JPH06251625A - Insulation composition and power cable - Google Patents

Insulation composition and power cable

Info

Publication number
JPH06251625A
JPH06251625A JP5039094A JP3909493A JPH06251625A JP H06251625 A JPH06251625 A JP H06251625A JP 5039094 A JP5039094 A JP 5039094A JP 3909493 A JP3909493 A JP 3909493A JP H06251625 A JPH06251625 A JP H06251625A
Authority
JP
Japan
Prior art keywords
polyethylene
power cable
compound
insulation composition
dielectric loss
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5039094A
Other languages
Japanese (ja)
Inventor
Kazuhiko Goto
和彦 後藤
Izumi Ishikawa
泉 石川
Hiroyuki Miyata
裕之 宮田
Toru Nakatsuka
徹 中司
Kenji Matsui
研二 松井
Shiro Nakayama
四郎 中山
Susumu Takahashi
享 高橋
Mitsutaka Tanida
光隆 谷田
Toshio Niwa
利夫 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP5039094A priority Critical patent/JPH06251625A/en
Publication of JPH06251625A publication Critical patent/JPH06251625A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Abstract

PURPOSE:To provide a power cable having a small dielectric loss, composed of an insulation composition having a small dielectric loss and an insulator available therefrom. CONSTITUTION:This insulation composition uses polyethylene based polymer, and so composed that absorption with polyethylene is not observed in the vicinity of 320nm, when water extracted from the compound thereof is analyzed with an ultraviolet absorptiometer. In addition, the power cable uses an insulator available from the insulation composition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、誘電損失の小さい絶縁
体となる絶縁組成物、及びこれを絶縁体として用いた電
力ケーブルに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an insulating composition which is an insulator having a small dielectric loss, and a power cable using the insulating composition.

【0002】[0002]

【従来の技術】従来、電力ケーブルやその付属品に用い
られる絶縁体としては、架橋ポリエチレン(XLPE)
が広く用いられている。このXLPEのベースポリマー
としてのポリエチレン(PE)には、一般に高圧法で重
合された低密度PE(LDPE)が使用されている。こ
の高圧法は、エチレンガスを高圧(1000〜3000
Kg/cm2)に圧縮し、反応管中でPEを重合させる
方法であるが、この製造工程中に極微量の不純物が混入
されることがある。このような微量不純物としては、例
えばエチレンガス圧縮シリンダからの潤滑剤不純物、反
応管壁からの不純物などが挙げられる。
2. Description of the Related Art Conventionally, a cross-linked polyethylene (XLPE) has been used as an insulator used for a power cable and its accessories.
Is widely used. Low density PE (LDPE) polymerized by a high pressure method is generally used for polyethylene (PE) as a base polymer of this XLPE. This high-pressure method uses ethylene gas at high pressure (1000 to 3000).
This is a method in which PE is polymerized in a reaction tube after being compressed to Kg / cm 2 ), but an extremely small amount of impurities may be mixed in during the manufacturing process. Examples of such trace impurities include lubricant impurities from the ethylene gas compression cylinder and impurities from the reaction tube wall.

【0003】ところで、この架橋ポリエチレンを用いた
電力ケーブルはCVケーブルと呼ばれるもので、一般に
はその電気的tanδ(誘電正接)が低く、そのため誘
電損失も少ないことからケーブルのエネルギーロスも少
ないものとなっている。
By the way, a power cable using this cross-linked polyethylene is called a CV cable, and generally its electrical tan δ (dielectric loss tangent) is low, and therefore the dielectric loss is also small, so that the energy loss of the cable is also small. ing.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、前記C
Vケーブルにあっても、特に高電圧を送電する場合に
は、すなわち超高圧CVケーブルの使用電界や温度にお
いては、電気的tanδが上昇し、これに伴って誘電損
失が多くなり、ケーブルのエネルギーロスが増大してし
まうといった問題があった。
However, the above-mentioned C
Even in the case of a V cable, particularly when transmitting a high voltage, that is, when the electric field or temperature of the ultra-high voltage CV cable is used, the electrical tan δ is increased, and the dielectric loss is increased accordingly. There was a problem that the loss would increase.

【0005】[0005]

【課題を解決するための手段】本発明者は前記課題に鑑
み、CVケーブルにおける電気的tanδの上昇の原因
を究明すべく鋭意研究した結果、詳細理論については未
判明であるものの、ポリエチレンを製造するときに使用
する圧縮機用の潤滑油として、ポリエーテル系のものを
使用すると、前述したtanδの上昇が見られることを
究明し、本発明に至った。
In view of the above problems, the present inventor has conducted diligent research to find out the cause of the increase in electrical tan δ in CV cables, and as a result, although the detailed theory is unknown, polyethylene is produced. It was clarified that the above-mentioned increase in tan δ was observed when a polyether type lubricating oil was used as the lubricating oil for the compressor used in the above-mentioned case, and the present invention was accomplished.

【0006】すなわち、本発明における請求項1記載の
絶縁組成物では、ベースポリマーをポリエチレンとする
絶縁組成物であって、前記ポリエチレンが、そのコンパ
ウンドからの水抽出液を紫外線吸光分析にかけたとき、
320nm付近に吸収が見られないものであることを前
記課題の解決手段とした。請求項2記載の電力ケーブル
では、請求項1記載の絶縁組成物から得られる絶縁体を
用いたことを前記課題の解決手段とした。
That is, the insulating composition according to claim 1 of the present invention is an insulating composition having a base polymer of polyethylene, wherein the polyethylene is subjected to ultraviolet absorption analysis of a water extract from the compound,
The fact that absorption is not seen in the vicinity of 320 nm was taken as a means for solving the above problems. In the power cable according to claim 2, the insulator obtained from the insulating composition according to claim 1 is used as a means for solving the problems.

【0007】紫外線吸光分析にかけたとき、320nm
付近に吸収が見られないポリエチレンとしては、具体的
には、ポリエチレンを製造するときに使用する圧縮機用
の潤滑油として、ポリエーテル系のものでなく炭化水素
系潤滑油を用いたもの、あるいは、潤滑油としてポリエ
ーテル系のものを用いて得られたポリエチレンに、以下
の精製処理を施したものが挙げられる。精製処理として
は、例えばポリエチレンを水に接触させ、水抽出によっ
てポリエチレン中のポリエーテル系化合物を除去すると
いった方法が挙げられる。
320 nm when subjected to ultraviolet absorption analysis
As polyethylene which is not absorbed in the vicinity, specifically, as a lubricating oil for a compressor used when producing polyethylene, one using a hydrocarbon type lubricating oil instead of a polyether type lubricating oil, or Polyethylene obtained by using a polyether type lubricant as the lubricating oil is subjected to the following purification treatment. Examples of the purification treatment include a method in which polyethylene is brought into contact with water and the polyether compound in polyethylene is removed by water extraction.

【0008】[0008]

【作用】本発明者は、ポリエチレンを製造するときに使
用する圧縮機用の潤滑油として、ポリエーテル系のもの
を使用したか否かなど、すなわちポリエーテル系の潤滑
油(以下、潤滑油Aとする)がポリエチレン中に含まれ
るか否かを微量分析する方法として、種々の方法を検討
した結果、そのコンパウンドからの水抽出液を紫外線吸
光分析にかけたとき、320nm付近に吸収が見られる
ものには潤滑油Aが含まれており、吸収が見られないも
のには潤滑油Aが含まれていないことを究明した。そし
て、潤滑油Aが含まれていない、すなわち320nm付
近に吸収が見られないポリエチレンは、潤滑油Aを含む
ポリエチレンに比べ、実施例で示すようにそのtanδ
が小さいことが判明した。
The present inventor has determined whether or not a polyether-based lubricating oil was used as a lubricating oil for a compressor used when producing polyethylene, that is, a polyether-based lubricating oil (hereinafter, referred to as lubricating oil A). As a result of examining various methods as a method for microanalyzing whether or not is contained in polyethylene, absorption of 320 nm is observed when a water extract from the compound is subjected to ultraviolet absorption analysis. It was determined that the oil containing the lubricant A was contained in the oil, and the oil containing no oil was not contained in the oil containing the oil. Then, polyethylene containing no lubricating oil A, that is, polyethylene having no absorption around 320 nm, has a tan δ value higher than polyethylene containing lubricating oil A as shown in the examples.
Turned out to be small.

【0009】[0009]

【実施例】ポリエチレンを製造するに際し、エチレンガ
ス圧縮シリンダの潤滑油としてポリエーテル系のもの
(潤滑油A)を用いて製造した低密度ポリエチレンのコ
ンパウンド(比較例品)と、炭化水素系のもの(以下、
潤滑油Bとする)を用いて製造した低密度ポリエチレン
のコンパウンド(実施例品)とを用意した。
[Example] When producing polyethylene, a low density polyethylene compound (comparative example) produced by using a polyether type lubricant (lubricating oil A) as a lubricating oil for an ethylene gas compression cylinder, and a hydrocarbon type compound (Less than,
Lubricating oil B) was used to prepare a low-density polyethylene compound (Example product).

【0010】[紫外線吸収分析]得られたコンパウンド
中に、ポリエーテル系化合物が含まれているか否かを分
析するため、コバルトチオシアネート法を用いた定性分
析を以下のようにして実施した。 (測定試料の作製)まず、前記コンパウンドの一部をそ
れぞれ粉砕処理し、粉砕処理物をそれぞれ500gずつ
試料として採取した。次いで、これら試料にそれぞれ1
000gずつ純水を加え、さらに加熱して48時間還流
抽出処理を行った。還流抽出後、それぞれ濾過を行い、
その濾液1000mlをエバポレーターを用いて減圧蒸
留し、50mlにまで正確に濃縮してこれらを測定試料
とした。
[Ultraviolet Absorption Analysis] In order to analyze whether the obtained compound contains a polyether compound, a qualitative analysis using the cobalt thiocyanate method was carried out as follows. (Preparation of Measurement Sample) First, a part of the compound was pulverized, and 500 g of the pulverized product was sampled. Then 1 for each of these samples
Pure water was added in an amount of 000 g each, and the mixture was further heated and subjected to reflux extraction treatment for 48 hours. After extraction under reflux, each is filtered,
1000 ml of the filtrate was distilled under reduced pressure using an evaporator, and accurately concentrated to 50 ml to obtain these as measurement samples.

【0011】(コバルトチオシアン酸アンモニア水溶液
の作製)チオシアン酸アンモニウム[NH4SCN]6.
2gと、硝酸コバルト[Co(NO32]2.8gとを
純水に溶解し、100mlのコバルトチオシアン酸アン
モニア水溶液を作製した。 (紫外線吸光分析用試料の作製)先に作製した測定試料
50mlと、コバルトチオシアン酸アンモニア水溶液1
5mlと、塩化ナトリウム(NaCl)20gとを分液
ロートに入れ、NaClが完全に溶解するまで振とう攪
拌した後、15分間静置した。次に、分液ロートにそれ
ぞれ1,2-ジクロルエタンを正確に30ml加え、1分
間振とう攪拌した後静置し、2層分離させた。次いで、
2層分離させた1,2-ジクロルエタン(下側)を分取
し、無水硫酸ナトリウムを少量加えて脱水した。さら
に、これを濾過して得られた濾液を紫外線吸光分析用試
料とした。
(Preparation of Aqueous Cobalt Thiocyanate Aqueous Solution) Ammonium thiocyanate [NH 4 SCN] 6.
2 g and cobalt nitrate [Co (NO 3 ) 2 ] 2.8 g were dissolved in pure water to prepare 100 ml of an aqueous solution of cobalt thiocyanate. (Preparation of Sample for Ultraviolet Absorption Analysis) 50 ml of the measurement sample prepared above and aqueous solution of ammonia cobalt thiocyanate 1
5 ml and 20 g of sodium chloride (NaCl) were placed in a separatory funnel, shaken and stirred until NaCl was completely dissolved, and then left standing for 15 minutes. Next, exactly 30 ml of 1,2-dichloroethane was added to each of the separating funnels, and the mixture was shaken and stirred for 1 minute and allowed to stand still to separate two layers. Then
The 1,2-dichloroethane (lower side) separated into two layers was separated and dehydrated by adding a small amount of anhydrous sodium sulfate. Further, the filtrate obtained by filtering this was used as a sample for ultraviolet absorption analysis.

【0012】(紫外線吸光分析)得られた2種の紫外線
吸光分析用試料を、日本分光社製の測定機[Ubest-50 U
V/VIS Spectrophotometer]によってその吸光度(吸収
度)を測定した。なお、測定条件としては、波長200
〜400nm、スキャンスピード100nm/分、スペ
クトルバンド幅2.0nmとした。実施例品からの試料
の測定結果を図1に、比較例品からの試料の測定結果を
図2に示す。図1より、実施例品では、320nm付近
においてピークが見られなかった。一方、図2より、比
較例品では、320nm付近(300nm〜320n
m)で小さなピークPが見られた。
(Ultraviolet absorption analysis) Two kinds of the obtained samples for ultraviolet absorption analysis were measured with a measuring instrument manufactured by JASCO Corporation [Ubest-50 U
V / VIS Spectrophotometer] to measure its absorbance. The measurement condition is a wavelength of 200
˜400 nm, scan speed 100 nm / min, and spectral bandwidth 2.0 nm. The measurement result of the sample from the example product is shown in FIG. 1, and the measurement result of the sample from the comparative example product is shown in FIG. From FIG. 1, in the example product, no peak was observed near 320 nm. On the other hand, from FIG. 2, in the comparative example product, the vicinity of 320 nm (300 nm to 320 n
A small peak P was seen in m).

【0013】[tanδの測定]次に、実施例品および
比較例品のtanδを以下のようにしてそれぞれ測定し
た。まず、先に作製した各コンパウンド100重量部に
対し、DCP(ジクミルパーオキサイド)2重量部、チ
オビスフェノール系の酸化防止剤0.2重量部を添加
し、混練した後、これらをシートに成形するとともに加
熱し架橋して架橋ポリエチレンシートとした。
[Measurement of tan δ] Next, tan δ of the example product and the comparative example product were measured as follows. First, to 100 parts by weight of each compound prepared above, 2 parts by weight of DCP (dicumyl peroxide) and 0.2 parts by weight of a thiobisphenol-based antioxidant were added and kneaded, and then formed into a sheet. Then, it was heated and crosslinked to obtain a crosslinked polyethylene sheet.

【0014】得られた2種のシートを図3に示す試料1
とし、この試料1の両面にステンレス電極2a、2bを
当接させ、電極2b側で試料1をアースするとともに、
電極2bに測定器3を接続し、この状態で電極2aに高
電圧を印加してtanδ(誘電正接)を測定した。(た
だし、図3中において試料1の有効部厚さをtで示す。
また測定条件として、測定温度雰囲気を90℃とし、印
加ストレスを20kV/mmとした。)実施例品のta
nδは0.022%であり、一方比較例品のtanδは
0.041%であった。したがって、320nm付近に
吸収が見られず、潤滑油Aを含まない実施例品は、比較
例品に比べtanδが小さく、よってこのポリエチレン
を用いた絶縁組成物は誘電損失が小さくなることが確認
された。
The two types of sheets obtained are shown in FIG.
The stainless electrodes 2a and 2b are brought into contact with both surfaces of the sample 1, and the sample 1 is grounded on the side of the electrode 2b.
The measuring device 3 was connected to the electrode 2b, and a high voltage was applied to the electrode 2a in this state to measure tan δ (dielectric loss tangent). (However, in FIG. 3, the effective portion thickness of Sample 1 is indicated by t.
As measurement conditions, the measurement temperature atmosphere was 90 ° C., and the applied stress was 20 kV / mm. ) Example product ta
nδ was 0.022%, while the tan δ of the comparative product was 0.041%. Therefore, it was confirmed that absorption was not observed near 320 nm and that the example product containing no lubricating oil A had a smaller tan δ than the comparative example product, and therefore the insulating composition using this polyethylene had a small dielectric loss. It was

【0015】また、実施例品の低密度ポリエチレンコン
パウンドに、有機過酸化物(DCP)、酸化防止材、充
填材、着色材等を適宜添加し、本発明の絶縁組成物を得
た。そして、このような絶縁組成物を所望する形状、す
なわち電力ケーブルやこれの付属品の製造に際し、これ
に一体的に組み込まれる各種絶縁体として所望形状に成
形した後、架橋塔で加熱することにより、絶縁体である
架橋ポリエチレン(XLPE)とした。このような絶縁
体を用いてなる電力ケーブルにあっては、絶縁体のta
nδ(誘電正接)が小さいことから、ケーブル自体の誘
電損失が小さいものとなった。
Further, an organic peroxide (DCP), an antioxidant, a filler, a coloring material and the like were appropriately added to the low density polyethylene compound of the example product to obtain an insulating composition of the present invention. Then, by forming such an insulating composition into a desired shape, that is, in the case of manufacturing a power cable or an accessory thereof, after molding into a desired shape as various insulators integrally incorporated therein, by heating in a crosslinking tower, , And cross-linked polyethylene (XLPE) which is an insulator. In a power cable using such an insulator, ta of the insulator
Since nδ (dielectric loss tangent) was small, the dielectric loss of the cable itself was small.

【0016】[0016]

【発明の効果】以上説明したように本発明における請求
項1記載の絶縁組成物は、コンパウンドからの水抽出液
を紫外線吸光分析にかけたとき、320nm付近に吸収
が見られないポリエチレンをベースポリマーとするもの
であるから、ポリエチレンがポリエーテル系の化合物を
不純物として含まず、したがって該ポリエーテル系化合
物に起因してtanδ(誘電正接)が大きくなるのを抑
さえることができ、これにより誘電損失の小さい絶縁体
を製造し得るものとなる。請求項2記載の電力ケーブル
は、前記絶縁組成物から得られる、誘電損失の小さい絶
縁体を用いたものであるから、電力ケーブルとしてその
エネルギーロスが少ないものとなる。また、このように
エネルギーロスが少ないことから、本発明の電力ケーブ
ルは、超高電圧が印加される超高圧CVケーブル等に好
適に用いられるものとなる。
As described above, the insulating composition according to the first aspect of the present invention has polyethylene as a base polymer, which shows no absorption around 320 nm when the water extract from the compound is subjected to ultraviolet absorption analysis. Since polyethylene does not contain a polyether compound as an impurity, it is possible to suppress an increase in tan δ (dielectric loss tangent) due to the polyether compound. It allows the production of small insulators. Since the power cable according to the second aspect uses an insulator having a small dielectric loss, which is obtained from the insulating composition, the power cable has a small energy loss. Further, since the energy loss is small as described above, the power cable of the present invention is suitable for use in an ultrahigh voltage CV cable to which an ultrahigh voltage is applied.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例品の紫外線吸光分析結果を示す図。FIG. 1 is a view showing a result of ultraviolet absorption analysis of an example product.

【図2】 比較例品の紫外線吸光分析結果を示す図。FIG. 2 is a view showing a result of ultraviolet absorption analysis of a comparative example product.

【図3】 誘電正接の測定法を説明するための図。FIG. 3 is a diagram for explaining a method of measuring dielectric loss tangent.

【符号の説明】[Explanation of symbols]

1…試料、2a、2b…ステンレス電極、3…測定器。 1 ... Sample, 2a, 2b ... Stainless electrode, 3 ... Measuring instrument.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中司 徹 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 松井 研二 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 中山 四郎 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 高橋 享 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 谷田 光隆 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 (72)発明者 丹羽 利夫 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Toru Nakaji 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Kenji Matsui 1-5-1, Kiba, Koto-ku, Tokyo Shares Company Fujikura (72) Inventor Shiro Nakayama 1-5-1, Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Takashi Takahashi 1-1-5, Kiba, Koto-ku, Tokyo Fujikura Ltd. (72) Inventor Mitsutaka Yata 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Ltd. (72) Inventor Toshio Niwa 1-5-1, Kiba, Koto-ku, Tokyo Within Fujikura Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ベースポリマーをポリエチレンとする絶
縁組成物において、前記ポリエチレンが、そのコンパウ
ンドからの水抽出液を紫外線吸光分析にかけたとき、3
20nm付近に吸収が見られないものであることを特徴
とする絶縁組成物。
1. An insulating composition comprising polyethylene as a base polymer, wherein the polyethylene is 3 when the water extract from the compound is subjected to ultraviolet absorption spectrometry.
An insulating composition, which has no absorption around 20 nm.
【請求項2】 請求項1記載の絶縁組成物から得られる
絶縁体を用いた電力ケーブル。
2. A power cable using an insulator obtained from the insulating composition according to claim 1.
JP5039094A 1993-02-26 1993-02-26 Insulation composition and power cable Pending JPH06251625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039094A JPH06251625A (en) 1993-02-26 1993-02-26 Insulation composition and power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039094A JPH06251625A (en) 1993-02-26 1993-02-26 Insulation composition and power cable

Publications (1)

Publication Number Publication Date
JPH06251625A true JPH06251625A (en) 1994-09-09

Family

ID=12543497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039094A Pending JPH06251625A (en) 1993-02-26 1993-02-26 Insulation composition and power cable

Country Status (1)

Country Link
JP (1) JPH06251625A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013510915A (en) * 2009-11-11 2013-03-28 ボレアリス エージー Polymer composition and power cable comprising the same
JP2013510914A (en) * 2009-11-11 2013-03-28 ボレアリス エージー POLYMER COMPOSITION CONTAINING POLYOLEFIN PRODUCED IN HIGH PRESSURE METHOD, HIGH PRESSURE METHOD AND ARTICLE
US9365708B2 (en) 2009-11-11 2016-06-14 Borealis Ag Cable and production process thereof
US9595374B2 (en) 2010-11-03 2017-03-14 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US11078312B2 (en) 2009-11-11 2021-08-03 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11078312B2 (en) 2009-11-11 2021-08-03 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
JP2013510914A (en) * 2009-11-11 2013-03-28 ボレアリス エージー POLYMER COMPOSITION CONTAINING POLYOLEFIN PRODUCED IN HIGH PRESSURE METHOD, HIGH PRESSURE METHOD AND ARTICLE
JP2016020505A (en) * 2009-11-11 2016-02-04 ボレアリス エージー Polymer composition and power cable comprising the polymer composition
US9365708B2 (en) 2009-11-11 2016-06-14 Borealis Ag Cable and production process thereof
US9587043B2 (en) 2009-11-11 2017-03-07 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US11756700B2 (en) 2009-11-11 2023-09-12 Borealis Ag Polymer composition and a power cable comprising the polymer composition
JP2013510915A (en) * 2009-11-11 2013-03-28 ボレアリス エージー Polymer composition and power cable comprising the same
US10246527B2 (en) 2009-11-11 2019-04-02 Borealis Ag Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
US10453585B2 (en) 2009-11-11 2019-10-22 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US11390699B2 (en) 2009-11-11 2022-07-19 Borealis Ag Crosslinkable polymer composition and cable with advantageous electrical properties
US10875939B2 (en) 2009-11-11 2020-12-29 Borealis Ag Polymer composition comprising a polyolefin produced in a high pressure process, a high pressure process and an article
US10032543B2 (en) 2010-11-03 2018-07-24 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10950366B2 (en) 2010-11-03 2021-03-16 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US10586634B2 (en) 2010-11-03 2020-03-10 Borealis Ag Polymer composition and a power cable comprising the polymer composition
US9595374B2 (en) 2010-11-03 2017-03-14 Borealis Ag Polymer composition and a power cable comprising the polymer composition

Similar Documents

Publication Publication Date Title
Happ et al. Rearrangement peaks in the mass spectra of certain aliphatic acids
EP1894715B1 (en) Biaxially oriented, electrically insulating film
Vasile et al. The chemistry of radiofrequency discharges: Acetylene and mixtures of acetylene with helium, argon and xenon
JPH06251625A (en) Insulation composition and power cable
JPH06251624A (en) Insulation composition and power cable
Smith et al. Internal energy effects in the collision‐induced dissociation of large biopolymer molecular ions produced by electrospray ionization tandem mass spectrometry of cytochrome c
Hu et al. Chemical component analysis of electrical treeing in polyethylene by micro-infrared spectroscopy
Bamji et al. Properties of water treed and non-treed XLPE cable insulation
Pabst et al. A high pressure mass spectrometric study of ion-molecule reactions in the fluoromethanes
McNeal et al. Photoionization of O2 in the Metastable a 1Δ g State
EP0613154A2 (en) Polyethylene composition for use in insulations and joints of extra-high voltage power cables, and an extra-high voltage power cable and joint therefor employing this polyethylene composition
KR20010007272A (en) Dielectric composition having an improved gas absorption
JPH0562529A (en) Power cable
Pradayrol et al. Influence of O/sub 2/and H/sub 2/O on the spark decomposition of SF/sub 6/and SF/sub 6/+ 50% CF/sub 4/mixtures
JP3330995B2 (en) Insulating composition and power cable
Middlecamp et al. The preparation of α, ω-dibromopermethylpolysilanes and characterization of these and related chloropermethylpolysilanes by mass spectrometry
JP3349747B2 (en) Insulation composition and power cable
JP3349748B2 (en) Insulation composition and power cable
EP0340330B1 (en) Process for producing an electrical insulating oil composition
JPH06251627A (en) Insulation composition and power cable
JPH06251628A (en) Insulation composition and power cable
Wood et al. The intramolecular migration of a trimethylsilyl group located α to a sulfone in substituted cyclohexyl systems
RU2076880C1 (en) Method of recovering secondary polyethylene
Flammang et al. Characterization of [C6H7N]+˙ radical cations by tandem mass spectrometry
JP3349746B2 (en) Insulation composition and power cable