
US9169687B2 (en) * 2011-08-26 2015-10-27 Saint-Gobain Glass France Insulating glazing with thermal protection insulating panel

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121375A (en) * 1974-03-11 1975-09-23
JPS56127167A (en) * 1980-03-08 1981-10-05 Nippon Oxygen Co Ltd Application of vacuum construction
JPS57133870A (en) * 1981-01-30 1982-08-18 Tokyo Shibaura Electric Co Heat insulating structure
JPS58111498U (en) * 1982-01-25 1983-07-29 松下冷機株式会社 Vacuum insulation pack
JPS58143041A (en) * 1982-02-19 1983-08-25 松下電器産業株式会社 Heat insulating structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007032066A (en) * 2005-07-26 2007-02-08 Meisei Ind Co Ltd Heat insulating structure and heat insulating panel

Also Published As

Publication number Publication date
JPS6055148A (en) 1985-03-30

Similar Documents

Publication Publication Date Title
US4055268A (en) Cryogenic storage container
JPS6071881A (en) Heat-insulating structure
JPH0254479B2 (en)
JPH0625448B2 (en) Insulation structure
JP2000310392A (en) Vacuum heat insulating material
JPH0563715B2 (en)
JP2000310392A5 (en)
JPS6343669B2 (en)
JP3455251B2 (en) Vacuum insulation
JPS6060396A (en) Heat-insulating structure
JPS61144492A (en) Powder vacuum heat-insulating board
JP2911693B2 (en) Vacuum insulation structure
JPS58136434A (en) Heat-insulating structure and its manufacture
JPS6327192Y2 (en)
JP2003155651A (en) Vacuum heat insulation material and core material for vacuum heat insulation
JPS6210580A (en) Heat-insulating panel
JPS6311143B2 (en)
JPS5850393A (en) Composite heat insulating plate
JPS6410718B2 (en)
JPS6196288A (en) Heat-insulating material
JPH0557105B2 (en)
JPS6356858B2 (en)
JPH08152258A (en) Vacuum heat insulator
JPS6335911B2 (en)
JPH0383637A (en) Heat insulating structure