JPH06249617A - Optical fiber linear position detector - Google Patents

Optical fiber linear position detector

Info

Publication number
JPH06249617A
JPH06249617A JP3838293A JP3838293A JPH06249617A JP H06249617 A JPH06249617 A JP H06249617A JP 3838293 A JP3838293 A JP 3838293A JP 3838293 A JP3838293 A JP 3838293A JP H06249617 A JPH06249617 A JP H06249617A
Authority
JP
Japan
Prior art keywords
light
light source
optical fiber
position detector
linear position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3838293A
Other languages
Japanese (ja)
Other versions
JP3318383B2 (en
Inventor
Kenichi Tamura
健一 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tamagawa Seiki Co Ltd
Original Assignee
Tamagawa Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tamagawa Seiki Co Ltd filed Critical Tamagawa Seiki Co Ltd
Priority to JP03838293A priority Critical patent/JP3318383B2/en
Publication of JPH06249617A publication Critical patent/JPH06249617A/en
Application granted granted Critical
Publication of JP3318383B2 publication Critical patent/JP3318383B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

PURPOSE:To enable the title detector to stably operate over a wide temperature range by using a distributed feedback semiconductor laser diode. CONSTITUTION:Laser light 2a from a light source 2 is modulated into triangular waves by means of a triangular wave signal, from a modulator and split to a fixed-side mirror 25 and mobile-side mirror 6 through a beam splitter 26. The reflected light rays from the mirrors 25 and 6 are combined through a lens 23, but the resultant light becomes coherent waves, because each optical path has a different length. A distance L to be measured is found from the frequency of the coherent waves. When a distributed feedback semiconductor laser diode is used as the light source 2, no mode hopping occurs and the distance L can be measured with a less amount of error, since the variation of case temperature and peak oscillation wavelength is linear.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバリニア位置
検出器に関し、特に、分布帰還型半導体レーザダイオー
ドを用いることにより広い温度範囲の環境下において安
定動作を得るための新規な改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber linear position detector, and more particularly to a novel improvement for obtaining stable operation under a wide temperature range environment by using a distributed feedback semiconductor laser diode.

【0002】[0002]

【従来の技術】従来、用いられていたこの種のリニア位
置検出器としては、例えば、特開平1−40711号公
報に開示されたLVDTの構成を挙げることができる。
すなわち、差動変圧器のコアに接続されたロッドの軸方
向移動を被検出体の移動としてとらえ、電気的なリニア
位置信号を得ていた。
2. Description of the Related Art As a linear position detector of this type which has been conventionally used, for example, the structure of LVDT disclosed in Japanese Patent Laid-Open No. 1-40711 can be mentioned.
That is, the axial movement of the rod connected to the core of the differential transformer is regarded as the movement of the object to be detected, and the electric linear position signal is obtained.

【0003】[0003]

【発明が解決しようとする課題】従来のリニア位置検出
器は、以上のように構成されていたため、次のような課
題が存在していた。すなわち、航空機に用いる場合、L
VDTの差動トランスと航空機の制御装置の間を多くの
電線で配線しなければならず、そのため雷等による外来
ノイズや配線引き廻しの影響による誤動作が発生し、航
空機の信頼性に課題が生じていた。この課題を解決する
ために、周知のファブリペロー型半導体レーザダイオー
ドを用いたリニア検出器が一部で開発実験されている
が、このファブリペロー型半導体レーザダイオードは、
図7に示すように、ピーク発振波長とダイオードのケー
ス温度との関係が、階段状となるため、ケース温度が多
く変化する航空機の環境下では信頼性を向上させること
が極めて困難であった。
Since the conventional linear position detector is constructed as described above, there are the following problems. That is, when used in an aircraft, L
A large number of electric wires have to be wired between the VDT differential transformer and the aircraft control device, which causes malfunction due to external noise due to lightning or the like, and the influence of wiring routing, which causes a problem in aircraft reliability. Was there. In order to solve this problem, a linear detector using a known Fabry-Perot type semiconductor laser diode has been partially developed and tested.
As shown in FIG. 7, since the relationship between the peak oscillation wavelength and the case temperature of the diode is stepwise, it is extremely difficult to improve the reliability under the environment of the aircraft where the case temperature changes a lot.

【0004】本発明は、以上のような課題を解決するた
めになされたもので、特に、分布帰還型半導体レーザダ
イオードを用いることにより広い温度範囲の環境下にお
いて安定動作を得るようにした光ファイバリニア位置検
出器を提供することを目的とする。
The present invention has been made in order to solve the above problems, and in particular, an optical fiber which is designed to obtain stable operation in an environment of a wide temperature range by using a distributed feedback semiconductor laser diode. It is an object to provide a linear position detector.

【0005】[0005]

【課題を解決するための手段】本発明による光ファイバ
リニア位置検出器は、光源からの光を光ファイバを経て
ケーシングに固定された発光部から前記ケーシング内に
入射し、前記ケーシング内で軸方向移動するピストンに
設けられた移動ミラーから反射した前記光の反射光を再
び前記光ファイバを経て受光体に戻すことにより、前記
ピストンの移動状態を検出するようにした光ファイバリ
ニア位置検出器において、前記光源として分布帰還型半
導体レーザダイオードを用いた構成である。
An optical fiber linear position detector according to the present invention is configured such that light from a light source enters an inside of the casing from a light emitting portion fixed to the casing via an optical fiber and is axially moved in the casing. In the optical fiber linear position detector configured to detect the moving state of the piston by returning the reflected light of the light reflected from the moving mirror provided on the moving piston to the light receiving body via the optical fiber again, The configuration uses a distributed feedback semiconductor laser diode as the light source.

【0006】[0006]

【作用】本発明による光ファイバリニア位置検出器にお
いては、光源として分布帰還型半導体レーザダイオード
を用いているため、ケーシングのケース温度とピーク発
振波長との関係が図5で示すように、直線状となり、広
い温度環境下において安定した位置精度を得ることがで
きる。
In the optical fiber linear position detector according to the present invention, since the distributed feedback type semiconductor laser diode is used as the light source, the relationship between the case temperature of the casing and the peak oscillation wavelength is linear as shown in FIG. Therefore, stable position accuracy can be obtained in a wide temperature environment.

【0007】[0007]

【実施例】以下、図面と共に本発明による光ファイバリ
ニア位置検出器の好適な実施例について詳細に説明す
る。図1及び図2は本発明による光ファイバリニア位置
検出器の構成を示すもので、筒状をなすケーシング1の
一端1aには光源2が固定して設けられ、この光源2は
周知の分布帰還型半導体レーザダイオードから構成され
ている。なお、この光源2は図2で示すように三重系で
構成されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of an optical fiber linear position detector according to the present invention will be described in detail below with reference to the drawings. 1 and 2 show the structure of an optical fiber linear position detector according to the present invention. A light source 2 is fixedly provided at one end 1a of a cylindrical casing 1, and the light source 2 is a well-known distributed feedback device. Type semiconductor laser diode. The light source 2 has a triple system as shown in FIG.

【0008】前記ケーシング1内には、このケーシング
1の他端1bの軸受3で摺動案内されたピストンロッド
4に設けられたピストン5が軸方向に沿って移動できる
ように構成されており、このピストン5には三個の移動
ミラー6が円内に等角度配設されている。
In the casing 1, a piston 5 provided on a piston rod 4 slidably guided by a bearing 3 at the other end 1b of the casing 1 is constructed so as to be movable in the axial direction. On this piston 5, three moving mirrors 6 are arranged in a circle at equal angles.

【0009】前記光源2は、図4及び図5で示す分布帰
還型半導体レーザダイオードよりなり、レーザ結晶10
の導波路11に設けられた回析格子12の周期によりほ
ぼ決まるように発振波長が構成され、安定した単一波長
発振が得られる。また、この光源2のケース温度(℃)
とピーク発振波長(λp)との関係は、図5で示すよう
に直線変化するように構成されている。
The light source 2 comprises a distributed feedback type semiconductor laser diode shown in FIGS.
The oscillation wavelength is configured so as to be substantially determined by the period of the diffraction grating 12 provided in the waveguide 11, and stable single wavelength oscillation can be obtained. Also, the case temperature of this light source 2 (° C)
And the peak oscillation wavelength (λp) are linearly changed as shown in FIG.

【0010】前述の図1で示す光ファイバリニア位置検
出器20は、周知のFMヘテロダイン法の原理を用いて
おり、簡略化して示すと図6の通りである。すなわち、
光源2からの光2aは出射部21のレンズ22を介して
移動ミラー6に入射し、ミラー6で反射した反射光2a
Aがレンズ23を経て受光体24に受光される。従っ
て、光源2からの光2aは、固定ミラー25と移動ミラ
ー6にビームスプリッタ26を介して分光され、各々の
反射光2aAと25aはビームスプリッタ26にて重畳
され、レンズ23を介して受光体24に入射する。この
時、両者の光路差による位相差が生じ、発生したビート
信号のビート波の周波数又は位相変化を測定して距離測
定を行うようにしたFMヘテロダイン法で構成されてい
る。
The above-mentioned optical fiber linear position detector 20 shown in FIG. 1 uses the principle of the well-known FM heterodyne method, and is shown in simplified form in FIG. That is,
Light 2a from the light source 2 is incident on the moving mirror 6 via the lens 22 of the emitting portion 21 and is reflected by the mirror 6 as reflected light 2a.
The light A is received by the light receiver 24 through the lens 23. Therefore, the light 2a from the light source 2 is split into the fixed mirror 25 and the moving mirror 6 via the beam splitter 26, and the respective reflected lights 2aA and 25a are superimposed on each other by the beam splitter 26 and passed through the lens 23 to the photoreceptor. It is incident on 24. At this time, a phase difference occurs due to the optical path difference between the two, and the distance is measured by measuring the frequency or phase change of the beat wave of the generated beat signal, which is an FM heterodyne method.

【0011】次に、図3のブロック図を用いて三重系の
構成について述べる。すなわち、駆動電源30及び三角
波を発生する変調器31によって駆動される光源2から
のレーザ光よりなる光2aは、光アイソレータ32、光
カプラ33、第1光コネクタ34、第2光コネクタ35
を有する光ファイバ36を介して前記発光部21に送ら
れる。
Next, the structure of the triple system will be described with reference to the block diagram of FIG. That is, the light 2 a formed by the laser light from the light source 2 driven by the driving power supply 30 and the modulator 31 that generates a triangular wave is the optical isolator 32, the optical coupler 33, the first optical connector 34, and the second optical connector 35.
Is sent to the light emitting section 21 via an optical fiber 36 having

【0012】前述の光ファイバ36は、三重系を構成す
るために三系統設けられており、各光コネクタ34,3
5間はシリアル伝送部37で接続され、各ミラー6で反
射した反射光は、光カプラ33を経て第1、第2受光体
40,41を経て第1、第2増幅波形処理部42,43
に入力されている。
The above-mentioned optical fiber 36 is provided in three systems to form a triple system, and each optical connector 34, 3 is provided.
5 are connected by a serial transmission unit 37, and the reflected light reflected by each mirror 6 passes through the optical coupler 33, the first and second light receiving members 40, 41, and the first and second amplified waveform processing units 42, 43.
Has been entered in.

【0013】前記各増幅波形処理部42,43の各出力
42a,43aは、第1、第2カウンタ44,45を介
して演算回路46に入力され、第2増幅波形処理部43
の出力43bは故障検出回路47に入力され、演算回路
46及び故障検出回路47の出力46a,47aは本体
50のコネクタ51から外部に取り出しができるように
構成されている。なお、電源部60からの電源60aは
前述の駆動電源30及び変調器31に供給される。
The outputs 42a and 43a of the amplified waveform processing sections 42 and 43 are input to the arithmetic circuit 46 via the first and second counters 44 and 45, and the second amplified waveform processing section 43 is input.
Output 43b is input to the failure detection circuit 47, and outputs 46a and 47a of the arithmetic circuit 46 and the failure detection circuit 47 can be taken out from the connector 51 of the main body 50 to the outside. The power source 60a from the power source unit 60 is supplied to the drive power source 30 and the modulator 31 described above.

【0014】次に動作について説明する。図6におい
て、光源2からのレーザ光よりなる光2aは、変調器3
1からの三角波信号31aによって三角波変調(fm:
変調周波数)をかけられ、変調された光2aはビームス
プリッタ26により固定側ミラー25と移動側ミラー6
へと分けられる。
Next, the operation will be described. In FIG. 6, the light 2a made of the laser light from the light source 2 is the modulator 3
Triangular wave modulation (fm:
The modulated light 2 a, which has been subjected to the modulation frequency, is modulated by the beam splitter 26 to the fixed side mirror 25 and the moving side mirror 6.
Divided into

【0015】このビームスプリッタ26により分岐され
た光2aは、各ミラー25,6で反射した各反射光25
a,2aAはレンズ23を経て合成されるが、各光路に
は光路長差があるため、合成された光は干渉波となる。
この時の干渉波の周波数(fb)は、fb=4・fm・Δν
・L/c(但し、Δνは光の周波数の偏移量、Lは光路
差長、cは光速)により測定したい距離Lを求めること
ができる。
The light 2a split by the beam splitter 26 is reflected by each of the mirrors 25, 6 and the reflected light 25 is reflected.
Although a and 2aA are combined through the lens 23, there is an optical path length difference between the respective optical paths, so the combined light becomes an interference wave.
The frequency (fb) of the interference wave at this time is fb = 4 · fm · Δν
The distance L to be measured can be obtained from L / c (where Δν is the shift amount of the frequency of light, L is the optical path difference length, and c is the speed of light).

【0016】また、前述の光源2は、分布帰還型半導体
レーザダイオードを用いているため、光源2のケース温
度に光源2の発振波長特性は変化し、従来のファブリペ
ロー型レーザダイオードは、ν=c/λ(但し、νは光
源の発光周波数、cは光速、λは光源の発振波長)の関
係式より、狭い温度範囲で階段状に変化(モードホッピ
ング)するが、分布帰還型半導体レーザダイオードで
は、図5で示すように、ケース温度とピーク発振波長と
の変化が直線的であるため、前述のモードホッピングは
発生せず、誤差の少ない測定距離Lを測定することがで
きる。
Further, since the above-mentioned light source 2 uses the distributed feedback semiconductor laser diode, the oscillation wavelength characteristic of the light source 2 changes depending on the case temperature of the light source 2, and in the conventional Fabry-Perot laser diode, ν = According to the relational expression of c / λ (where ν is the light emission frequency of the light source, c is the speed of light, and λ is the oscillation wavelength of the light source), it changes stepwise in a narrow temperature range (mode hopping). Then, as shown in FIG. 5, since the case temperature and the peak oscillation wavelength change linearly, the above-mentioned mode hopping does not occur, and the measurement distance L with a small error can be measured.

【0017】[0017]

【発明の効果】本発明による光ファイバリニア位置検出
器は以上のように構成されているため、広い温度範囲の
環境条件下でも測定精度誤差を落とすことなく使用で
き、航空機等でも使用可となり、信頼性を向上させるこ
とができる。
Since the optical fiber linear position detector according to the present invention is configured as described above, it can be used even under environmental conditions in a wide temperature range without lowering the measurement accuracy error, and can be used in aircraft and the like. The reliability can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による光ファイバリニア位置検出器を示
す断面図である。
FIG. 1 is a sectional view showing an optical fiber linear position detector according to the present invention.

【図2】図1のA−A線による断面図である。FIG. 2 is a sectional view taken along the line AA of FIG.

【図3】ブロック図である。FIG. 3 is a block diagram.

【図4】光源の内部構造を示す断面図である。FIG. 4 is a cross-sectional view showing an internal structure of a light source.

【図5】光源の特性図である。FIG. 5 is a characteristic diagram of a light source.

【図6】概略構成図である。FIG. 6 is a schematic configuration diagram.

【図7】従来の光源の特性図である。FIG. 7 is a characteristic diagram of a conventional light source.

【符号の説明】[Explanation of symbols]

1 ケーシング 2 光源 2a 光 2aA 反射光 5 ピストン 6 反射ミラー 21 出射部 36 光ファイバ 1 Casing 2 Light Source 2a Light 2aA Reflected Light 5 Piston 6 Reflection Mirror 21 Outgoing Part 36 Optical Fiber

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光源(2)からの光(2a)を光ファイバ(36)
を経てケーシング(1)に固定された発光部(21)から前記
ケーシング(1)内に入射し、前記ケーシング(1)内で軸方
向移動するピストン(5)に設けられた移動ミラー(6)から
反射した前記光(2a)の反射光(2aA)を再び前記光ファイ
バ(36)を経て受光体(24)に戻すことにより、前記ピスト
ン(5)の移動状態を検出するようにした光ファイバリニ
ア位置検出器において、前記光源(2)として分布帰還型
半導体レーザダイオードを用いることを特徴とする光フ
ァイバリニア位置検出器。
1. A light fiber (36) for transmitting light (2a) from a light source (2).
After entering the casing (1) from the light emitting part (21) fixed to the casing (1), the moving mirror (6) provided on the piston (5) axially moving in the casing (1). The reflected light (2aA) of the light (2a) reflected from the optical fiber (36) is returned to the photoreceptor (24) via the optical fiber (36) again, thereby detecting the moving state of the piston (5). In the linear position detector, a distributed feedback type semiconductor laser diode is used as the light source (2), an optical fiber linear position detector.
JP03838293A 1993-02-26 1993-02-26 Optical fiber linear position detector Expired - Fee Related JP3318383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03838293A JP3318383B2 (en) 1993-02-26 1993-02-26 Optical fiber linear position detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03838293A JP3318383B2 (en) 1993-02-26 1993-02-26 Optical fiber linear position detector

Publications (2)

Publication Number Publication Date
JPH06249617A true JPH06249617A (en) 1994-09-09
JP3318383B2 JP3318383B2 (en) 2002-08-26

Family

ID=12523730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03838293A Expired - Fee Related JP3318383B2 (en) 1993-02-26 1993-02-26 Optical fiber linear position detector

Country Status (1)

Country Link
JP (1) JP3318383B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029271A (en) * 2018-09-05 2018-12-18 天津大学 DFB array swept light source optical fiber frequency domain interfeerometry ranging system and method
CN110906866A (en) * 2019-11-13 2020-03-24 浙江海洋大学 Rock mass displacement monitoring device and monitoring method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109029271A (en) * 2018-09-05 2018-12-18 天津大学 DFB array swept light source optical fiber frequency domain interfeerometry ranging system and method
CN110906866A (en) * 2019-11-13 2020-03-24 浙江海洋大学 Rock mass displacement monitoring device and monitoring method

Also Published As

Publication number Publication date
JP3318383B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
US4596466A (en) Method for the measurement of lengths and displacements
US4969736A (en) Integrated fiber optic coupled proximity sensor for robotic end effectors and tools
JP2716207B2 (en) Interferometer sensor and use of the sensor in an interferometer device
JPH04504615A (en) Device that detects surface structure using interferometric method
US4995697A (en) Fiber optic sensing system
US20060092428A1 (en) Position measuring system
CN115876090A (en) Reflection type Fabry-Perot grating interference displacement measurement method and system
US4856092A (en) Optical pulse generating arrangements
JPH03180704A (en) Laser interference gauge
US5696579A (en) Method, apparatus and system for determining the differential rate of change of strain
US4283144A (en) Method of fiber interferometry zero fringe shift referencing using passive optical couplers
US5546185A (en) Angle detecting apparatus for detecting angle of inclination of scanning mirror provided on michelson interferometer
CN112304213B (en) Fabry-Perot grating interferometer for single-degree-of-freedom displacement measurement and measurement method thereof
JP2002267537A (en) Diffraction grating reflected wavelength measuring method and device, and physical quantity measuring method and device
JPH06249617A (en) Optical fiber linear position detector
US5555089A (en) Absolute distance measuring interferometry using multi-pass resonant cavity referenced to a stabilized laser source
JP3663903B2 (en) Wavelength detector
EP3879221A1 (en) Optical interference measurement apparatus
JPH07190712A (en) Interferometer
GB2244808A (en) Method and apparatus for interferometric measurement
JPS63196829A (en) Method and apparatus for searching fault point of light waveguide
Rao et al. Design study of fiber-optic based Fabry-Perot type interferometric sensors using low-coherence signal recovery
JPH0886717A (en) Light beam passage discriminating optical part and its remote control measuring method and device
JPH05312523A (en) Length measuring apparatus for semiconductor laser
JP3149421B2 (en) Reflectometer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees