JPH06248455A - Production of zro2 film - Google Patents

Production of zro2 film

Info

Publication number
JPH06248455A
JPH06248455A JP3633393A JP3633393A JPH06248455A JP H06248455 A JPH06248455 A JP H06248455A JP 3633393 A JP3633393 A JP 3633393A JP 3633393 A JP3633393 A JP 3633393A JP H06248455 A JPH06248455 A JP H06248455A
Authority
JP
Japan
Prior art keywords
substrate
film
zro2
wavelength
diketone complex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3633393A
Other languages
Japanese (ja)
Inventor
Fumio Okada
文雄 岡田
Koji Tokita
浩司 時田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP3633393A priority Critical patent/JPH06248455A/en
Publication of JPH06248455A publication Critical patent/JPH06248455A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably form the high-quality ZrO2 thin film contg. less impurities by using beta-diketone complex of Zr as a raw material and irradiating this raw material with a laser beam of a specific wavelength at the time of forming the ZrO2 film by a CVD method. CONSTITUTION:An inert carrier gas, such as gaseous Ar, is supplied from a cylinder 1 into a raw material container contg. the beta-diketone complex 6 of the Zr in a thermostatic chamber 4 and is supplied together with the gaseous O2 in a cylinder 2 by carrying the beta-diketone complex 6 of the Zr therein into a reaction tube 8. The surface of a substrate 9 heated to 400 to 600 deg.C in this reaction tube 8 is irradiated with the electromagnetic waves, such as laser beam, having peak intensity of <=280nm wavelength, by which the high-purity ZrO2 film without contg. C as the impurity is stably formed on the surface of the substrate 9.

Description

【発明の詳細な説明】Detailed Description of the Invention

【産業上の利用分野】本発明は、化学気相成長法により
ZrO2 膜を製造する方法に関するものであり、さらに
詳しく述べるならば炭素の混入を少なくしたZrO2 膜
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a ZrO2 film by a chemical vapor deposition method, and more specifically, it relates to a method for producing a ZrO2 film containing less carbon.

【0002】[0002]

【従来の技術】金属酸化物薄膜はエレクトロニクスの様
々な分野で用いられており、その代表的なものはファイ
ンセラミックスあるいは酸化物高温超電導体等である。
その製造方法としては、多量生産に適するドライプロセ
スである化学気相成長法(CVD法)がある。ZrO2
膜の化学気相成長法としてはZrのβ−ジケトン錯体Z
rR4 (但し、RはC11H19O2 、C5 H7 O2 などの
ジケトン化合物)を酸化ガス雰囲気下で基板と接触させ
る方法が公知である。
2. Description of the Related Art Metal oxide thin films are used in various fields of electronics, and typical ones thereof are fine ceramics or oxide high temperature superconductors.
As a manufacturing method thereof, there is a chemical vapor deposition method (CVD method) which is a dry process suitable for mass production. ZrO2
As a chemical vapor deposition method of a film, β-diketone complex Z of Zr is used.
A method is known in which rR4 (where R is a diketone compound such as C11 H19 O2 and C5 H7 O2) is brought into contact with the substrate in an oxidizing gas atmosphere.

【0003】[0003]

【発明が解決しようとする課題】上記したZrO2 の化
学気相成長法による成膜に際して基板の温度を600〜
700℃と高くすると、基板上に形成されている電極や
FETなどの電子素子にダメージを与えてしまう。一
方、基板の温度を室温〜600℃以下と低くすると拡散
はないが、ZrO2 膜中に配位子に起因する炭素などの
不純物が混入し結晶性、電気特性が劣化した。又、CV
D法は多量生産には適するもののゾルゲル法に比較して
成膜速度が遅いために成膜速度の向上が望まれていた。
したがって、本発明は膜への炭素の混入が少なくかつ基
板上の素子へダメージを与えず、高速でZrO2 膜の化
学気相成長法を提供することを目的とする。
When the ZrO2 film is formed by the chemical vapor deposition method as described above, the temperature of the substrate is 600 to 600.
If the temperature is raised to 700 ° C., the electrodes and electronic elements such as FETs formed on the substrate will be damaged. On the other hand, when the temperature of the substrate was lowered from room temperature to 600 ° C. or lower, no diffusion occurred, but impurities such as carbon derived from the ligand were mixed in the ZrO2 film, and the crystallinity and electrical characteristics were deteriorated. Also, CV
Although the method D is suitable for mass production, the film forming rate is slower than that of the sol-gel method, and therefore it is desired to improve the film forming rate.
Therefore, it is an object of the present invention to provide a chemical vapor deposition method for a ZrO2 film at a high speed, with less carbon contamination in the film and without damaging the device on the substrate.

【0004】[0004]

【課題を解決するための手段及び作用】上記課題を解決
するために本発明者らはCVD法によってZrO2 膜を
作製する際、波長を変えたレーザー光を基板に照射し、
膜中の炭素量を測定した結果本発明を完成した。
Means and Actions for Solving the Problems In order to solve the above problems, the inventors of the present invention irradiate a substrate with a laser beam having a different wavelength when a ZrO2 film is formed by a CVD method.
The present invention has been completed as a result of measuring the amount of carbon in the film.

【0005】すなわち、本発明は、Zrのβ−ジケトン
錯体を酸化ガス雰囲気下で波長280nm以下にピーク強
度を有する電磁波を基板に照射しながら基板温度600
℃未満とした基板上に化学気相成長させることを特徴と
するZrO2 膜の製造方法である。以下、本発明の構成
を詳しく説明する。
That is, according to the present invention, a substrate temperature of 600 is obtained by irradiating a Zr β-diketone complex with an electromagnetic wave having a peak intensity at a wavelength of 280 nm or less in an oxidizing gas atmosphere.
It is a method for producing a ZrO2 film, which is characterized in that chemical vapor deposition is performed on a substrate whose temperature is lower than ℃. Hereinafter, the constitution of the present invention will be described in detail.

【0006】ZrO2 のZr源となるZrのβ−ジケト
ン錯体は一般式ZrR4 (Rはジケトン基)で表される
化合物である。RはCn H2n-1CO(但しn =2以上)
であることが好ましい。ZrO2 のO源となる酸化ガス
はβ−ジケトン錯体を酸化することができるO2 ,O3
,N2 O,NO2 等のガスである。
The β-diketone complex of Zr which serves as the Zr source of ZrO 2 is a compound represented by the general formula ZrR 4 (R is a diketone group). R is Cn H2n-1CO (however, n = 2 or more)
Is preferred. Oxidizing gas serving as an O source of ZrO2 can oxidize β-diketone complex O2, O3
, N2 O, NO2, etc.

【0007】また、本発明においては基板上の素子にダ
メージを与えないように基板の温度は600℃以下にす
ることが必要である。基板温度の下限は室温でもよい
が、400℃以上が実用的成長速度が得られるので好ま
しい。
In the present invention, the temperature of the substrate needs to be 600 ° C. or lower so as not to damage the elements on the substrate. The lower limit of the substrate temperature may be room temperature, but 400 ° C. or higher is preferable because a practical growth rate can be obtained.

【0008】本発明が最も特長とするのはピーク波長が
280nm以下、好ましくは260nm(短波長)の光を照
射しながらCVDを行うことである。これにより膜中へ
の炭素の混入が低温CVDにも拘らず防止できるのであ
る。ピーク波長が280nm以下の光としてはHgランプ
(波長253nm)、ArFエキシマレーザー(波長19
3nm)、KrClエキシマレーザー(波長222nm)、
F2 エキシマレーザー(波長157nm)、KrFエキシ
マレーザー(波長248nm)、D2 ランプ(波長180
〜400nm)及びXeフラッシュランプ(波長200nm
〜)などを使用することができる。
The most remarkable feature of the present invention is that the CVD is performed while irradiating light having a peak wavelength of 280 nm or less, preferably 260 nm (short wavelength). This prevents carbon from being mixed into the film despite the low temperature CVD. Light with a peak wavelength of 280 nm or less includes Hg lamp (wavelength 253 nm), ArF excimer laser (wavelength 19
3 nm), KrCl excimer laser (wavelength 222 nm),
F2 excimer laser (wavelength 157nm), KrF excimer laser (wavelength 248nm), D2 lamp (wavelength 180)
~ 400nm) and Xe flash lamp (wavelength 200nm)
~) And the like can be used.

【0009】ZrO2 膜製造方法の具体例を図1に示す
装置を参照して説明する。図中、1はArガスなどのキ
ャリアガスボンベ、2はO2 などの酸化ガスボンベ、3
はマスフローコントローラー、4は恒温槽、5は原料容
器、6はZrのβ−ジケトン錯体、7はレーザー光、8
は反応管、9は基板、10は真空ポンプである。
A specific example of the ZrO2 film manufacturing method will be described with reference to the apparatus shown in FIG. In the figure, 1 is a carrier gas cylinder such as Ar gas, 2 is an oxidizing gas cylinder such as O2, and 3
Is a mass flow controller, 4 is a constant temperature bath, 5 is a raw material container, 6 is Zr β-diketone complex, 7 is laser light, 8
Is a reaction tube, 9 is a substrate, and 10 is a vacuum pump.

【0010】キャリアガスボンベ1を解放し、Arガス
気流を原料容器5を経て反応管8内に送入する。この際
Zrのβ−ジケトン錯体6はキャリアガスによって反応
管8へ導入される。キャリアガスとしてはArの他にN
2 等の不活性ガスを用いることができ、その流量はマス
フローコントローラー3で制御される。キャリアガスを
使わず、加熱したβ−ジケトン錯体の蒸気を直接反応管
8内の導入しても良い。
The carrier gas cylinder 1 is released, and the Ar gas flow is fed into the reaction tube 8 through the raw material container 5. At this time, the Zr β-diketone complex 6 is introduced into the reaction tube 8 by the carrier gas. N as a carrier gas in addition to Ar
An inert gas such as 2 can be used, and its flow rate is controlled by the mass flow controller 3. The heated vapor of the β-diketone complex may be directly introduced into the reaction tube 8 without using the carrier gas.

【0011】管8内の圧力は0.ltorr〜大気圧が好ま
しい。基板の種類はどのようなものでもよいが、図示さ
れないヒーターにより400〜600℃未満に加熱す
る。加熱された基板上でZrのβ−ジケトン錯体と酸化
ガスボンベ2から送られるO2などとの反応が起こって
ZrO2 膜が成長する。この時ArFエキシマレーザ
ー、KrFエキシマレーザーなどのレーザー光7を基板
9に照射する。レーザー照射の繰り返し数は1〜100
Hz程度が好ましく、またレーザー光のエネルギー密度
は1パルス当たり1〜100mJ/cm2 程度が好まし
い。また、レーザー光7の照射角度は基板9に照射され
ればどのような角度でも良いが、好ましくは基板8に対
し垂直に照射するとZrO2 膜への炭素の混入が非常に
少なくなる。
The pressure in the tube 8 is 0. Itorr to atmospheric pressure is preferred. Although the substrate may be of any type, it is heated to 400 to less than 600 ° C. by a heater (not shown). On the heated substrate, a reaction between the β-diketone complex of Zr and O2 or the like sent from the oxidizing gas cylinder 2 occurs to grow a ZrO2 film. At this time, the substrate 9 is irradiated with laser light 7 such as ArF excimer laser or KrF excimer laser. Laser irradiation repeats 1 to 100
Hz is preferable, and the energy density of laser light is preferably 1 to 100 mJ / cm @ 2 per pulse. The irradiation angle of the laser beam 7 may be any angle as long as it irradiates the substrate 9, but it is preferable that irradiation of the laser beam 7 perpendicularly to the substrate 8 will significantly reduce the incorporation of carbon into the ZrO2 film.

【0012】[0012]

【実施例】以下、実施例及び比較例により本発明法を説
明する。 実施例1 50ml/min の流量でアルゴンキャリアーガスを市販の
ジルコンジピバロイルメタネート(Zr(C11H19O2
)4 )を半分程度入れた容器を経由して500、52
5、550、575℃に加熱されたSi基板が設置され
た反応管中に流した。同時に、50ml/min の酸素ガス
を容器中に流した。容器内の圧力は0.4torrであっ
た。このような方法でZrO2 膜を0.2μmの厚さに
化学気相成長させる際に波長193nm、エネルギー密度
12mJ/cm2 /パルスのArFエキシマレーザーを
繰り返し周波数10Hzで基板に対し垂直に照射した。
EXAMPLES The method of the present invention will be described below with reference to Examples and Comparative Examples. Example 1 A commercially available zircon dipivaloylmethanate (Zr (C11H19O2) was used with an argon carrier gas at a flow rate of 50 ml / min.
) 4) via a container that contains about half of
It was made to flow in the reaction tube in which the Si substrate heated at 5,550,575 ° C. was installed. At the same time, 50 ml / min of oxygen gas was flowed into the container. The pressure in the container was 0.4 torr. When the ZrO2 film was chemically vapor-deposited to a thickness of 0.2 .mu.m by such a method, an ArF excimer laser having a wavelength of 193 nm and an energy density of 12 mJ / cm @ 2 / pulse was irradiated vertically to the substrate at a repetition frequency of 10 Hz.

【0013】生成したZrO2 薄膜の膜厚をエリプソメ
ーターで測定し、測定結果を横軸を基板温度の逆数、縦
軸を成膜速度の対数として図2に示す。この図よりレー
ザー照射による成膜速度の増加が認められた。例えば基
板温度500℃においてはレーザー非照射部の成膜速度
が250オングストローム/時であったが、レーザー照
射部は340オングストローム/時であり、レーザー照
射によって36%成膜速度が増加する事がわかった。ま
た成膜速度増加の割合は基板温度が低いほど顕著であっ
た。
The thickness of the produced ZrO2 thin film was measured by an ellipsometer, and the measurement results are shown in FIG. 2 in which the horizontal axis represents the reciprocal of the substrate temperature and the vertical axis represents the logarithm of the film formation rate. From this figure, it was confirmed that the film formation rate was increased by laser irradiation. For example, at a substrate temperature of 500 ° C, the film formation rate of the laser non-irradiated part was 250 angstrom / hour, but it was 340 angstrom / hour in the laser irradiated part, and it was found that the laser irradiation increased the film forming rate by 36%. It was The rate of increase in the film formation rate was more remarkable as the substrate temperature was lower.

【0014】実施例2 50ml/min の流量でアルゴンキャリアーガスを市販の
ジルコンジピバロイルメタネート(Zr(C11H19O2
)4 )を半分程度入れた容器を経由して530℃に加
熱されたSi基板が水平に配置された反応管中に流し
た。同時に50ml/min の酸素ガスを反応管中に流し
た。このような方法でZrO2 膜を0.2μmの厚さに
化学気相成長させる際に波長248nm、エネルギー密度
12mJ/cm2 /パルスのKrFエキシマレーザーを
繰り返し周波数10Hzで基板の一部に垂直に照射し
た。生成した薄膜中の炭素濃度をSIMS(二次イオン
質量分析器)によって測定した結果を表1(任意単位)
に示す。
EXAMPLE 2 A commercially available zircon dipivaloylmethanate (Zr (C11H19O2) was used with an argon carrier gas at a flow rate of 50 ml / min.
) 4) was put into a reaction tube in which a Si substrate heated to 530 ° C. was placed horizontally through a container in which about half was put. At the same time, 50 ml / min of oxygen gas was flowed into the reaction tube. When the ZrO2 film was chemically vapor-deposited to a thickness of 0.2 .mu.m in this way, a part of the substrate was vertically irradiated with a KrF excimer laser having a wavelength of 248 nm and an energy density of 12 mJ / cm @ 2 / pulse at a repetition frequency of 10 Hz. . The results of measuring the carbon concentration in the formed thin film by SIMS (Secondary Ion Mass Spectrometer) are shown in Table 1 (arbitrary unit).
Shown in.

【0015】実施例3 実施例2のKrFエキシマレーザーの代わりにXeCl
エキシマレーザー(308mm)を使用しZrO2 膜の
化学気相成長を行い、SIMSによって炭素濃度を測定
した結果を表1に示す。
Example 3 Instead of the KrF excimer laser of Example 2, XeCl was used.
Table 1 shows the result of chemical vapor deposition of a ZrO2 film using an excimer laser (308 mm) and measurement of carbon concentration by SIMS.

【0016】実施例4 実施例2のKrFエキシマレーザーの代わりにArFエ
キシマレーザー(193mm)を使用しZrO2 膜の化
学気相成長を行い、SIMSによって炭素濃度を測定し
た結果を表1に示す。
Example 4 A chemical vapor deposition of a ZrO 2 film was performed by using an ArF excimer laser (193 mm) instead of the KrF excimer laser of Example 2, and the carbon concentration was measured by SIMS.

【0017】実施例5 実施例2のKrFエキシマレーザーの代わりにHgラン
プ(253mm)を使用しZrO2 膜の化学気相成長を
行い、SIMSによって炭素濃度を測定した結果を表1
に示す。
Example 5 The Hg lamp (253 mm) was used in place of the KrF excimer laser of Example 2, chemical vapor deposition of a ZrO 2 film was performed, and the carbon concentration was measured by SIMS.
Shown in.

【0018】[0018]

【表1】 SIMSによる膜中の炭素量の分析結果 C- イオン強度 C2-イオン強度 比較例 レーザー非照射部 9×105 4×104 実施例2 KrFエキシマ 4×105 8×103 レーザー照射部 実施例3 XeClエキシマ 6×105 3×104 レーザー 実施例4 ArFエキシマ 5×105 9×103 レーザー 実施例5 Hgランプ 5×105 1×104 [Table 1] Analysis result of carbon amount in film by SIMS C- ionic strength C2- ionic strength comparative example Laser non-irradiated area 9 × 10 5 4 × 10 4 Example 2 KrF excimer 4 × 10 5 8 × 10 3 laser irradiation part Example 3 XeCl excimer 6 × 10 5 3 × 10 4 laser Example 4 ArF excimer 5 × 10 5 9 × 10 3 laser Example 5 Hg lamp 5 × 10 5 1 × 10 4

【0019】表1に示す如くレーザー又はHgランプ照
射部(基板)は非照射部(基板)に比べ炭素濃度が減少
している。
As shown in Table 1, the laser or Hg lamp irradiation part (substrate) has a lower carbon concentration than the non-irradiation part (substrate).

【0020】[0020]

【発明の効果】以上のように本発明によりZrO2 膜中
に残留する炭素不純物を低減すると同時に基板上の素子
にダメージを与えないことが可能になったので、高品質
な薄膜が作製される。また、ZrO2 膜をより高速で成
膜する事ができることとなったので、本発明の工業的価
値は大である。
As described above, according to the present invention, it is possible to reduce the carbon impurities remaining in the ZrO2 film and at the same time not damage the device on the substrate, so that a high quality thin film is produced. In addition, since the ZrO2 film can be formed at a higher speed, the industrial value of the present invention is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】ZrO2 膜を作製するCVD装置を示す図であ
る。
FIG. 1 is a diagram showing a CVD apparatus for producing a ZrO 2 film.

【図2】成膜速度の基板温度依存性を示すグラフであ
る。
FIG. 2 is a graph showing the substrate temperature dependence of the film formation rate.

【符号の説明】[Explanation of symbols]

1 キャリアガスボンベ 2 酸化ガスボンベ 3 マスフローコントローラー 4 恒温槽 5 原料容器 6 Zrのβ−ジケトン錯体 7 レーザー光 8 反応管 9 基板 10 真空ポンプ 1 Carrier Gas Cylinder 2 Oxidation Gas Cylinder 3 Mass Flow Controller 4 Constant Temperature Tank 5 Raw Material Container 6 Zr β-diketone Complex 7 Laser Light 8 Reaction Tube 9 Substrate 10 Vacuum Pump

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Zrのβ−ジケトン錯体を酸化ガス雰囲
気下で波長280nm以下にピーク強度を有する電磁波を
基板に照射しながら基板温度600℃未満とした基板上
に化学気相成長させることを特徴とするZrO2 膜の製
造方法。 【0001】
1. A chemical vapor deposition of a Zr β-diketone complex on a substrate having a substrate temperature of less than 600 ° C. while irradiating the substrate with an electromagnetic wave having a peak intensity at a wavelength of 280 nm or less in an oxidizing gas atmosphere. And a method for producing a ZrO2 film. [0001]
JP3633393A 1993-02-25 1993-02-25 Production of zro2 film Pending JPH06248455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3633393A JPH06248455A (en) 1993-02-25 1993-02-25 Production of zro2 film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3633393A JPH06248455A (en) 1993-02-25 1993-02-25 Production of zro2 film

Publications (1)

Publication Number Publication Date
JPH06248455A true JPH06248455A (en) 1994-09-06

Family

ID=12466907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3633393A Pending JPH06248455A (en) 1993-02-25 1993-02-25 Production of zro2 film

Country Status (1)

Country Link
JP (1) JPH06248455A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157775A1 (en) * 2022-02-17 2023-08-24 日本軽金属株式会社 Corrosion-resistant member production method and laser cvd device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625961A (en) * 1979-07-07 1981-03-12 British Petroleum Co Protective metal oxide coating on surface of metal or alloy substrate sensitive to coking * corrosion or catalyst activity
JPH01503151A (en) * 1987-03-26 1989-10-26 ジーイーシー ― マルコニ リミテッド Thin film deposition method
JPH03111574A (en) * 1989-06-08 1991-05-13 Schering Ag Method of forming thin oxide layer by plasma reaction of organic metal compound and method of forming thin oxide layer, protective layer, conductor layer, semiconductor layer, dielectric layer and antistatic film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5625961A (en) * 1979-07-07 1981-03-12 British Petroleum Co Protective metal oxide coating on surface of metal or alloy substrate sensitive to coking * corrosion or catalyst activity
JPH01503151A (en) * 1987-03-26 1989-10-26 ジーイーシー ― マルコニ リミテッド Thin film deposition method
JPH03111574A (en) * 1989-06-08 1991-05-13 Schering Ag Method of forming thin oxide layer by plasma reaction of organic metal compound and method of forming thin oxide layer, protective layer, conductor layer, semiconductor layer, dielectric layer and antistatic film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023157775A1 (en) * 2022-02-17 2023-08-24 日本軽金属株式会社 Corrosion-resistant member production method and laser cvd device

Similar Documents

Publication Publication Date Title
TWI293781B (en)
JPS6289873A (en) Formation of transparent conductive film
EP0617142A1 (en) Preparation of silica thin films
EP0275267B1 (en) Process for photochemical vapor deposition of oxide layers at enhanced deposition rates
EP0967008B1 (en) Process for preparing a film of titanium dioxide and silicon dioxide
JPH06248455A (en) Production of zro2 film
JP2758247B2 (en) Organic metal gas thin film forming equipment
JPH04362017A (en) Formation of oriented ta2o5 thin film
JP2726149B2 (en) Thin film forming equipment
JP3550658B2 (en) Method for producing titanium dioxide-based thin film with controlled crystal structure
JPH05102422A (en) Formation of tantalum oxide thin film
JPH09195050A (en) Production of oxide or metal
JPH0420982B2 (en)
JP3534676B2 (en) Method and apparatus for forming Cu or Cu-containing film
JPS59129774A (en) Selective formation of nitrided film
JPH08134654A (en) Formation of thin film of metallic compound and method for patterning same
JPH07309695A (en) Production of thin film of lead titanate or lead titanate zirconate
JPH0474433B2 (en)
JPH07258851A (en) Method for patterning metal compound thin film
JPH064520B2 (en) Manufacturing method of oxide thin film
JPH0869809A (en) Synthesizing method of ysz thin film by using vacuum ultraviolet ray and its device
JPH0375207A (en) Production of thin film of oxide superconductor
JPH04354879A (en) Formation of metal oxide film
JPH09110430A (en) Production of thin film of bismuth-containing laminar ferroelectric
JPH0375362A (en) Production of thin oxide superconductor film