JPH06250135A - Magneto-optical flaw detecting element - Google Patents

Magneto-optical flaw detecting element

Info

Publication number
JPH06250135A
JPH06250135A JP3342293A JP3342293A JPH06250135A JP H06250135 A JPH06250135 A JP H06250135A JP 3342293 A JP3342293 A JP 3342293A JP 3342293 A JP3342293 A JP 3342293A JP H06250135 A JPH06250135 A JP H06250135A
Authority
JP
Japan
Prior art keywords
magneto
optical
magnetic
flaw detection
gdbi
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3342293A
Other languages
Japanese (ja)
Inventor
Yosuke Asahara
陽介 浅原
Nobuo Nakamura
宣夫 中村
Michiaki Ishihara
道章 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Nippon Steel Corp
Original Assignee
Sumitomo Metal Mining Co Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd, Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP3342293A priority Critical patent/JPH06250135A/en
Publication of JPH06250135A publication Critical patent/JPH06250135A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Measuring Magnetic Variables (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PURPOSE:To provide the magneto-optical flaw detecting element suitable for a magneto-optical flaw detecting method. CONSTITUTION:This magneto-optical flaw detecting element is magnetic garnet having a compsn. (GdBi)3(Fe5-xAlx)O12 and is formed by liquid crystal epitaxy growth on a gadolinium-gallium-garnet single crystal substrate and further, x is in a 0.3<=x<=0.6 range in the compsn. (GdBi)3(Fe5-xAlx)O12 and the thickness d of the element is in a 5mum<=d<=60mum range. The above-memtioned gadolinium- gallium-garnet single crystal substrate contains (GdCa)3(GaMgZr)5O12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気光学効果を用いた
光磁界センサー、特に鋼板からの漏洩磁界を測定し、鋼
板の欠陥を検知する探傷に用いられる磁気光学探傷素子
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical magnetic field sensor using the magneto-optical effect, and more particularly to a magneto-optical flaw detection element used for flaw detection for detecting defects in a steel sheet by measuring a leakage magnetic field from the steel sheet.

【0002】[0002]

【従来の技術】従来、鋼板の探傷は、鋼板表面の欠陥で
の光の散乱を検出する光学探傷、磁化した鋼板の欠陥か
らの漏洩磁界を検出する磁気探傷、超音波を利用する超
音波探傷が行われてきた。しかし、光学探傷は鋼板表面
の欠陥を高速で検出するには有効であるものの、鋼板内
部の欠陥検出は不可能であり、超音波探傷は鋼板端部に
不感帯を持つなどの欠点があった。
2. Description of the Related Art Conventionally, flaw detection of a steel sheet is performed by optical flaw detection for detecting light scattering at a flaw on the surface of the steel sheet, magnetic flaw detection for detecting a leakage magnetic field from a defect of a magnetized steel sheet, or ultrasonic flaw detection using ultrasonic waves. Has been done. However, although optical flaw detection is effective for detecting defects on the surface of the steel sheet at high speed, it is impossible to detect flaws inside the steel sheet, and ultrasonic flaw detection has drawbacks such as a dead zone at the edge of the steel sheet.

【0003】一方、磁気探傷は原理的に鋼板表面および
内部の欠陥の検出が鋼板全面にわたって可能である。こ
の磁気探傷では、磁粉探傷法と磁電変換素子を用いる方
法が実用化されているが、磁粉探傷法は検査時間が極め
て長く、磁電変換素子を用いる方法は微小な欠陥の検出
感度が悪いなどの欠点があった。
On the other hand, in principle, magnetic flaw detection is capable of detecting defects on the surface and inside of the steel sheet over the entire surface of the steel sheet. In this magnetic flaw detection, a method using a magnetic particle flaw detection method and a magnetoelectric conversion element has been put to practical use, but the magnetic particle flaw detection method has an extremely long inspection time, and the method using the magnetoelectric conversion element has a poor detection sensitivity for minute defects. There was a flaw.

【0004】これら従来の磁気探傷の問題点を解消する
ものとして、桜井らの特定研究「新しい光磁気材料の開
発と物性の研究」,p252(1989) に示されるような磁性ガ
ーネット膜を利用した磁気光学探傷法が提案された。
In order to solve these problems of conventional magnetic flaw detection, a magnetic garnet film as shown in a specific study by Sakurai et al. "Development of new magneto-optical material and study of physical properties", p252 (1989) was used. A magneto-optical flaw detection method has been proposed.

【0005】この方法も欠陥からの漏洩磁束を検出する
ため鋼板の外部および内部の欠陥を検出できることはも
とより、高速の検出が可能である。さらに、磁性ガーネ
ットの持つ数十μm 以下の磁区に対応する空間分解能も
有するため、微小な欠陥の検出も可能となるものであ
る。
Since this method also detects the leakage magnetic flux from the defect, it is possible to detect defects outside and inside the steel sheet, as well as at high speed. Furthermore, since the magnetic garnet has a spatial resolution corresponding to a magnetic domain of several tens of μm or less, it is possible to detect minute defects.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、従来の
磁性ガーネットは、その応用が磁気バブルメモリー,光
アイソレータ,送配電線に流れる電流検出用センサなど
であり、磁気光学探傷法に適した感度を有するものはな
く、磁気光学探傷法はアイデアはあるものの未だ現実の
ものとはなっていない。
However, the conventional magnetic garnet is applied to a magnetic bubble memory, an optical isolator, a sensor for detecting a current flowing in a transmission and distribution line, etc., and has a sensitivity suitable for a magneto-optical flaw detection method. There is nothing, and the magneto-optical flaw detection method has not been realized yet although it has an idea.

【0007】本発明は、かかる実情に鑑み、磁気光学探
傷法に適した磁気光学探傷素子を提供することを目的と
する。
In view of the above situation, it is an object of the present invention to provide a magneto-optical inspection element suitable for the magneto-optical inspection method.

【0008】[0008]

【課題を解決するための手段】本発明による磁気光学探
傷素子は、(GdBi)3(Fe5-X AlX )O12の組成を持ち、ガド
リニウム・ガリウム・ガーネット単結晶基板上に液晶エ
ピタキシャル成長した磁性ガーネットであり、さらに(G
dBi)3(Fe5-X AlX )O12の組成において、X が、0.3 ≦ X
≦0.6 の範囲にあり、さらに、該素子の厚さd が、5 μ
m ≦d≦60μmの範囲にあることを特徴としている。
尚、上記ガドリニウム・ガリウム・ガーネット単結晶基
板には(GdCa)3(GaMgZr)5O12 を含むものとする。
A magneto-optical flaw detector according to the present invention has a composition of (GdBi) 3 (Fe 5-X Al X ) O 12 and is liquid crystal epitaxially grown on a gadolinium-gallium-garnet single crystal substrate. Magnetic garnet, and (G
dBi) 3 (Fe 5-X Al X ) O 12 In the composition, X is 0.3 ≤ X
≤0.6, and the thickness d of the device is 5 μm.
It is characterized in that m ≤ d ≤ 60 µm.
The gadolinium / gallium / garnet single crystal substrate contains (GdCa) 3 (GaMgZr) 5 O 12 .

【0009】[0009]

【作用】磁気光学探傷法は鋼板を磁化し、鋼板の欠陥か
ら漏洩する磁界を磁性ガーネットの持つ磁気光学効果を
利用して検出するが、欠陥を検出する能力(以下欠陥検
出感度と称する)cは以下の式で表わされる。
In the magneto-optical flaw detection method, the steel sheet is magnetized and the magnetic field leaking from the defect of the steel sheet is detected by utilizing the magneto-optical effect of the magnetic garnet. The ability to detect the defect (hereinafter referred to as defect detection sensitivity) c Is expressed by the following equation.

【0010】 c=T2sin( 4θf ・d)/Hs ここで、 θf : ファラデー回転係数(deg./cm) d : 磁性ガーネットの厚さ Hs : 磁性ガーネットの飽和に要する磁界 T : 透過率 である。C = T 2 sin (4 θ f · d) / Hs where θ f : Faraday rotation coefficient (deg./cm) d: Thickness of magnetic garnet Hs: Magnetic field required for saturation of magnetic garnet T: Transmission Is the rate.

【0011】一般に、鋼板の欠陥から出る漏洩磁界の大
きさは微弱であるために、欠陥検出感度は0.3 %/0e以
上が必要である。上記式の分子は高々1であるため、
欠陥検出感度を大きくするには、飽和磁界Hsを小さくす
る必要がある。一般に、磁性ガーネットのHsは飽和磁化
Msに比例するため、欠陥検出が行われる温度である室温
付近で飽和磁化が小さくなる材料を探索した。
Generally, since the magnitude of the leakage magnetic field generated from the defect of the steel sheet is weak, the defect detection sensitivity is required to be 0.3% / 0e or more. Since the numerator of the above formula is at most 1,
To increase the defect detection sensitivity, it is necessary to reduce the saturation magnetic field Hs. Generally, Hs of magnetic garnet is saturation magnetization
Since it is proportional to Ms, we searched for a material that has a small saturation magnetization near room temperature, which is the temperature at which defects are detected.

【0012】この結果、室温付近に補償温度が存在する
(GdBi)3(Fe5-X AlX )O12が好適な材料であることが判っ
た。また、この分子式の Xを変化させることで飽和磁化
Ms(または飽和磁界Hs) を微妙に制御することが可能で
あることも確認でき、同時に飽和磁界Hsが膜厚に依存す
ることも確認できた。
As a result, there is a compensation temperature near room temperature.
It has been found that (GdBi) 3 (Fe 5-X Al X ) O 12 is a suitable material. Also, the saturation magnetization can be changed by changing X in this molecular formula.
It was also confirmed that the Ms (or the saturation magnetic field Hs) can be finely controlled, and at the same time, it was also confirmed that the saturation magnetic field Hs depends on the film thickness.

【0013】鋼板の磁極付近では欠陥が無い場合でも30
Oe 程度の漏洩磁界が発生する。飽和に要する磁界Hsを
この漏洩磁界より小さくしてしまうと、鋼板端部の欠陥
検出が全く不可能になってしまう。従って、余裕を以て
Hs≧40 Oe とすることが望ましい。
Even if there is no defect near the magnetic pole of the steel plate, 30
A leakage magnetic field of about Oe is generated. If the magnetic field Hs required for saturation is made smaller than this leakage magnetic field, it will be impossible to detect defects at the edges of the steel sheet. Therefore, with a margin
It is desirable that Hs ≧ 40 Oe.

【0014】これらのことを考慮すると欠陥検出感度
0.3%以上、飽和磁界Hs 40 Oe以上を満足するAl含有量
Xと 膜厚d(μm ) を限定することができる。
Considering these things, the defect detection sensitivity
Al content that satisfies 0.3% or more and saturation magnetic field Hs 40 Oe or more
It is possible to limit X and the film thickness d (μm).

【0015】[0015]

【実施例】以下、実施例により更に詳しく説明する。先
ず、液相エピタキシャル法により(GdBi)3(Fe5-X AlX )O
12 Xを変えた磁性ガーネット膜の製作を行った。白金
るつぼ中にPbO, Bi2O3, B2O3をフラックスとして、Gd2O
3,Fe2O3,Al2O3 を溶かし込んだ融液を作製した。
EXAMPLES The present invention will be described in more detail below with reference to examples. First, by liquid phase epitaxial method, (GdBi) 3 (Fe 5-X Al X ) O
The magnetic garnet film with X changed at 12 was manufactured. PdO, Bi 2 O 3 and B 2 O 3 were used as flux in a platinum crucible to produce Gd 2 O.
A melt containing 3 , Fe 2 O 3 and Al 2 O 3 was prepared.

【0016】該融液を約800 ℃に加熱しながら、融液表
面へガドリニウム・ガリウム・ガーネット単結晶基板を
付着させ回転させることにより、該基板の片面へ厚さ80
μmの(GdBi)3(Fe5-X AlX )O12磁性ガーネット膜を成長
させた。またその際、融液中のAl2O3 の量を変えること
により Xを変えた材料を作製した。育成後、各磁性ガー
ネット膜は10μm 〜70μm の厚さに研磨され試験試料と
した。
While heating the melt to about 800 ° C., a gadolinium / gallium / garnet single crystal substrate is attached to the surface of the melt and rotated to give a thickness of 80% on one side of the substrate.
A μm (GdBi) 3 (Fe 5-X Al X ) O 12 magnetic garnet film was grown. At that time, materials with different X were prepared by changing the amount of Al 2 O 3 in the melt. After the growth, each magnetic garnet film was polished to a thickness of 10 μm to 70 μm and used as a test sample.

【0017】これら試験試料について飽和磁界Hsおよび
ファラデー回転角θf を求めた。Hsは、波長 0.78 μm
の光を用いたファラデーループより求め、θf は、波長
0.78μm の光を用いて溝尻光学社製ファラデー回転角測
定装置により求めた。さらに、欠陥検出感度は求められ
たHSとθf を用いて式により算出した。
The saturation magnetic field Hs and the Faraday rotation angle θ f were obtained for these test samples. Hs has a wavelength of 0.78 μm
Calculated from Faraday loop using the light, theta f is the wavelength
It was determined by a Faraday rotation angle measuring device manufactured by Mizojiri Optical Co., Ltd. using 0.78 μm light. Further, the defect detection sensitivity was calculated by an equation using the obtained HS and θ f .

【0018】(GdBi)3(Fe5-X AlX )O12磁性ガーネット膜
X および膜厚を変えたときの欠陥検出感度≧0.3 %Oe
-1およびHs≧40 Oe を満足する領域を、縦軸に X, 横軸
に磁性ガーネット素子の膜厚d の関係図に表示すると、
図1の斜線部の如くになる。この斜線部は(GdBi)3(Fe
5-X AlX )O12の組成における Xが、 0.3 ≦ X≦0.6 の範囲にあり、さらに、膜厚d が、 5 μm ≦d≦60μm の範囲にある領域であることを示している。
(GdBi) 3 (Fe 5-X Al X ) O 12 Defect detection sensitivity ≧ 0.3% Oe when changing X and film thickness of the magnetic garnet film
-1 and the region satisfying Hs ≥ 40 Oe are displayed in the relational diagram of X on the vertical axis and film thickness d of the magnetic garnet element on the horizontal axis,
It becomes like the shaded area in FIG. This shaded area is (GdBi) 3 (Fe
It is shown that X in the composition of 5-X Al X ) O 12 is in the range of 0.3 ≤ X ≤ 0.6, and the film thickness d is in the range of 5 µm ≤ d ≤ 60 µm.

【0019】該領域の磁性ガーネット膜を用いて、3m
幅鋼板の探傷を行った結果、鋼板全面で50μm 程度の微
小欠陥を検出することができ、十分に実用可能であるこ
とを確認した。
Using the magnetic garnet film in the area,
As a result of flaw detection on the width steel sheet, it was confirmed that a micro defect of about 50 μm could be detected on the entire surface of the steel sheet, which was sufficiently practical.

【0020】[0020]

【発明の効果】上述のように本発明による磁気光学探傷
素子は、鋼板の微小欠陥を高感度で検出する磁気光学探
傷に用いる材料として好適である。
As described above, the magneto-optical flaw detector according to the present invention is suitable as a material used for magneto-optical flaw detection for detecting minute defects in a steel sheet with high sensitivity.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による(GdBi)3(Fe5-X AlX )O12磁性ガー
ネット膜における欠陥検出感度cが、c≧0.3 %Oe-1
よび飽和に要する磁界Hsが、Hs≧40 Oe を満足する磁気
光学探傷で用いるときの好適な領域図を示す。斜線区域
は好適領域である。
FIG. 1 is a defect detection sensitivity c of (GdBi) 3 (Fe 5-X Al X ) O 12 magnetic garnet film according to the present invention, c ≧ 0.3% Oe −1, and a magnetic field Hs required for saturation is Hs ≧ 40 Oe. The suitable area | region figure when using by the magneto-optical flaw detection which satisfy | fills is shown. The shaded area is the preferred area.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気光学効果を利用した探傷へ用いられ
る磁気光学探傷素子において、該素子が(GdBi)3(Fe5-X
AlX )O12の組成を持ちガドリニウム・ガリウム・ガーネ
ット単結晶基板上に液晶エピタキシャル成長した磁性ガ
ーネットであることを特徴とした磁気光学探傷素子。
1. A magneto-optical flaw detection element used for flaw detection utilizing the magneto-optical effect, wherein the element is (GdBi) 3 (Fe 5-X
A magneto-optical flaw detector having a composition of Al X ) O 12 and a magnetic garnet epitaxially grown on a gadolinium-gallium-garnet single crystal substrate.
【請求項2】 上記(GdBi)3(Fe5-X AlX )O12の素子の組
成において、X が、0.3 ≦ X≦0.6 の範囲にあり、さら
に、該素子の厚さd が、 5μm ≦d≦60μmの範囲にあ
ることを特徴とした請求項1に記載の磁気光学探傷素
子。
2. In the composition of the element of (GdBi) 3 (Fe 5-X Al X ) O 12 , X is in the range of 0.3 ≤ X ≤ 0.6, and the thickness d of the element is 5 μm. The magneto-optical flaw detector according to claim 1, wherein the range is ≤d≤60 µm.
JP3342293A 1993-02-23 1993-02-23 Magneto-optical flaw detecting element Pending JPH06250135A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3342293A JPH06250135A (en) 1993-02-23 1993-02-23 Magneto-optical flaw detecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3342293A JPH06250135A (en) 1993-02-23 1993-02-23 Magneto-optical flaw detecting element

Publications (1)

Publication Number Publication Date
JPH06250135A true JPH06250135A (en) 1994-09-09

Family

ID=12386133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3342293A Pending JPH06250135A (en) 1993-02-23 1993-02-23 Magneto-optical flaw detecting element

Country Status (1)

Country Link
JP (1) JPH06250135A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088725A (en) * 1996-08-02 2000-07-11 Hitachi, Ltd. Mobile computer supporting system, its administrative server, its terminal, and address conversion method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088725A (en) * 1996-08-02 2000-07-11 Hitachi, Ltd. Mobile computer supporting system, its administrative server, its terminal, and address conversion method

Similar Documents

Publication Publication Date Title
Okamoto et al. Chemical-order-dependent magnetic anisotropy and exchange stiffness constant of FePt (001) epitaxial films
Munford et al. Electrodeposition of magnetic thin films of cobalt on silicon
Schlenker et al. Polarized neutron techniques for the observation of ferromagnetic domains
JP3198053B2 (en) Products made of magneto-optical material with low magnetic moment
Scheel et al. Crystal growth and characterization of “striation-free” KTa1− xNbxO3 (x≈ 0.26) solid solutions
Grechishkin et al. Magnetic imaging films
JPH06250135A (en) Magneto-optical flaw detecting element
US4806858A (en) Liquid crystal nondestructive inspection of magnetization and variations in magnetization of high energy magnets
Görnert et al. Liquid phase epitaxy (LPE) grown Bi, Ga, Al substituted iron garnets with huge Faraday rotation for magneto‐optic applications
Nikitenko et al. Direct experimental study of the magnetization reversal process in epitaxial and polycrystalline films with unidirectional anisotropy
Kida et al. Optical magnetoelectric effect in a submicron patterned magnet
JPH0735727A (en) Magnetooptic flaw detecting element
Krumme et al. Local magnetocrystalline and induced anisotropies in liquid‐phase epitaxial garnet films
Hussain et al. Role of anti-ferromagnetic layer thickness in exchange bias: Case study of Co/CoO with Kerr microscopy
Shamonin et al. Feasibility of magneto-optic flaw visualization using thin garnet films
Vishnevskii et al. Magneto-optic eddy current introscopy based on garnet films
Craik et al. The evaluation of magnetic bubble domain specimens
Takeno et al. Structure and Magnetic Properties of MnBi Thin Films
Petford-Long et al. The effects of annealing on magnetic domain structure and interface profile in sputtered Fe/Cr multilayer films
Pollmann et al. Magnetic imaging of a buried SmCo layer in a spring magnet
JPH03267782A (en) Detection of magnetic internal characteristic of superconductor, detector and thin-film member for detection
Fitzpatrick Imaging near surface flaws in ferromagnetic materials using magneto-optic detectors
Baird et al. Magnetic switching, relaxation, and domain structure of a Co/Si (111) film
Fisher et al. Size effect in anisotropic hard superconductors
JPH03249566A (en) Magneto-optical film for magnetic field sensor