JPH0624830A - Production of tl-base oxide superconductor - Google Patents

Production of tl-base oxide superconductor

Info

Publication number
JPH0624830A
JPH0624830A JP3351340A JP35134091A JPH0624830A JP H0624830 A JPH0624830 A JP H0624830A JP 3351340 A JP3351340 A JP 3351340A JP 35134091 A JP35134091 A JP 35134091A JP H0624830 A JPH0624830 A JP H0624830A
Authority
JP
Japan
Prior art keywords
oxide superconductor
starting material
oxygen
content
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3351340A
Other languages
Japanese (ja)
Inventor
Osamu Nakajima
理 中島
Masae Kikuchi
昌枝 菊地
Yasuhiko Shono
安彦 庄野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP3351340A priority Critical patent/JPH0624830A/en
Publication of JPH0624830A publication Critical patent/JPH0624830A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a Tl-base oxide superconductor having a high critical temp. by using a raw material with the Tl content decreased and the Ca content increased as compared with Tl2Ba2Ca2Cu3Oy and sintering the raw material in the presence of oxygen with the temp. and time controlled. CONSTITUTION:Tl2O3, BaCO3, CaO, CuO, etc., as the raw materials are mixed to prepare a starting material, in which the Tl content is decreased and the Ca content increased as compared with a stoichiometry value of the composition expressed by Tl2Ba2Ca2Cu3Oy ((y) is the number meeting the requirement of valence). The mixing ratio of the raw materials in the number of atoms of Tl, Ba, Ca and Cu is appropriately controlled to (2-alpha):2:(2+beta):3 (where 0.1<alpha<0.6 and 0.1<beta<0.5). The starting material is sintered at 890-910 deg.C for 5-10min in an oxygen-contg. atmosphere and then cooled at a rate of >=10 deg.C/min. An oxide superconductor having a crystal structure expressed by Tl2Ba2Ca2Cu3 Oy is synthesized in this way as a single phase.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、タリウム(Tl)系
の酸化物超伝導体の製造方法体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a thallium (Tl) -based oxide superconductor.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
Tl−Ba−Ca−Cu−O系の酸化物超伝導体が高い
超伝導転移温度(臨界温度:Tc)を有する材料として
注目されている。中でも、Tl2 Ba2 Ca2 Cu3
y (yは原子価の要求を満足する数)で表される結晶構
造をもつ2223系のものが100K以上のTcを有し
ていることが知られている。
2. Description of the Related Art In recent years,
The Tl-Ba-Ca-Cu-O-based oxide superconductor has been attracting attention as a material having a high superconducting transition temperature (critical temperature: Tc). Among them, Tl 2 Ba 2 Ca 2 Cu 3 O
It is known that the 2223 series having a crystal structure represented by y (y is a number satisfying the valence requirement) has a Tc of 100K or more.

【0003】従来、このようなTl2 Ba2 Ca2 Cu
3 y で表される酸化物超伝導体を合成する場合には、
金属元素の比率が目的組成と同様になるように出発原料
を混合して焼成している。
Conventionally, such Tl 2 Ba 2 Ca 2 Cu has been used.
When synthesizing an oxide superconductor represented by 3 O y ,
The starting materials are mixed and fired so that the ratio of the metal elements is the same as the target composition.

【0004】しかしながら、出発原料を目的とするTl
2 Ba2 Ca2 Cu3 y の組成比で調合し、焼成した
場合、多量のBaCuO2 などが生成し、目的とするT
2 Ba2 Ca2 Cu3 y 構造の超伝導体を単相とし
て合成する方法は未だ報告されていない。
However, the Tl intended for the starting material
When mixed with a composition ratio of 2 Ba 2 Ca 2 Cu 3 O y and baked, a large amount of BaCuO 2 or the like is generated and the target T
A method for synthesizing a superconductor having a l 2 Ba 2 Ca 2 Cu 3 O y structure as a single phase has not yet been reported.

【0005】この発明は、このような実情に鑑みてなさ
れたものであって、一般式Tl2 Ba2 Ca2 Cu3
y で表される結晶構造の超伝導体を単相として合成する
ことができるTl系酸化物超伝導体の製造方法を提供す
ることを目的とする。
The present invention has been made in view of such circumstances, and has the general formula Tl 2 Ba 2 Ca 2 Cu 3 O.
An object of the present invention is to provide a method for producing a Tl-based oxide superconductor, which can synthesize a superconductor having a crystal structure represented by y as a single phase.

【0006】[0006]

【課題を解決するための手段及び作用】この発明に係る
Tl系酸化物超伝導体の製造方法は、出発原料組成にお
いて、一般式Tl2 Ba2 Ca2 Cu3 y (ただし、
yは原子価の要求を満たす数)で表される組成の化学量
論値よりもTlの混合比を少なくし、他方、Caの混合
比を多くし、890〜910℃の酸素含有雰囲気中で5
〜10分間焼成した後、10℃/分以上の速度で冷却す
ることを特徴とする。好ましくは、出発原料組成におい
て、Tl,Ba,Ca及びCuを原子数比で実質的に
(2−α):2:(2+β):3の割合(ただし、0.
1<α<0.6、0.1<β<0.5)とする。
The method for producing a Tl-based oxide superconductor according to the present invention is based on the general formula Tl 2 Ba 2 Ca 2 Cu 3 O y (provided that
y is a number satisfying the valence requirement), and the mixing ratio of Tl is set to be smaller than the stoichiometric value of the composition represented by the formula (1), while the mixing ratio of Ca is set to be large in an oxygen-containing atmosphere at 890 to 910 ° C. 5
After calcination for 10 minutes, cooling is performed at a rate of 10 ° C./minute or more. Preferably, in the starting material composition, the ratio of Tl, Ba, Ca and Cu in the atomic number ratio is substantially (2-α): 2: (2 + β): 3 (provided that 0.
1 <α <0.6, 0.1 <β <0.5).

【0007】このようにして、Tl2 Ba2 Ca2 Cu
3 y の結晶構造を有する単相試料を合成することがで
きる。
In this way, Tl 2 Ba 2 Ca 2 Cu
A single-phase sample having a crystal structure of 3 O y can be synthesized.

【0008】本願発明者らは、Tl2 Ba2 Ca2 Cu
3 y の結晶構造を有する超伝導体を合成するために種
々検討を重ねた結果、出発原料のTl量を上記安定相よ
りも少なくし、Caを多くして、さらに焼成条件および
冷却速度を制御することにより、BaCuO2 などの生
成を抑制することができ、しかもTl2 Ba2 Ca2
3 y の結晶構造を維持できることを見出した。この
発明はこのような知見に基づいてなされたものである。
The present inventors have found that Tl 2 Ba 2 Ca 2 Cu
As a result of various studies to synthesize a superconductor having a 3 O y crystal structure, the amount of Tl of the starting material was made smaller than that of the above stable phase, the amount of Ca was increased, and the firing conditions and the cooling rate were further increased. By controlling, it is possible to suppress the generation of BaCuO 2 and the like, and moreover, it is possible to control Tl 2 Ba 2 Ca 2 C
It was found that the crystal structure of u 3 O y can be maintained. The present invention was made based on such knowledge.

【0009】この発明により製造された酸化物超伝導体
は、Tl2 Ba2 Ca2 Cu3 yの結晶構造を維持
し、しかも単相であるから、高いTcを得ることができ
る。
The oxide superconductor manufactured according to the present invention maintains the crystal structure of Tl 2 Ba 2 Ca 2 Cu 3 O y and is a single phase, so that a high Tc can be obtained.

【0010】以下、この発明について詳細に説明する。The present invention will be described in detail below.

【0011】上述したように、本発明は基本的に、出発
原料組成において、一般式Tl2 Ba2 Ca2 Cu3
y (ただし、yは原子価の要求を満たす数)で表される
組成の化学量論値よりもTlの混合比を少なくし、他
方、Caの混合比を多くし、890〜910℃の酸素含
有雰囲気中で5〜10分間焼成した後、10℃/分以上
の速度で冷却する。具体的には、出発原料においてT
l,Ba,Ca及びCuを原子数比で実質的に(2−
α):2:(2+β):3の割合(ただし、0.1<α
<0.6、0.1<β<0.5)とする。この範囲にお
いて、焼成後Tl2 Ba2 Ca2 Cu3 y の結晶構造
を維持した単相試料を得ることができる。なお、このα
及びβは夫々0.3<α<0.5、0.2<β<0.4
であることが一層好ましい。
As mentioned above, the present invention is basically based on the general formula Tl 2 Ba 2 Ca 2 Cu 3 O in the starting material composition.
The mixing ratio of Tl is made smaller than the stoichiometric value of the composition represented by y (however, y is a number satisfying the valence requirement), while the mixing ratio of Ca is increased, and oxygen of 890 to 910 ° C. After baking in the containing atmosphere for 5 to 10 minutes, it is cooled at a rate of 10 ° C./minute or more. Specifically, in the starting material, T
l, Ba, Ca and Cu are substantially (2-
Ratio of α: 2: (2 + β): 3 (provided that 0.1 <α
<0.6, 0.1 <β <0.5). In this range, it is possible to obtain a single-phase sample that maintains the crystal structure of Tl 2 Ba 2 Ca 2 Cu 3 O y after firing. Note that this α
And β are 0.3 <α <0.5 and 0.2 <β <0.4, respectively.
Is more preferable.

【0012】このような出発原料を890乃至910℃
の酸素含有雰囲気中で5〜10分間焼成し、10℃/分
以上の速度で冷却することにより、上述の所望の結晶構
造を有する材料を確実に得ることができる。
[0012] Such a starting material is 890 to 910 ° C.
By firing in the oxygen-containing atmosphere for 5 to 10 minutes and cooling at a rate of 10 ° C./minute or more, the material having the above-mentioned desired crystal structure can be reliably obtained.

【0013】この際の冷却速度が10℃/分よりも遅い
と、その分、試料が高温にさらされる時間が長くなるの
で、余分な反応が生じ、2223系よりも安定な相であ
る2212系のTl2 Ba2 Ca1 Cu2 y やBaC
uO2 などの不純物が生成されてしまい、単相試料を得
ることが実質的に困難となる。
If the cooling rate at this time is slower than 10 ° C./min, the sample is exposed to high temperature for a correspondingly long time, so that an extra reaction occurs and the 2212 series, which is a more stable phase than the 2223 series, is produced. Tl 2 Ba 2 Ca 1 Cu 2 O y and BaC
Impurities such as uO 2 are generated, making it substantially difficult to obtain a single-phase sample.

【0014】焼成後の冷却は通常炉冷であるから、冷却
速度の上限は30℃程度である。もちろん、炉冷により
所定温度まで降下させた後急冷してもよい。このように
急冷することにより結晶中への余分な酸素の取り込みを
抑制することができる。
Since the cooling after firing is usually furnace cooling, the upper limit of the cooling rate is about 30.degree. Of course, the temperature may be lowered to a predetermined temperature by furnace cooling and then rapidly cooled. By quenching in this way, it is possible to suppress the incorporation of excess oxygen into the crystal.

【0015】[0015]

【実施例】以下、この発明の実施例について説明する。Embodiments of the present invention will be described below.

【0016】先ず、BaCO3 とCuOの微粉末を混合
して焼成し、BaCuO2 を合成した。次いで、合成さ
れたBaCuO2 を粉末化し、この粉末とTl2 3
CaO,及びCuOの微粉末とを混合してTl,Ba,
Ca,及びCuを原子数比が1.7:2:2.3:3の
割合で含有する混合粉末原料を作製した。この場合に、
Tlは有毒であるから、これらの作業をグロ−ブボック
ス内で行った。
First, fine powders of BaCO 3 and CuO were mixed and fired to synthesize BaCuO 2 . Then, the synthesized BaCuO 2 is pulverized, and this powder and Tl 2 O 3 ,
By mixing fine powder of CaO and CuO, Tl, Ba,
A mixed powder raw material containing Ca and Cu in an atomic ratio of 1.7: 2: 2.3: 3 was produced. In this case,
These operations were performed in the glove box because Tl is toxic.

【0017】次に、このような混合粉末原料を約200
kg/cm2 の圧力で成形し、直径10mm、厚さ1〜1.5
mmのペレット状の試料を作製した。
Next, about 200 such mixed powder raw materials are prepared.
Molded with a pressure of kg / cm 2 , diameter 10 mm, thickness 1-1.5
A sample having a pellet size of mm was prepared.

【0018】その後、Tlの高反応性に鑑み、試料をT
lと反応しにくい金箔でゆるく包み、またTlの有毒性
のため、石英管内で更に二重のトラップを付けて流量1
20ml/分の酸素気流中900℃で7分間焼成し、次
いで15℃/分の速度で冷却して試料を作製した。
Then, in view of the high reactivity of Tl, the sample was T
It is loosely wrapped in gold foil that does not easily react with l, and due to the toxicity of Tl, a double trap is attached inside the quartz tube for a flow rate of 1
A sample was prepared by firing at 900 ° C. for 7 minutes in an oxygen stream of 20 ml / min and then cooling at a rate of 15 ° C./min.

【0019】図1はこの試料のCuのKα線による粉末
X線回折パタ−ンを示す図である。図中回折ピ−クの上
に表示している数字は、正方晶系のミラ−面指数を表す
ものである。この図に示すようにほぼ正方晶単相の指数
付けができ、単相の試料が得られたことが確認された。
また、4端子法により測定した抵抗率の温度変化から、
合成された試料がTc=120Kの超伝導体であること
が確認された。
FIG. 1 is a view showing a powder X-ray diffraction pattern of Cu Kα rays of this sample. The numbers shown above the diffraction peaks in the figure represent the tetragonal Miller plane indices. As shown in this figure, it was confirmed that almost tetragonal single-phase indexing was possible and a single-phase sample was obtained.
Also, from the temperature change of the resistivity measured by the 4-terminal method,
It was confirmed that the synthesized sample was a superconductor with Tc = 120K.

【0020】なお、出発原料のTlの混合比を2.0以
上にした場合、及び焼成後の冷却速度を5℃/分にした
場合には、Tl2 Ba2 Ca2 Cu3 y (2223
系)の結晶構造は得られるが、それとともにBaCuO
2 等の不純物や、2212系が生成され、2223系の
みの単相超伝導体は得られなかった。
When the mixing ratio of Tl of the starting material is 2.0 or more and when the cooling rate after firing is 5 ° C./min, Tl 2 Ba 2 Ca 2 Cu 3 O y (2223) is used.
System) is obtained, but with it, BaCuO
Impurities such as 2 and the 2212 series were generated, and a single-phase superconductor containing only the 2223 series was not obtained.

【0021】すなわち、出発原料の組成をTl2 Ba2
Ca2 Cu3 y の化学量論値よりもTlが若干少な
く、Caが若干多い組成にし、かつ焼成後の冷却速度を
5℃/分よりも大きくすると、試料内に不純物を含まな
いほぼ単相の形でTl2 Ba2 Ca2 Cu3 y と同様
の正方晶の結晶が得られることが確認された。
That is, the composition of the starting material is Tl 2 Ba 2
If the composition is such that Tl is slightly less than Ca 2 Cu 3 O y stoichiometry and Ca is slightly higher, and the cooling rate after firing is higher than 5 ° C./min, almost no impurities are contained in the sample. It was confirmed that a tetragonal crystal similar to Tl 2 Ba 2 Ca 2 Cu 3 O y was obtained in the form of a phase.

【0022】また、この試料の原子比をエネルギ−分散
X線スペクトル(EDX)分析により調べた。その結果
を図2に示す。この図に示すように、Tlの原子比が出
発原料から若干低下し、Cuの原子比が若干上昇してい
るが、出発組成とほぼ一致していることがわかる。
The atomic ratio of this sample was examined by energy-dispersive X-ray spectrum (EDX) analysis. The result is shown in FIG. As shown in this figure, although the atomic ratio of Tl is slightly lower than that of the starting material and the atomic ratio of Cu is slightly higher, it can be seen that the atomic ratio of Tl is almost the same as the starting composition.

【0023】なお、EDX分析デ−タからすると、この
系の単相試料は、出発原料組成においてTl,Ba,C
a及びCuを原子数比で実質的に(2−α):2:(2
+β):(3+γ)の割合(ただし、0.1<α<0.
6、0.1<β<0.5、0≦γ<0.4)の範囲で製
造可能であることが推測される。
According to the EDX analysis data, the single-phase sample of this system had Tl, Ba, C in the starting material composition.
The atomic ratio of a and Cu is substantially (2-α): 2: (2
+ Β): Ratio of (3 + γ) (provided that 0.1 <α <0.
It is estimated that it can be manufactured in the range of 6, 0.1 <β <0.5, 0 ≦ γ <0.4).

【0024】[0024]

【発明の効果】この発明によれば、Tl2 Ba2 Ca2
Cu3 y で表される結晶構造を有する酸化物超伝導体
を単相として合成することができる。
According to the present invention, Tl 2 Ba 2 Ca 2
An oxide superconductor having a crystal structure represented by Cu 3 O y can be synthesized as a single phase.

【0025】この発明に係る方法により製造された酸化
物超伝導体は、臨界温度が高く、ジョセフソン接合を有
するジョセフソン素子及びSQUID(超伝導量子干渉
計)、超伝導発電機に適用することが期待され、またエ
ネルギ損失の少ない超伝導電力貯蔵、さらにはエネルギ
損失の少ない送電ケ−ブル等の多方面の超伝導機器の実
用化に寄与することが期待される。
The oxide superconductor manufactured by the method according to the present invention has a high critical temperature and is applicable to a Josephson device having a Josephson junction, a SQUID (superconducting quantum interferometer), and a superconducting generator. It is expected that this will contribute to the practical application of superconducting electric power storage with less energy loss, and also with various fields of superconducting equipment such as power transmission cables with less energy loss.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例に係る方法によって製造した
試料の粉末X線回折パタ−ンを示す図。
FIG. 1 is a view showing a powder X-ray diffraction pattern of a sample manufactured by a method according to an example of the present invention.

【図2】エネルギ分散型X線スペクトルによって得られ
た実施例の試料の元素組成を示す図。
FIG. 2 is a diagram showing an elemental composition of a sample of an example obtained by an energy dispersive X-ray spectrum.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01B 13/00 565 D 8936−5G (72)発明者 菊地 昌枝 宮城県仙台市太白区三神峯二丁目11番5号 (72)発明者 庄野 安彦 宮城県仙台市青葉区吉成三丁目12番12号─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 5 Identification number Internal reference number FI Technical indication location H01B 13/00 565 D 8936-5G (72) Inventor Masae Kikuchi 2-chome Mikamimine, Taihaku-ku, Sendai City, Miyagi Prefecture No. 11-5 (72) Inventor Yasuhiko Shono 3-12-12 Yoshinari, Aoba-ku, Sendai City, Miyagi Prefecture

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 出発原料組成において、Tl2 Ba2
2 Cu3 y (ただし、yは原子価の要求を満たす
数)で表される組成の化学量論値よりもTlの混合比を
少なくし、他方、Caの混合比を多くし、890〜91
0℃の酸素含有雰囲気中で5〜10分間焼成した後、1
0℃/分以上の速度で冷却することを特徴とするTl系
酸化物超伝導体の製造方法。
1. In the starting material composition, Tl 2 Ba 2 C is used.
a 2 Cu 3 O y (where y is a number satisfying the valence requirement), the mixing ratio of Tl is set to be smaller than the stoichiometric value of the composition, and the mixing ratio of Ca is increased to 890 ~ 91
After firing in an oxygen-containing atmosphere at 0 ° C. for 5 to 10 minutes, 1
A method for producing a Tl-based oxide superconductor, which comprises cooling at a rate of 0 ° C./minute or more.
【請求項2】 出発原料組成において、Tl,Ba,C
a及びCuを原子数比で実質的に(2−α):2:(2
+β):3の割合(ただし、0.1<α<0.6、0.
1<β<0.5)とすることを特徴とする請求項1に記
載のTl系酸化物超伝導体の製造方法。
2. In the starting material composition, Tl, Ba, C
The atomic ratio of a and Cu is substantially (2-α): 2: (2
+ Β): 3 ratio (provided that 0.1 <α <0.6, 0.
The method for producing a Tl-based oxide superconductor according to claim 1, wherein 1 <β <0.5).
【請求項3】 α及びβが夫々0.3<α<0.5、
0.2<β<0.4であることを特徴とする請求項2に
記載のTl系酸化物超伝導体の製造方法。
3. α and β are respectively 0.3 <α <0.5,
The method for producing a Tl-based oxide superconductor according to claim 2, wherein 0.2 <β <0.4.
JP3351340A 1991-12-13 1991-12-13 Production of tl-base oxide superconductor Pending JPH0624830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3351340A JPH0624830A (en) 1991-12-13 1991-12-13 Production of tl-base oxide superconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351340A JPH0624830A (en) 1991-12-13 1991-12-13 Production of tl-base oxide superconductor

Publications (1)

Publication Number Publication Date
JPH0624830A true JPH0624830A (en) 1994-02-01

Family

ID=18416642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351340A Pending JPH0624830A (en) 1991-12-13 1991-12-13 Production of tl-base oxide superconductor

Country Status (1)

Country Link
JP (1) JPH0624830A (en)

Similar Documents

Publication Publication Date Title
Dorris et al. Synthesis of highly pure bismuth-2223 by a two-powder process
US5389603A (en) Oxide superconductors, and devices and systems comprising such a superconductor
JPH0624830A (en) Production of tl-base oxide superconductor
US5108985A (en) Bi-Pb-Sr-Ca-Cu oxide superconductor containing alkali metal and process for preparation thereof
JPH06176637A (en) Manufacture of bi oxide superconductive wire
JPH0624831A (en) Tl-base oxide superconductor and its production
JPH0624829A (en) Tl-base oxide superconductor and its production
JP2803823B2 (en) Method for producing T1-based oxide superconductor
JP3121001B2 (en) Method for producing Tl-based oxide superconductor
EP0659704A1 (en) Method of manufacturing oxide superconductor
JP3049739B2 (en) Superconducting composition
JPH0692634A (en) Production of tl-based oxide superconductor
JP2817170B2 (en) Manufacturing method of superconducting material
JP2523928B2 (en) Oxide superconductor and method for producing the same
JP2820480B2 (en) Oxide superconductor and manufacturing method thereof
JP2820082B2 (en) Superconducting material
JP2634187B2 (en) Method for producing thallium-based oxide superconductor
JP2635704B2 (en) Method for producing Bi-based oxide high-temperature superconductor
JPH02120227A (en) Production of bi-based oxide superconductor
JP2870647B2 (en) Method for producing Bi-based oxide superconductor
JPH02172823A (en) Production of bi-based oxide superconductor
JPH03112813A (en) Superconductor
JPH02296729A (en) Oxide superconductor
JPH06176636A (en) Manufacture of bi oxide superconductor
JPH0365512A (en) High-temperature superconductive material and production thereof