JPH06253527A - Retarder - Google Patents

Retarder

Info

Publication number
JPH06253527A
JPH06253527A JP3958193A JP3958193A JPH06253527A JP H06253527 A JPH06253527 A JP H06253527A JP 3958193 A JP3958193 A JP 3958193A JP 3958193 A JP3958193 A JP 3958193A JP H06253527 A JPH06253527 A JP H06253527A
Authority
JP
Japan
Prior art keywords
cylinder
retarder
eddy current
vortex
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3958193A
Other languages
Japanese (ja)
Other versions
JP2806727B2 (en
Inventor
Masazumi Akitani
正純 秋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sawafuji Electric Co Ltd
Original Assignee
Sawafuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sawafuji Electric Co Ltd filed Critical Sawafuji Electric Co Ltd
Priority to JP5039581A priority Critical patent/JP2806727B2/en
Publication of JPH06253527A publication Critical patent/JPH06253527A/en
Application granted granted Critical
Publication of JP2806727B2 publication Critical patent/JP2806727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

PURPOSE:To provide an air cooling structure of retarder for efficiently cooling an eddy current tube being heated by eddy current loss in which windage loss and noise due to radiation fins can be reduced. CONSTITUTION:The retarder comprises an eddy current tube 2, a plurality of pole cores 8 opposing thereto, and exciting coils 9 wound around respective pole cores 8, wherein the retarder produces brake power for the rotation of the eddy current tube 2 when current is fed to each exciting coil 9 to rotate the eddy current tube 2. The retarder is arranged with radiation fins 1 in the rotational direction of the tube on the eddy current tube 2 except the surface opposing to the pole core 8.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】最近,車両のエンジンにおいてタ
ーボ付きエンジンの割合が増加しているが,ターボ付き
エンジンはエンジンブレーキの効きが悪く,このことが
運転者の疲労や事故の発生の一因になっている。そこ
で,補助ブレーキとしてリターダの開発が行われてい
る。
[Industrial application] Recently, the proportion of turbocharged engines in vehicle engines has increased, but the effect of engine braking on turbocharged engines is poor, which is one of the causes of driver fatigue and accidents. It has become. Therefore, a retarder is being developed as an auxiliary brake.

【0002】本発明は,リターダの空冷構造,特に渦流
円筒に過電流を発生させ,当該渦電流を利用して制動ト
ルクを得る構成のリターダにおいて,渦電流損によって
発熱する渦流円筒を効率良く冷却するリターダの空冷構
造に関するものである。
The present invention efficiently cools an eddy current cylinder which generates heat due to eddy current loss in a retarder air-cooling structure, particularly in a retarder having a structure in which an overcurrent is generated in an eddy current cylinder and a braking torque is obtained by utilizing the eddy current. The present invention relates to an air cooling structure of a retarder.

【0003】[0003]

【従来の技術】図6は従来のリターダの部分正面図,図
7は従来のリターダの部分断面図を示している。当該従
来のリターダは,渦流円筒に渦電流を発生させ,当該渦
電流を利用して制動トルクを得る構成を有する。以下,
図6,図7に従い詳説する。図中において,1は放熱フ
ィン,2は渦流円筒,3はスポーク,4はフランジ,5
はシャフト,6は軸受,7は車体への取り付けステー,
8はポールコア,9は励磁コイルを示している。シャフ
ト5にフランジ4が固着され,フランジ4にスポーク3
が固着される。更にスポーク3は渦流円筒を支持する。
また,渦流円筒の外周には,回転方向と直角な方向に放
熱フィン1が複数個設けられている。上記シャフト5,
フランジ4,スポーク3,渦流円筒2及び放熱フィン1
は,一体となり回転自在である。当該シャフト5は,例
えば,車両のドライブシャフト等の制動トルクを必要と
する回転軸と,変速機構を介して,又は,直接に結合さ
れる。車体への取り付けステー7は,ボルトにより車体
に固定されるとともに,複数個のポールコア8を支持す
る。当該複数個のポールコア8には夫々励磁コイル9が
巻回される。また,上記ステー7は,軸受6を介してシ
ャフト5を支持する。
2. Description of the Related Art FIG. 6 is a partial front view of a conventional retarder, and FIG. 7 is a partial sectional view of a conventional retarder. The conventional retarder has a configuration in which an eddy current is generated in an eddy current cylinder and a braking torque is obtained by using the eddy current. Less than,
This will be described in detail with reference to FIGS. In the figure, 1 is a radiating fin, 2 is a vortex cylinder, 3 is a spoke, 4 is a flange, 5
Is a shaft, 6 is a bearing, 7 is a stay attached to the vehicle body,
Reference numeral 8 indicates a pole core, and 9 indicates an exciting coil. The flange 4 is fixed to the shaft 5, and the spoke 3 is attached to the flange 4.
Is fixed. Furthermore, the spokes 3 support swirl cylinders.
Further, a plurality of heat radiation fins 1 are provided on the outer circumference of the vortex flow cylinder in a direction perpendicular to the rotation direction. The shaft 5,
Flange 4, Spoke 3, Vortex cylinder 2 and Radiating fin 1
Are integrally rotatable. The shaft 5 is, for example, directly connected to a rotating shaft such as a drive shaft of a vehicle, which requires a braking torque, via a speed change mechanism or directly. The stay 7 attached to the vehicle body is fixed to the vehicle body by bolts and supports a plurality of pole cores 8. An exciting coil 9 is wound around each of the plurality of pole cores 8. The stay 7 also supports the shaft 5 via a bearing 6.

【0004】励磁コイル9に通電すると,ポールコア8
の渦流円筒2に対向する磁極が交互にN,S極に磁化さ
れる。即ち,隣接する磁極の極性が相異なるように磁化
される。すると,回転する渦流円筒2に渦電流が発生
し,当該渦電流と上記励磁コイル9による磁界との間で
渦流円筒2の回転方向と逆方向の電磁力が発生し,これ
が渦流円筒2の回転運動に対してブレーキ作用を及ぼ
す。この際,渦流円筒2が過電流損により発熱するので
放熱フィン1が設けられ,渦流円筒2を冷却するように
構成されている。
When the exciting coil 9 is energized, the pole core 8
The magnetic poles facing the vortex cylinder 2 are alternately magnetized into N and S poles. That is, the adjacent magnetic poles are magnetized so that their polarities are different from each other. Then, an eddy current is generated in the rotating eddy current cylinder 2, and an electromagnetic force in a direction opposite to the rotation direction of the eddy current cylinder 2 is generated between the eddy current and the magnetic field generated by the exciting coil 9, which causes the rotation of the eddy current cylinder 2. Exerts a braking action on movement. At this time, since the vortex cylinder 2 generates heat due to overcurrent loss, the radiating fins 1 are provided to cool the vortex cylinder 2.

【0005】[0005]

【発明が解決しようとする課題】従来のリターダにおい
ては,上記の如く,放熱フィンが回転方向と直角な方向
に設けられているので,空気の抵抗が大きく,風損及び
騒音が大きい。
In the conventional retarder, since the radiation fins are provided in the direction perpendicular to the rotation direction as described above, the air resistance is large and the windage loss and noise are large.

【0006】本発明は,放熱フィンによる風損及び騒音
を減少させることを目的とする。
An object of the present invention is to reduce windage loss and noise due to the radiation fins.

【0007】[0007]

【課題を解決するための手段】上記の課題を解決するた
めに,本発明のリターダは,渦流円筒と,上記渦流円筒
に対向する複数個のポールコアと,上記夫々のポールコ
アに巻回される励磁コイルとを有し,上記夫々の励磁コ
イルに電流が流れ,かつ,上記渦流円筒が回転するとき
に,当該渦流円筒の回転に対し制動力を生ずるリターダ
において,上記渦流円筒の上記ポールコアと対向する面
の反対の面に,円筒回転方向に放熱フィンを配置した構
成とした。
In order to solve the above-mentioned problems, the retarder of the present invention comprises a vortex cylinder, a plurality of pole cores facing the vortex cylinder, and an excitation coil wound around each of the pole cores. A retarder that has a coil and generates a braking force for the rotation of the vortex cylinder when a current flows through each of the exciting coils and the vortex cylinder rotates, and faces the pole core of the vortex cylinder. The radiation fins are arranged in the direction of rotation of the cylinder on the surface opposite to the surface.

【0008】[0008]

【実施例】図1は実施例1のリターダの部分正面図,図
2は実施例1のリターダの部分断面図,図8は実施例2
の説明図を示している。当該実施例のリターダは,渦流
円筒に渦電流を発生させ,当該渦電流を利用して制動ト
ルクを得る構成を有する。以下,図1,図2に従い詳説
する。図中において,1は放熱フィン,1−1,1−2
は夫々放熱フィンの一部,2は渦流円筒,3はスポー
ク,4はフランジ,5はシャフト,6は軸受,7は車体
への取り付けステー,8はポールコア,9は励磁コイル
を示している。シャフト5にフランジ4が固着され,フ
ランジ4にスポーク3が固着される。更にスポーク3は
渦流円筒を支持する。また,渦流円筒の外周には,回転
方向と平行な方向に放熱フィン1が複数個設けられてい
る。上記シャフト5,フランジ4,スポーク3,渦流円
筒2及び放熱フィン1は,一体となり回転自在である。
当該シャフト5は,例えば,車両のドライブシャフト等
の制動トルクを必要とする回転軸と,変速機構を介し
て,又は,直接に結合される。車体への取り付けステー
7は,ボルトにより車体に固定されるとともに,複数個
のポールコア8を支持する。当該複数個のポールコア8
には夫々励磁コイル9が巻回される。また,上記ステー
7は,軸受6を介してシャフト5を支持する。
1 is a partial front view of a retarder of the first embodiment, FIG. 2 is a partial sectional view of the retarder of the first embodiment, and FIG.
FIG. The retarder of the embodiment has a configuration in which an eddy current is generated in the eddy current cylinder and the braking torque is obtained by using the eddy current. The details will be described below with reference to FIGS. In the figure, 1 is a radiation fin, 1-1, 1-2
Is a part of a radiation fin, 2 is a vortex cylinder, 3 is a spoke, 4 is a flange, 5 is a shaft, 6 is a bearing, 7 is a stay for mounting on a vehicle body, 8 is a pole core, and 9 is an exciting coil. The flange 4 is fixed to the shaft 5, and the spoke 3 is fixed to the flange 4. Furthermore, the spokes 3 support swirl cylinders. Further, a plurality of heat radiation fins 1 are provided on the outer circumference of the vortex flow cylinder in a direction parallel to the rotation direction. The shaft 5, the flange 4, the spokes 3, the swirl cylinder 2 and the heat radiation fin 1 are integrally rotatable.
The shaft 5 is, for example, directly connected to a rotating shaft such as a drive shaft of a vehicle, which requires a braking torque, via a speed change mechanism or directly. The stay 7 attached to the vehicle body is fixed to the vehicle body by bolts and supports a plurality of pole cores 8. The plurality of pole cores 8
An exciting coil 9 is wound around each of them. The stay 7 also supports the shaft 5 via a bearing 6.

【0009】励磁コイル9に通電すると,ポールコア8
の渦流円筒2に対向する磁極が交互にN,S極に磁化さ
れる。即ち,隣接する磁極の極性が相異なるように磁化
される。すると,回転する渦流円筒2に渦電流が発生
し,当該渦電流と上記励磁コイル9による磁界との間で
渦流円筒2の回転方向と逆方向の電磁力が発生し,これ
が渦流円筒2の回転運動に対してブレーキ作用を及ぼ
す。この際,渦流円筒2が過電流損により発熱するので
放熱フィン1が設けられ,渦流円筒2を冷却するように
構成されている。
When the exciting coil 9 is energized, the pole core 8
The magnetic poles facing the vortex cylinder 2 are alternately magnetized into N and S poles. That is, the adjacent magnetic poles are magnetized so that their polarities are different from each other. Then, an eddy current is generated in the rotating eddy current cylinder 2, and an electromagnetic force in a direction opposite to the rotation direction of the eddy current cylinder 2 is generated between the eddy current and the magnetic field generated by the exciting coil 9, which causes the rotation of the eddy current cylinder 2. Exerts a braking action on movement. At this time, since the vortex cylinder 2 generates heat due to overcurrent loss, the radiating fins 1 are provided to cool the vortex cylinder 2.

【0010】図3は放熱フィンを有する渦流円筒の正面
図,図4は放熱フィンを有する渦流円筒の側面図を示し
ている。図3及び図4に示す放熱フィンを有する渦流円
筒は,図1及び図2に示した放熱フィン1及び渦流円筒
2と同じものである。放熱フィン1は,回転方向と平行
な平行部1−1と,回転方向と平行でない非平行部1−
2とを有し,本実施例においては渦流円筒2の外周面に
総計12個の放熱フィン1が取り付けられる。該12個
の放熱フィン1は4個ずつの3グループに分けられ,各
グループの4個の放熱フィン1は所定の間隔を開けて直
列に並べられ,放熱フィン1の上記間隔の位置が各列に
ついて少しずつずれるように取り付けられる。
FIG. 3 is a front view of the vortex flow cylinder having the radiation fins, and FIG. 4 is a side view of the vortex flow cylinder having the radiation fins. The vortex flow cylinder having the radiating fins shown in FIGS. 3 and 4 is the same as the radiating fin 1 and the vortex flow cylinder 2 shown in FIGS. 1 and 2. The radiation fin 1 includes a parallel portion 1-1 parallel to the rotation direction and a non-parallel portion 1- 1 that is not parallel to the rotation direction 1-.
2 and, in this embodiment, a total of 12 radiating fins 1 are attached to the outer peripheral surface of the vortex cylinder 2. The 12 radiating fins 1 are divided into 3 groups of 4 and the 4 radiating fins 1 of each group are arranged in series at a predetermined interval, and the positions of the radiating fins 1 are arranged in each row. About to be installed so as to be slightly shifted.

【0011】図5は,本実施例における空気の流れの説
明図である。また,図5は渦流円筒2の一部を外側から
見た展開図である。円筒が図面上方に回転すると,図示
の如く,右側から空気が取り込まれ,該空気は放熱フィ
ン1に対し相対的に下方に流れながら,放熱フィン1に
よって誘導され左側へと放出される。
FIG. 5 is an explanatory view of the flow of air in this embodiment. Further, FIG. 5 is a development view of a part of the vortex flow cylinder 2 as viewed from the outside. When the cylinder rotates upward in the drawing, air is taken in from the right side as shown in the drawing, and the air is guided downward by the heat radiating fins 1 and is discharged to the left while flowing downward relative to the heat radiating fins 1.

【0012】上記従来のフィン構造と本発明のフィン構
造との放熱量及び風損について検討し,本発明の効果を
考察する。なお,騒音については,風損に比例すると考
えられるので,風損で代替する。 (A)放熱量の比較 熱伝導による放熱量Qは,
The amount of heat radiation and windage loss between the conventional fin structure and the fin structure of the present invention will be examined to examine the effects of the present invention. Note that noise is considered to be proportional to wind loss, so wind loss is substituted. (A) Comparison of heat radiation amount The heat radiation amount Q due to heat conduction is

【0013】[0013]

【数1】 [Equation 1]

【0014】となる。但し h:フィンと空気との間の熱伝達率 λ:熱伝導率 b:フィンの厚み θ0 :フィンの根元温度と周囲温度との温度差〔°K〕 l:フィンの高さ B:フィンの幅 従来構造と本発明構造とは,フィンの幅以外は共通と考
える。
[0014] However, h: heat transfer coefficient between fin and air λ: thermal conductivity b: fin thickness θ 0 : temperature difference between root temperature of fin and ambient temperature [° K] l: height of fin B: fin The conventional structure and the structure of the present invention are considered to be common except for the width of the fins.

【0015】放射による放熱量は, E=εσT4 S〔W〕 となる。但し ε:フィン表面の放射率 σ:ステファンボルツマン定数 T:フィン表面温度〔°K〕 S:全フィン表面積 従来構造と本発明構造とは,全フィン表面積以外は共通
と考える。
The amount of heat released by radiation is E = εσT 4 S [W]. However, ε: emissivity of fin surface σ: Stefan Boltzmann constant T: fin surface temperature [° K] S: total fin surface area It is considered that the conventional structure and the present invention structure are common except for the total fin surface area.

【0016】円筒の幅と外径との比を1:5とし,外径
をDとする。又,従来構造のフィンの回転方向に対する
角度を45°とし,フィンの枚数を24枚とする。本発
明構造のフィンの枚数を12枚とする(図3,図4参
照) Bの比は, {(D/5)×√2×24}:πD×3=1:1.39 従って,熱伝導による放熱量Qの比は,1:1.39で
ある。
The ratio of the width of the cylinder to the outer diameter is 1: 5, and the outer diameter is D. Also, the angle of the conventional structure with respect to the rotation direction of the fins is 45 °, and the number of fins is 24. The number of fins of the structure of the present invention is 12 (see FIGS. 3 and 4). The ratio of B is {(D / 5) × √2 × 24}: πD × 3 = 1: 1.39 The ratio of the heat radiation amount Q due to conduction is 1: 1.39.

【0017】全フィン表面積は,Bに比例するので,全
フィン表面積の比は 1:1.39 であり,放射による放熱量の比は1:1.39となる。
Since the total fin surface area is proportional to B, the ratio of the total fin surface areas is 1: 1.39, and the ratio of the amount of heat released by radiation is 1: 1.39.

【0018】熱伝導,放射共に,放熱量の比は,1:
1.39なので,放熱量の合計の比は 1:1.39 となる。 (B)風損の比較 風損は,空気の流れの方向に働く力(抗力)に比例する
ので,抗力を求める。抗力は次式で表される。
The ratio of the amount of heat released for both heat conduction and radiation is 1:
Since it is 1.39, the total ratio of heat radiation is 1: 1.39. (B) Comparison of wind loss Since wind loss is proportional to the force (drag) acting in the direction of air flow, the drag is calculated. The drag is expressed by the following equation.

【0019】D=CD ・ρV2 A/2 各記号は,次に示す数値を表す。 CD :抗力係数 ρ :空気の密度 V :空気の速度 A :フィンの流速方向に対する投影面積 従来構造と本発明構造とで,A以外は共通と考える。D = C D · ρV 2 A / 2 Each symbol represents the following numerical value. C D : Drag coefficient ρ: Air density V: Air velocity A: Projected area of fin against flow velocity direction Conventional structure and present invention structure are considered to be common except for A.

【0020】従来構造の投影面積は, (D/5)×l×24〔枚〕=4.8Dl 一方,本発明構造のフィンの非平行部の長さを円筒外径
の5%即ち,0.05D回転方向に対する角度を45°
とすると,非平行部1ヶ所当たりの投影面積は, 0.05D×sin45°×l=0.05√2Dl 全周に非平行部が12ヶ所あるので,結局は, 0.05√2Dl×12=0.85Dl 従って,風損の比は, 4.8Dl:0.85Dl=1:0.18 となる。 (C)放熱量,風損の総合比較 本発明により,従来よりも放熱量が1.39倍と増加す
るにもかかわらず,風損は,0.18倍と減少し,リタ
ーダの放熱能力を落とすことなく,風損,騒音を減少さ
せることができる。
The projected area of the conventional structure is (D / 5) × l × 24 [sheets] = 4.8Dl. On the other hand, the length of the non-parallel portion of the fin of the present invention is 5% of the cylinder outer diameter, that is, 0. 45 ° angle to the 0.05D rotation direction
Then, the projected area per one non-parallel part is 0.05D × sin 45 ° × l = 0.05√2Dl There are 12 non-parallel parts all around, so after all, 0.05√2Dl × 12 = 0.85Dl Therefore, the ratio of windage loss is 4.8Dl: 0.85Dl = 1: 0.18. (C) Comprehensive comparison of heat radiation amount and wind loss According to the present invention, although the heat radiation amount is increased by 1.39 times as compared with the conventional one, the wind loss is reduced by 0.18 times and the heat radiation capacity of the retarder is reduced. Wind loss and noise can be reduced without dropping.

【0021】図8は本発明の他の実施例を示す。図左は
正面図であり,図右は側面図である。図中の符号は図3
および図4に対応している。図8の実施例の場合には,
放熱フィン1は,図4の場合に一部のフィンに非平行部
1−2が存在する形となってなく,全体が一様な傾斜角
をもって取付けられている。
FIG. 8 shows another embodiment of the present invention. The left side of the figure is a front view, and the right side of the figure is a side view. Reference numerals in FIG.
4 corresponds to FIG. In the case of the embodiment of FIG.
In the case of FIG. 4, the radiating fins 1 are not mounted such that the non-parallel portions 1-2 are present in some of the fins, but are mounted with a uniform inclination angle.

【0022】なお,図8の右側の図においては,実際に
は放熱フィン1が図のように正しく平行に並んだように
見えるわけではないが,図を簡単にするために平行に描
いている。また図8の右側の図の下方は左側の図の断面
を表している。
In the drawing on the right side of FIG. 8, the radiating fins 1 do not actually appear to be aligned in parallel as shown in the drawing, but they are drawn in parallel for simplification of the drawing. . The lower part of the right side of FIG. 8 represents the cross section of the left side of the drawing.

【0023】[0023]

【発明の効果】以上説明した如く,本発明によれば,放
熱フィンを円筒回転方向と平行な方向に設けたので,リ
ターダの放熱能力を落とすことなく風損,騒音を減少さ
せることができる。
As described above, according to the present invention, since the heat radiation fins are provided in the direction parallel to the cylinder rotation direction, wind loss and noise can be reduced without lowering the heat radiation ability of the retarder.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のリターダの部分正面図である。FIG. 1 is a partial front view of a retarder according to a first embodiment.

【図2】実施例1のリターダの部分断面図を示してい
る。
FIG. 2 shows a partial cross-sectional view of the retarder of the first embodiment.

【図3】実施例1の放熱フィンを有する渦流円筒の正面
図である。
FIG. 3 is a front view of a vortex flow cylinder having a heat dissipation fin of the first embodiment.

【図4】実施例1の放熱フィンを有する渦流円筒の側面
図を示している。
FIG. 4 shows a side view of a swirl cylinder having a heat dissipation fin of the first embodiment.

【図5】本実施例における空気の流れの説明図である。FIG. 5 is an explanatory diagram of an air flow in the present embodiment.

【図6】従来のリターダの部分正面図である。FIG. 6 is a partial front view of a conventional retarder.

【図7】従来のリターダの部分断面図を示している。FIG. 7 shows a partial cross-sectional view of a conventional retarder.

【図8】実施例2の放熱フィンを有する渦流円筒の説明
図である。
FIG. 8 is an explanatory diagram of a vortex flow cylinder having a radiating fin according to a second embodiment.

【符号の説明】[Explanation of symbols]

1 放熱フィン 2 渦流円筒 3 スポーク 4 フランジ 5 シャフト 6 軸受 7 車体への取り付けステー 8 ポールコア 9 励磁コイル 1 Radiating fin 2 Eddy current cylinder 3 Spoke 4 Flange 5 Shaft 6 Bearing 7 Body mounting stay 8 Pole core 9 Excitation coil

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 渦流円筒(2)と,上記渦流円筒(2)
に対向する複数個のポールコア(8)と,上記夫々のポ
ールコア(8)に巻回される励磁コイル(9)とを有
し,上記夫々の励磁コイル(9)に電流が流れ,かつ,
上記渦流円筒(2)が回転するときに,当該渦流円筒
(2)の回転に対し制動力を生ずるリターダにおいて, 上記渦流円筒(2)の上記ポールコア(8)と対向する
面の反対の面に,円筒回転方向に放熱フィン(1)を配
置したことを特徴とするリターダ。
1. A swirl cylinder (2) and the swirl cylinder (2)
Having a plurality of pole cores (8) facing each other and an exciting coil (9) wound around each of the pole cores (8), a current flows through each of the exciting coils (9), and
In the retarder that generates a braking force for the rotation of the vortex cylinder (2) when the vortex cylinder (2) rotates, the retarder is provided on the surface opposite to the surface of the vortex cylinder (2) facing the pole core (8). The retarder characterized in that the heat radiation fins (1) are arranged in the cylinder rotation direction.
JP5039581A 1993-03-01 1993-03-01 Retarder Expired - Lifetime JP2806727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039581A JP2806727B2 (en) 1993-03-01 1993-03-01 Retarder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039581A JP2806727B2 (en) 1993-03-01 1993-03-01 Retarder

Publications (2)

Publication Number Publication Date
JPH06253527A true JPH06253527A (en) 1994-09-09
JP2806727B2 JP2806727B2 (en) 1998-09-30

Family

ID=12557063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039581A Expired - Lifetime JP2806727B2 (en) 1993-03-01 1993-03-01 Retarder

Country Status (1)

Country Link
JP (1) JP2806727B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948118A2 (en) * 1998-03-30 1999-10-06 Isuzu Motors Limited Eddy current reduction apparatus
US6318518B1 (en) 1999-08-31 2001-11-20 Sumitomo Metal Industries, Ltd. Rotor for eddy current retarder
US6700265B1 (en) * 1999-12-22 2004-03-02 Telma Eddy current retarder
CN110089015A (en) * 2016-12-21 2019-08-02 日本制铁株式会社 Eddy-current reduction gear

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953151U (en) * 1972-08-25 1974-05-10
JPS6430450A (en) * 1987-07-23 1989-02-01 Tokyo Buhin Kogyo Co Ltd Retarder unit for car body
JPH01298948A (en) * 1988-05-25 1989-12-01 Sumitomo Metal Ind Ltd Eddy current type decelerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4953151U (en) * 1972-08-25 1974-05-10
JPS6430450A (en) * 1987-07-23 1989-02-01 Tokyo Buhin Kogyo Co Ltd Retarder unit for car body
JPH01298948A (en) * 1988-05-25 1989-12-01 Sumitomo Metal Ind Ltd Eddy current type decelerator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0948118A2 (en) * 1998-03-30 1999-10-06 Isuzu Motors Limited Eddy current reduction apparatus
EP0948118A3 (en) * 1998-03-30 2000-02-23 Isuzu Motors Limited Eddy current reduction apparatus
US6318518B1 (en) 1999-08-31 2001-11-20 Sumitomo Metal Industries, Ltd. Rotor for eddy current retarder
US6700265B1 (en) * 1999-12-22 2004-03-02 Telma Eddy current retarder
CN110089015A (en) * 2016-12-21 2019-08-02 日本制铁株式会社 Eddy-current reduction gear

Also Published As

Publication number Publication date
JP2806727B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
US5955804A (en) Alternator winding arrangement with coil ends spaced apart from one another for air passage
EP1193837B1 (en) Alternator for vehicles
JPS6341817Y2 (en)
JP3535025B2 (en) Fully enclosed cooling rotary electric machine
EP0749197B1 (en) Outer-rotor type electric rotary machine and electric motor vehicle using the machine
JPS62196061A (en) Armature rotor
CN108711964A (en) A kind of permanent magnet motor with built-in multistage fan formula two-way self-loopa ventilation cooling system
WO2007094350A1 (en) Cooling structure of dynamo-electric machine
JPS58133152A (en) Rotary rectifying device of brushless rotary electric machine
JP2806727B2 (en) Retarder
JPH0691732B2 (en) Eddy current retarder rotor
EP0989657B1 (en) Alternator for vehicle
US20090180902A1 (en) Fan
JP4051722B2 (en) Rotor of eddy current reduction gear
US6318518B1 (en) Rotor for eddy current retarder
CN209389827U (en) A kind of 1140V directly drives ultralow revolving speed magneto
US5136878A (en) Air cooled dynamometer vehicle emissons test stand
JPH05328706A (en) Eddy-current plate and cooling structure of retarder
KR102090569B1 (en) Cooling structure of bulb hydraulic turbine generator and cooling method of bulb hydraulic turbine generator
JP2001320870A (en) Eddy current type reduction gear
JPH0564388A (en) Frame of rotary electric machine
JPS6337588B2 (en)
JPH07329740A (en) Retarder for vehicle
JPH11113240A (en) Rotor for eddy current-type speed reducing device
JP2792273B2 (en) Rotating electric machine stator