JPH06247394A - On-ship landing support sensor device - Google Patents

On-ship landing support sensor device

Info

Publication number
JPH06247394A
JPH06247394A JP3315293A JP3315293A JPH06247394A JP H06247394 A JPH06247394 A JP H06247394A JP 3315293 A JP3315293 A JP 3315293A JP 3315293 A JP3315293 A JP 3315293A JP H06247394 A JPH06247394 A JP H06247394A
Authority
JP
Japan
Prior art keywords
ship
relative
aircraft
sensor
coordinate system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3315293A
Other languages
Japanese (ja)
Other versions
JP3413777B2 (en
Inventor
Hidehiko Takahashi
英彦 高橋
Masahiro Hattori
正博 服部
Shigenobu Kokubo
重信 小久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
Mitsubishi Heavy Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
Mitsubishi Heavy Industries Ltd
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, Mitsubishi Heavy Industries Ltd, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP03315293A priority Critical patent/JP3413777B2/en
Publication of JPH06247394A publication Critical patent/JPH06247394A/en
Application granted granted Critical
Publication of JP3413777B2 publication Critical patent/JP3413777B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To provide an on-ship landing support sensor device which can land and aircraft safely on a rolling and pitching ship. CONSTITUTION:The distance between a ship and an aircraft and their relative directions are measured using a laser type radar, which is mounted in the ship via a gimbal mechanism, and a corner cube reflector 8 which is mounted in the aircraft. The distance (PBR) between a ship-side arresting gear 21 and the reflector 8 and their relative velocities are accurately calculated from information from a rolling and pitching sensor 3 of the ship and transmitted to the aircraft. At the aircraft the distance (PBPM) between the ship-side arresting gear 21 and an aircraft-side arresting gear 22 and their relative velocities are accurately calculated from information from an aircraft oscillation sensor 10 and are outputted to a cockpit display unit and/or an automatic flight control system, for supporting landing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、垂直離着陸機を船舶の
狭い飛行甲板に迅速且つ安全に誘導・着船させるための
着船支援装置の、船と機体の相対情報(相対位置、相対
速度)の検出に使用されるセンサ装置に関する。本発明
は、強風下で動揺する原油掘削リグ上や高層ビル上のヘ
リポート、あるいは地上ヘリポートの自動着陸装置の相
対情報の検出にも使用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to relative information (relative position, relative speed) between a ship and an airframe of a landing support device for promptly and safely guiding and landing a vertical take-off and landing aircraft on a narrow flight deck of the ship. ) Is used for detecting the sensor device. The present invention can also be used to detect relative information of an automatic landing gear on a heliport on a crude oil drilling rig or on a tall building that rocks in strong winds, or on a ground heliport.

【0002】[0002]

【従来の技術】従来、垂直離着陸機の自動着陸装置及び
船舶への自動着船装置としては、マイクロ波着陸装置
(MLS)と呼ばれる装置が使用されている。この装置
は、図6に示すように、地上のアジマス・アンテナ及び
エレベーション・アンテナから測角方向に先鋭なファン
ビームを高速で往復走査し、ビームが受信点を通過した
ときに得られる2個のパルスの時間間隔を測定すること
により、受信点での機体の進入方位角及び降下角度を検
出する。
2. Description of the Related Art Conventionally, a device called a microwave landing gear (MLS) has been used as an automatic landing gear for vertical take-off and landing gears and an automatic landing gear for ships. As shown in FIG. 6, this device scans a sharp fan beam in the angle-measuring direction from the azimuth antenna and elevation antenna on the ground at high speed and reciprocally scans, and two beams are obtained when the beam passes the receiving point. The approach azimuth angle and the descent angle of the airframe at the reception point are detected by measuring the time interval of the pulse of.

【0003】[0003]

【発明が解決しようとする課題】従来のマイクロ波着陸
装置(MLS)は、滑走路に着陸させるための装置であ
り、滑走路への進入方位及び進入傾斜角をうまく制御
し、滑走路上の最適地点に着地させる装置である。
The conventional microwave landing gear (MLS) is a device for landing on a runway, and it controls the approach direction and approach inclination angle to the runway well, and is suitable for the runway. It is a device for landing at a point.

【0004】一方、ヘリコプタ等の船舶への着船は、非
常に狭い発着甲板で行なわれ、さらにヘリコプタの場
合、船舶の動揺による着船後の機体の横転を防ぐため
に、機体下部の円筒状の抱束装置(メイン・プローブと
もいう)を船側甲板***の四角い枠状の抱束装置(ベ
ア・トラップともいう)に正確に入れる必要がある。そ
のため、着船誘導の自動化を行なうには、進入方位と進
入傾斜角の他に、甲板と機体との相対位置、相対速度を
高い精度で知る必要があるが、従来のシステムでは実現
できないという問題がある。本発明では、前記問題を解
決し、甲板と機体の相対位置、相対速度を精度良く求め
ることができる装置を提供することを目的とする。
On the other hand, the landing of a helicopter or the like on a ship is carried out with a very narrow launching / departing deck. Further, in the case of a helicopter, in order to prevent the overturning of the airframe after landing due to the motion of the ship, a cylindrical shape at the lower part of the airframe is used. It is necessary to accurately put the hugging device (also called the main probe) in the square frame-shaped hugging device (also called the bear trap) in the center on the ship side deck. Therefore, in order to automate the landing guidance, it is necessary to know the approach position and approach inclination angle, the relative position between the deck and the aircraft, and the relative speed with high accuracy, but this cannot be realized with the conventional system. There is. It is an object of the present invention to solve the above problems and provide an apparatus capable of accurately determining the relative position and relative speed between a deck and an airframe.

【0005】[0005]

【課題を解決するための手段】[Means for Solving the Problems]

(第1の手段) (First means)

【0006】本発明に係る着陸支援センサ装置は、ヘリ
コプタや垂直離着陸機等の航空機を狭隘な区画に着陸さ
せる支援装置において、ヘリポ−トにはレーザ・センサ
24と、演算処理装置4と、データ送信装置5を備え、
機体側にはコーナ・キューブ・リフレクタ8と、データ
受信装置6と、演算処理装置7と、表示装置9と、機体
の動揺センサ10とを備え、前記レーザ・センサ24は
レーザ光線をコーナ・キューブ・リフレクタ8に向けて
発信するとともに、リフクタ8からの反射光を受信し、
レーザ・センサ24の位置PO とリフクタ8の位置PR
に関する情報を演算処理装置4に出力し、
A landing support sensor device according to the present invention is a support device for landing an aircraft such as a helicopter or a vertical take-off and landing aircraft in a narrow space. In the heliport, a laser sensor 24, a processor 4, and a data processor are provided. The transmitter 5 is provided,
On the machine side, a corner cube reflector 8, a data receiving device 6, an arithmetic processing unit 7, a display unit 9, and a motion sensor 10 of the machine body are provided, and the laser sensor 24 emits a laser beam to the corner cube. -Transmits light to the reflector 8 and receives reflected light from the reflector 8,
Position PO of laser sensor 24 and position PR of lifter 8
The information about the output to the processor 4,

【0007】前記ヘリポ−トの演算処理装置4は、レー
ザ・センサ24から入力した信号に基づき、基準座標系
に対するヘリポ−ト側の着陸基準点21と機体側のリフ
クタ8との間の相対距離(PB PR )と相対速度の演算
をし、データ送信装置5とデータ受信装置6を介して機
体側の演算処理装置7に出力し、
The heliport processing unit 4 uses the signal input from the laser sensor 24 to determine the relative distance between the helicopter-side landing reference point 21 and the aircraft-side lifter 8 with respect to the reference coordinate system. (PB PR) and the relative speed are calculated and output to the processor 7 on the aircraft side via the data transmitter 5 and the data receiver 6,

【0008】前記機体側の演算処理装置7はデータ受信
装置6を介して入力した信号と、機体の動揺センサ10
から入力した信号に基づき、基準座標系に対するヘリポ
−ト側の着陸基準点21と機体側の基準点22の間の相
対距離(PB PM )と相対速度を演算し、その演算結果
をコックピットの表示装置9に出力することを特徴とす
る。 (第2の手段)
The processor 7 on the side of the machine body receives a signal inputted through the data receiving device 6 and the motion sensor 10 of the machine body.
The relative distance (PB PM) and relative speed between the landing reference point 21 on the heliport side and the reference point 22 on the aircraft side with respect to the reference coordinate system are calculated based on the signal input from the reference coordinate system, and the calculation results are displayed in the cockpit. It is output to the device 9. (Second means)

【0009】本発明に係る着船支援センサ装置は、船上
のヘリポ−トに着船する航空機を支援する装置におい
て、船側にはレーザ・センサ24と、船の動揺センサ3
と、演算処理装置4と、データ送信装置5を備え、機体
側にはコーナ・キューブ・リフレクタ(以下リフレクタ
という)8と、データ受信装置6と、演算処理装置7
と、表示装置9と、機体の動揺センサ10と、自動操縦
装置11を備え、
A ship landing support sensor device according to the present invention is a device for supporting an aircraft landing on a heliport on a ship. A laser sensor 24 and a motion sensor 3 of the ship are provided on the ship side.
And a processing unit 4 and a data transmission unit 5, and a corner cube reflector (hereinafter referred to as a reflector) 8 on the body side, a data receiving unit 6, and a processing unit 7
And a display device 9, a body motion sensor 10 and an autopilot device 11,

【0010】前記レーザ・センサ24は、レーザ式レー
ダ1と自動追尾装置付ジンバル機構2からなり、レーザ
式レーダ1はレーザ光線をコーナ・キューブ・リフレク
タ8に向けて発信するとともに、リフクタ8からの反射
光を受信し、レーザ・センサ24の位置PO とリフクタ
8の位置PR に関する情報を演算処理装置4に出力し、
前記船側の演算処理装置4は、
The laser sensor 24 comprises a laser type radar 1 and a gimbal mechanism 2 with an automatic tracking device. The laser type radar 1 emits a laser beam toward a corner cube reflector 8 and a laser beam from the reflector 8. The reflected light is received, and information regarding the position PO of the laser sensor 24 and the position PR of the lifter 8 is output to the arithmetic processing unit 4,
The processor 4 on the ship side is

【0011】(A)レーザ式レーダ1から入力した信号
に基づき基準座標系に対するレーザ・センサ24とリフ
クタ8との間の相対距離(PO PR )と相対速度を演算
し、(B)船に搭載した船の動揺センサ3からの信号に
基づき基準座標系に対するレーザ・センサ24と船側の
抱束装置21との間の相対距離(PO PB )と相対速度
を演算し、
(A) Based on the signal input from the laser radar 1, the relative distance (PO PR) and the relative speed between the laser sensor 24 and the reflector 8 with respect to the reference coordinate system are calculated, and (B) mounted on the ship. Based on the signal from the motion sensor 3 of the ship, the relative distance (PO PB) between the laser sensor 24 and the hugging device 21 on the ship side with respect to the reference coordinate system and the relative speed are calculated,

【0012】(C)前記相対距離(PO PR )と(PO
PB )から基準座標系に対する船側の抱束装置21と機
体側のリフクタ8との間の相対距離(PB PR )と相対
速度の演算をし、(D)その演算結果をデータ送信装置
5に出力し、前記機体側の演算処理装置7は、(E)デ
ータ受信装置6を介してデータ送信装置5からのデータ
を受信し、
(C) The relative distances (PO PR) and (PO
PB) calculates the relative distance (PB PR) and relative speed between the hugging device 21 on the ship side and the lifter 8 on the aircraft side with respect to the reference coordinate system, and (D) outputs the calculation result to the data transmitting device 5. Then, the arithmetic processing unit 7 on the machine side receives (E) the data from the data transmitting unit 5 via the data receiving unit 6,

【0013】(F)機体に搭載した機体の動揺センサ1
0からの信号に基づき基準座標系に対するリフクタ8と
機体側の抱束装置22との間の相対距離(PR PM )と
相対速度を演算し、
(F) Motion sensor 1 of the airframe mounted on the airframe
Based on the signal from 0, the relative distance (PR PM) and the relative speed between the lifter 8 and the hugging device 22 on the machine side with respect to the reference coordinate system are calculated,

【0014】(G)前記相対距離(PB PR )と(PR
PM )から基準座標系に対する船側の抱束装置21と機
体側の抱束装置22の間の相対距離(PB PM )と相対
速度を演算し、(H)その演算結果を、コックピットの
表示装置9および/または自動操縦装置11に出力する
ことを特徴とする。 (第3の手段)本発明に係る着船支援センサ装置は第2
の手段において、船側の演算処理装置4は
(G) The relative distances (PB PR) and (PR
The relative distance (PB PM) and the relative speed between the hugging device 21 on the ship side and the hugging device 22 on the fuselage side with respect to the reference coordinate system are calculated from (PM) and (H) the calculation result is displayed on the cockpit display device 9 And / or output to the autopilot device 11. (Third Means) The landing assistance sensor device according to the present invention is the second
In the above means, the processor 4 on the ship side is

【0015】(A)レーザ式レーダ1から入力した信号
に基づき基準座標系に対するレーザ・センサ24と、リ
フクタ8との間の相対距離(PO PR )との相対速度を
演算し、
(A) Based on the signal input from the laser radar 1, the relative velocity between the laser sensor 24 and the reflector 8 with respect to the reference coordinate system (PO PR) is calculated,

【0016】(B)船に搭載した船の動揺センサ3から
の信号に基づき基準座標系に対するレーザ・センサ24
と船側の特定箇所PS との間の相対距離(PO PS )と
相対速度を演算し、
(B) The laser sensor 24 for the reference coordinate system based on the signal from the motion sensor 3 of the ship mounted on the ship.
And the relative speed (Po PS) between the ship and the specific point PS on the ship side are calculated,

【0017】(C)前記相対距離(PO PR )と(PO
PS )から基準座標系に対する船側の船側の特定箇所P
S と機体側のリフクタ8との値の相対距離(PS PR )
と相対速度の演算をし、(D)その演算結果をデータ送
信装置5に出力し、前記機体側の演算処理装置7は、
(E)データ受信装置6を介してデータ送信装置5から
のデータを受信し、
(C) The relative distances (PO PR) and (PO
PS) specific point P on the ship side with respect to the reference coordinate system
Relative distance (PS PR) between S and the lifter 8 on the machine side
And the relative speed is calculated, and (D) the calculation result is output to the data transmission device 5, and the calculation processing device 7 on the machine side
(E) receiving data from the data transmitting device 5 via the data receiving device 6,

【0018】(F)機体に搭載した機体の動揺センサ1
0からの信号に基づき基準座標系に対するリフクタ8と
機体側の機体側の特定箇所(PA )との間の相対距離
(PRPA )と相対速度を演算し、
(F) Motion sensor 1 of the airframe mounted on the airframe
Based on the signal from 0, the relative distance (PRPPA) and the relative speed between the lifter 8 and the specific part (PA) on the machine side with respect to the reference coordinate system are calculated,

【0019】(G)前記相対距離(PS PR )と(PR
PA )から基準座標系に対する船側の特定箇所PS と特
定箇所PA との間の相対距離(PS PM )と相対速度を
演算し、(H)その演算結果を、コックピットの表示装
置9および/または自動操縦装置11に出力することを
特徴とする。
(G) The relative distances (PS PR) and (PR
The relative distance (PS PM) and the relative speed between the specific point PS and the specific point PA on the ship side with respect to the reference coordinate system are calculated from (PA) and (H) the calculation result is displayed on the cockpit display device 9 and / or automatically. It is characterized by outputting to the control device 11.

【0020】なお、ここで用いるヘリポ−トという用語
は、ヘリコプタ用のいわゆるヘリポ−トに加えて、垂直
離着陸機の離着陸場も含み、地上、船上、甲板上のいず
れのものをも意味する。
The term "heliport" as used herein includes not only so-called heliports for helicopters but also take-off and landing fields for vertical take-off and landing aircraft, and means any one on the ground, on board, or on deck.

【0021】また、ヘリポ−ト側の着陸基準点および機
体側の基準点とは、着陸に際しヘリポ−トと機体とが特
定の位置関係を目標とする場合のそれぞれの位置を代表
する点であって、後述する実施例においては、それぞれ
の抱束装置そのものを基準点とした。
The landing reference point on the heliport side and the reference point on the airframe side are points that represent respective positions when the heliport and the airframe aim at a specific positional relationship during landing. In the examples described below, each hugging device itself is used as the reference point.

【0022】[0022]

【作用】船上のレーザ・センサ24により、レーザ光線
を機体に当てて、機体上の一点までの距離と方位角を計
測する。その際、機体の同一箇所までの計測データを得
るために、レーザ光線を光の入射方向によらず、その方
向へ光を効率良く反射するコーナ・キューブ・リフレク
タ8を装着し、そのリフレクタからの反射波を利用して
リフレクタまでの距離と方位角を計測する。リフレクタ
8は、機体の影になって計測不能にならないように、機
体上の適当な場所に複数個装着し、それぞれの区別がつ
くようにし、それらのリフレクタの中の計測可能な一個
を使用して、常に安定した計測データを得られるように
する。
The laser sensor 24 on the ship measures the distance and azimuth angle to a point on the body by applying a laser beam to the body. At that time, in order to obtain measurement data up to the same location on the machine body, a corner / cube reflector 8 that efficiently reflects the laser beam in that direction is attached regardless of the incident direction of the light, and the laser beam from the reflector is attached. The reflected wave is used to measure the distance and azimuth to the reflector. Install a plurality of reflectors 8 at appropriate places on the machine so that they cannot be measured in the shadow of the machine and distinguish them from each other, and use one of those reflectors that can be measured. And always obtain stable measurement data.

【0023】さらに、必要に応じて船の動揺センサ(加
速度計、及びジャイロ)3からの情報(ピッチ角、ロー
ル角、機首磁方位等)と、機体の動揺センサ(加速度
計、及びジャイロ)10からの情報(ピッチ角、ロール
角、機首磁方位等)を用いて、基準座標系に対する船上
の特定箇所PS と機体上の特定箇所PA との相対情報
(相対距離及び相対速度)を演算により検出し、その結
果をコックピットの表示装置及び/または自動操縦装置
に出力する。
Further, if necessary, information (pitch angle, roll angle, heading direction, etc.) from the motion sensor (accelerometer and gyro) 3 of the ship, and motion sensor (accelerometer and gyro) of the airframe. Using information from 10 (pitch angle, roll angle, heading magnetic direction, etc.), calculate relative information (relative distance and relative velocity) between the specific location PS on the ship and the specific location PA on the aircraft with respect to the reference coordinate system. The result is output to the cockpit display device and / or the autopilot device.

【0024】[0024]

【実施例】本発明の実施例を図1〜図5を用いて説明す
る。まず、ジンバル機構2に取り付けられたレーザ式レ
ーダ1とリフクタ8を使用してレーザ・センサから、リ
フレクタまでの距離Rと方位角を測定する。
Embodiments of the present invention will be described with reference to FIGS. First, the laser type radar 1 and the reflector 8 attached to the gimbal mechanism 2 are used to measure the distance R and the azimuth angle from the laser sensor to the reflector.

【0025】ジンバル機構2には、レーザ式レーダ1が
リフクタ8を常に追尾できるように、自動追尾装置を付
ける。自動追尾は例えばリフクタ8の近くに赤外線マー
カーを塗り、ジンバル機構2に赤外線自動追尾装置をつ
け、前記赤外線マーカーを追尾させるということによっ
て、実現できる。
An automatic tracking device is attached to the gimbal mechanism 2 so that the laser radar 1 can always track the lifter 8. The automatic tracking can be realized, for example, by applying an infrared marker near the lifter 8, attaching an infrared automatic tracking device to the gimbal mechanism 2, and tracking the infrared marker.

【0026】コーナ・キューブ・リフレクタは、光の入
射方向によらず、その方向へ光を反射させるプリズム、
すなわち偏角180°の定偏角プリズムである。図5に
示すように立方体の1つの頂角と隣接する三つの頂点と
で定められる四面体の形をしている。入射光と反射光
は、正三角形の面から出入する。
The corner cube reflector is a prism that reflects light in a light incident direction regardless of the incident direction.
That is, it is a constant deviation prism having a deviation angle of 180 °. As shown in FIG. 5, it has the shape of a tetrahedron defined by one vertex of a cube and three adjacent vertices. Incident light and reflected light enter and exit from the surface of an equilateral triangle.

【0027】測定データRと方位角データ(エレベーシ
ョン角θ、アジマス角ψ)は船側の演算処理装置4に入
力される。さらに、船に搭載されている船の動揺センサ
(加速度計とジャイロ)3により、船の姿勢角(ピッチ
角θS 、ロール角φS 、ヨー角ψS )及び船首磁方位ψ
SMが船側の演算処理装置4に送られる。演算処理装置4
では、それらのデータを用い、後述の計算(1)(2)
(3)(4)を行なう。船側の演算処理装置4で得られ
た船上の特定箇所または抱束装置と機上のリフレクタと
の相対情報及び船首磁方位は船側のデータ送信装置5か
ら機体側のデータ受信装置6に送られ、機体側演算処理
装置7に入力される。さらに機体に搭載されている機体
の動揺センサ(加速度計とジャイロ)10により機体の
姿勢角(ピッチ角θH 、ロール角φH 、ヨー角ψH )及
び機首磁方位ψHMが機体側演算処理装置7に入力され
る。演算処理装置7では、それらのデータを用い、後述
の計算(6)(7)(8)(9)(10)を行なう。以
上のようにして本発明の装置は、船上の特定箇所と機体
上の特定箇所との相対情報を出力する。
The measurement data R and the azimuth data (elevation angle θ, azimuth angle ψ) are input to the arithmetic processing unit 4 on the ship side. Furthermore, the attitude sensor (pitch angle θS, roll angle φS, yaw angle ψS) and bow magnetic direction ψ of the ship are detected by the ship motion sensor (accelerometer and gyro) 3 mounted on the ship.
The SM is sent to the processor 4 on the ship side. Processor 4
Then, using those data, calculation (1) (2) described later
(3) Perform (4). The relative information between the specific position on the ship or the hugging device and the reflector on the ship and the bow magnetic direction obtained by the processor 4 on the ship side are sent from the data transmitter 5 on the ship side to the data receiver 6 on the body side, It is input to the machine side arithmetic processing unit 7. Furthermore, the attitude sensor (pitch angle θH, roll angle φH, yaw angle ψH) and nose magnetic azimuth ψHM of the machine's motion sensor (accelerometer and gyro) 10 mounted on the machine are stored in the machine side processor 7. Is entered. The arithmetic processing unit 7 uses these data to perform later-described calculations (6), (7), (8), (9) and (10). As described above, the device of the present invention outputs the relative information between the specific location on the ship and the specific location on the airframe.

【0028】そして、その相対情報を用いてコックピッ
ト表示装置9に情報を表示してパイロットの操縦をサポ
ートする。さらに自動操縦装置11に相対情報を入力す
ることにより発着甲板の機体の誘導及び着船を行なう。
船と機体の相対情報の算出は次のようにして行なう。図
3または図4に示すように PO ;レーザ・センサの位置 PR ;コーナ・キューブ・リフレクタの位置 PB ;船側の抱束装置(ベア・トラップ)の中心位置 PM ;機体側の抱束装置(メイン・ローブ)の位置 PS ;船側の特定箇所の位置 PA ;機体側の特定箇所の位置
Then, the information is displayed on the cockpit display device 9 using the relative information to support the pilot's operation. Further, by inputting relative information to the automatic control device 11, the body of the launch and arrival deck is guided and landed.
Calculation of relative information between the ship and the aircraft is performed as follows. As shown in FIG. 3 or FIG. 4, PO; laser sensor position PR; corner cube reflector position PB; center position of hugging device (bare trap) on ship side PM; hugging device on main body (main)・ Position of lobe) PS: Position of specific location on ship side PA: Position of specific location on fuselage side

【0029】とするとき、着船誘導の自動化のために、
必要となる情報は、船側の抱束装置(ベア・トラップ)
の中心位置と機体側の抱束装置(メイン・ローブ)の位
置の間の相対情報すなわち、ベクトル<PB PM >およ
び、その時間変化率についての情報、または船側の特定
箇所の位置と機体側の特定箇所の位置の間の相対情報す
なわち、ベクトル<PS PA >および、その時間変化率
についての情報である。
In order to automate the landing guidance,
The necessary information is the hug device (bear trap) on the ship side.
The relative information between the center position of the ship and the position of the hugging device (main lobe) on the fuselage side, that is, the vector <PB PM> and the information about the time change rate, or the position of the specific part on the ship side and the fuselage side. It is the relative information between the positions of the specific places, that is, the information about the vector <PS PA> and its time change rate.

【0030】しかし、船も機体も動揺し、船の動揺は船
に固定した運動座標系(以下S系という)により表さ
れ、機体の動揺は機体に固定した運動座標系(以下H系
という)により表されているため、ベクトル<PB PM
>またはベクトル<PS PA >、およびそれらの時間変
化率についての情報は簡単に求めることができない。
However, both the ship and the body sway, and the sway of the ship is represented by the motion coordinate system fixed to the ship (hereinafter referred to as the S system), and the motion of the body is fixed to the motion coordinate system (hereinafter referred to as the H system). Is represented by the vector <PB PM
> Or vector <PS PA>, and information about their rate of change over time cannot be easily determined.

【0031】そこで、船に搭載したレーザ式センサの位
置すなわちPO を原点とし、X軸が船の進行方向、XY
平面が水平面を示す基準座標系(I系)を導入し、運動
座標系(S系及びH系)で表された船及び機体の座標を
演算処理により基準座標系(I系)で表した座標に座標
変換してベクトル<PB PM >及びその変化率について
の情報を求めることにする。その詳細を以下に示す。ベ
クトル<PB PM >は図4に示すように座標ベクトルの
合成により、
Therefore, with the position of the laser sensor mounted on the ship, that is, P0 as the origin, the X axis is the traveling direction of the ship, and XY
Introducing a reference coordinate system (I system) in which the plane is a horizontal plane, the coordinates of the ship and airframe represented in the motion coordinate system (S system and H system) are represented in the reference coordinate system (I system) by arithmetic processing. The information about the vector <PB PM> and its rate of change is obtained by coordinate transformation into. The details are shown below. The vector <PB PM> is obtained by combining the coordinate vectors as shown in FIG.

【0032】[0032]

【数1】 として求めることができる。そしてベクトル<PO PR
>,<PO PB >,<PR PM >,<PB PM >の基準
座標系(I系)における座標は次のようにして求めるこ
とができる。 (1)船(レーザ・センサ)と機体(リフレクタ)の相
対位置<PO PR > 図3に示すように、レーザ・センサ位置を原点とし、船
の進行方向をX軸とする基準座標系(I系)すなわち X軸;船の進行方向。 Y軸;船の右舷方向。 Z軸;X軸、Y軸に垂直方向(右手系) X−Y平面;水平面。 に基づいて考えると、
[Equation 1] Can be asked as And the vector <PO PR
>, <PO PB>, <PR PM>, <PB PM> in the reference coordinate system (I system) can be obtained as follows. (1) Relative position of ship (laser sensor) and airframe (reflector) <PO PR> As shown in FIG. 3, the laser sensor position is the origin, and the reference coordinate system (I System) ie X axis; direction of travel of the ship. Y-axis; starboard direction of the ship. Z-axis; direction perpendicular to X-axis and Y-axis (right-handed system) XY plane; horizontal plane. Based on

【0033】レーザ・センサ24で計測された、センサ
位置からリフレクタ位置までの距離をR、Z軸方向から
のエレベーション角をθ、X軸からのアジマス角をψと
すると、レーザ・センサ位置PO からリフレクタ位置P
R へのベクトル<PO PR >は基準座標系(I系)では
When the distance from the sensor position to the reflector position measured by the laser sensor 24 is R, the elevation angle from the Z axis direction is θ, and the azimuth angle from the X axis is ψ, the laser sensor position PO To reflector position P
The vector <PO PR> to R is in the standard coordinate system (I system)

【0034】[0034]

【数2】 となる。 (2)船側の情報<PO PB > まず、船上のレーザ・センサ位置を原点とした、船に固
定された運動座標系(S系)すなわち X軸;船の対称面内での船首方向。 Y軸;対称面に垂直方向(右舷方向を正)。 Z軸;X軸、Y軸に垂直方向(右手系)。 に基づいて考える。
[Equation 2] Becomes (2) Information on the ship side <PO PB> First, the motion coordinate system (S system) fixed to the ship, that is, the X axis, with the laser sensor position on the ship as the origin; the bow direction in the plane of symmetry of the ship. Y-axis; perpendicular to the plane of symmetry (positive starboard direction). Z-axis; vertical to X-axis and Y-axis (right-handed system). Think based on.

【0035】船に固定された運動座標系(S系)で見た
センサ位置PO から船側抱束装置(ベアトラップ)PB
へのベクトルを <PO PB >=(xB ,yB ,zB )
とする。船のジャイロから得られる船のピッチ角をθS
、ロール角をφS 、ヨー角をψS とすると、S系から
I系への座標変換行列TS は
From the sensor position P O seen in the motion coordinate system (S system) fixed to the ship, the hug device (bare trap) PB on the ship side
To the vector <PO PB> = (xB, yB, zB)
And The pitch angle of the ship obtained from the gyro of the ship is θS
, And the roll angle is φS and the yaw angle is φS, the coordinate transformation matrix TS from the S system to the I system is

【0036】[0036]

【数3】 となる。次にこの行列TS を用いて、I系でのベクトル
<PO PB >を求めると、
[Equation 3] Becomes Next, using this matrix TS, when the vector <PO PB> in the I system is obtained,

【0037】[0037]

【数4】 となる。したがってI系での点PB から点PR へのベク
トル<PB PR >は図4および前述の検討から
[Equation 4] Becomes Therefore, the vector <PBPR> from the point PB to the point PR in the I system is calculated from Fig. 4 and the above-mentioned examination.

【0038】[0038]

【数5】 となる。この相対位置情報と、船首磁方位ψS のデータ
が電波により機体側に送信される。機体側では、以下の
処理を行なう。 (3)機体側の情報<PR PM > まず、機体重心を原点とした、機体に固定された運動座
標系(H系)すなわち X軸;機体対称面内での船首方向。 Y軸;対称面に垂直方向(右舷方向が正)。 Z軸;X軸、Y軸に垂直(右手系)。 に基づいて考える。機体に固定した運動座標系(H系)
で見たリフレクタ位置PR から機体側の抱束装置PM へ
のベクトルを<PR PM >=(xM ,yM ,zM )とす
る。機体のジャイロから得られる機体のピッチ角をθH
、ロール角をφH 、機首磁方位をψHMとすると、H系
からI系への座標変換行列TH は
[Equation 5] Becomes This relative position information and the data of the bow magnetic direction ψ S are transmitted to the airframe by radio waves. The following processing is performed on the aircraft side. (3) Aircraft side information <PR PM> First, the motion coordinate system (H system) fixed to the aircraft, with the origin of the center of gravity of the aircraft, that is, the X axis; the bow direction in the plane of symmetry of the aircraft. Y-axis; perpendicular to the plane of symmetry (starboard direction is positive). Z axis; perpendicular to the X and Y axes (right-handed). Think based on. Motion coordinate system (H system) fixed to the aircraft
Let <PR PM> = (xM, yM, zM) be the vector from the reflector position PR seen in step 1 to the hugging device PM on the fuselage side. ΘH is the pitch angle of the airframe obtained from the gyro of the airframe.
, And the roll angle is φH and the heading is ψHM, the coordinate transformation matrix TH from H system to I system is

【0039】[0039]

【数6】 となる。次にこの行列TH を用いて、I系でのベクトル
<PR PM >を求めると、
[Equation 6] Becomes Next, using this matrix TH, when the vector <PR PM> in the I system is obtained,

【0040】[0040]

【数7】 となる。 (4)船側の抱束装置(ベア・トラップ)と機体側の抱
束装置(メイン・プローブ)との相対位置<PB PM > I系で見た船側の抱束装置(ベア・トラップ)から機体
側の抱束装置(メイン・プローブ)へのベクトル<PB
PM >は(1)式から、
[Equation 7] Becomes (4) Relative position between the ship-side hugging device (bear trap) and the fuselage-side hugging device (main probe) <PB PM> From the ship-side hugging device (bear trap) as seen in I system Vector to the hugging device (main probe) on the side <PB
PM> is from the equation (1),

【0041】[0041]

【数8】 となる。[Equation 8] Becomes

【0042】したがって、船側の抱束装置(ベア・トラ
ップ)と機体側の抱束装置(メイン・プローブ)とのX
方向距離をXD 、Y方向距離をYD 、高度をZD とする
と、XD 、YD 、ZD はI系における<PB PM >の成
分を表わす。従って、
Therefore, X between the hugging device on the ship side (bare trap) and the hugging device on the body side (main probe)
When the directional distance is XD, the Y-direction distance is YD, and the altitude is ZD, XD, YD, and ZD represent the components of <PB PM> in the I system. Therefore,

【0043】[0043]

【数9】 として求めることができる。[Equation 9] Can be asked as

【0044】[0044]

【発明の効果】本発明は前述のように構成されているの
で、以下に記載するような効果を奏する。
Since the present invention is constructed as described above, it has the following effects.

【0045】(1)ヘリポ−トや機体の動揺が大きいと
きでも、本発明により、ヘリポ−ト上の特定箇所(例え
ば抱束装置の中心位置)と機体上の特定箇所(例えば抱
束装置)との相対位置、相対速度を精度良く求めること
ができる。 (2)そのため航空機を安全に着陸ささせることも、着
陸の自動化も可能にできるとともに、夜間や荒天時の着
陸の安全性も計ることができる。
(1) According to the present invention, even if the helicopter or the body is greatly shaken, a specific portion on the heliport (for example, the central position of the bundling device) and a specific portion on the body (for example, the bundling device) are provided. The relative position and relative speed with respect to can be obtained accurately. (2) Therefore, the aircraft can be safely landed and the landing can be automated, and the landing safety at night or in bad weather can be measured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の全体の構成図。FIG. 1 is an overall configuration diagram of an embodiment of the present invention.

【図2】本発明の実施例のブロック図。FIG. 2 is a block diagram of an embodiment of the present invention.

【図3】本発明装置と着船抱束装置の関係を示す図。FIG. 3 is a diagram showing the relationship between the device of the present invention and the ship tying and holding device.

【図4】本発明装置の計測対象となる場所を示す図。FIG. 4 is a diagram showing a place to be measured by the device of the present invention.

【図5】コーナ・キューブ・リフレクタの説明図。FIG. 5 is an explanatory diagram of a corner cube reflector.

【図6】従来装置の説明図。FIG. 6 is an explanatory view of a conventional device.

【符号の説明】[Explanation of symbols]

1…レーザ式レーダ、2…ジンバル機構、3…船の動揺
センサ(加速度計とジャイロ)、4…船側の演算処理装
置、5…データ送信装置、6…データ受信装置、7…機
体側の演算処理装置、8…コーナ・キューブ・リフレク
タ、9…コックピット表示装置、10…機体の動揺セン
サ(加速度計とジャイロ)、11…自動操縦装置、21
…船側の抱束装置またはヘリポ−ト側の着地基準点、2
2…機体側の抱束装置または機体側の基準点、24…レ
ーザ・センサ(含ジンバル機構)、PO …レーザ・セン
サの位置、PR …コーナ・キューブ・リフレクタの位
置、PB …船側の抱束装置の中心位置またはヘリポ−ト
側の着地基準点の位置、PS…船側の特定箇所の位置、
PM …機体側の抱束装置の位置、PA …機体側の特定箇
所の位置。
DESCRIPTION OF SYMBOLS 1 ... Laser radar, 2 ... Gimbal mechanism, 3 ... Ship motion sensor (accelerometer and gyro), 4 ... Ship side processing unit, 5 ... Data transmitter, 6 ... Data receiver, 7 ... Aircraft side operation Processing device, 8 ... Corner cube reflector, 9 ... Cockpit display device, 10 ... Aircraft motion sensor (accelerometer and gyro), 11 ... Autopilot device, 21
... Shipping device on the ship side or landing reference point on the heliport side, 2
2 ... Aircraft-side hugging device or airframe-side reference point, 24 ... Laser sensor (including gimbal mechanism), PO ... Laser sensor position, PR ... Corner cube reflector position, PB ... Ship-side hugging The center position of the device or the position of the landing reference point on the heliport side, PS ... the position of a specific point on the ship side,
PM: Position of the hugging device on the machine side, PA: Position of a specific part on the machine side.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小久保 重信 愛知県名古屋市港区大江町10番地 三菱重 工業株式会社名古屋航空宇宙システム製作 所内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shigenobu Kokubo 10 Oemachi, Minato-ku, Nagoya, Aichi Mitsubishi Heavy Industries, Ltd. Nagoya Aerospace Systems Works

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 ヘリコプタや垂直離着陸機等の航空機
を狭隘な区画に着陸させる支援装置において、ヘリポ−
トにはレーザ・センサ(24)と、演算処理装置(4)
と、データ送信装置(5)を備え、機体側にはコーナ・
キューブ・リフレクタ(8)と、データ受信装置(6)
と、演算処理装置(7)と、表示装置(9)と、機体の
動揺センサ(10)とを備え、前記レーザ・センサ(2
4)はレーザ光線をコーナ・キューブ・リフレクタ
(8)に向けて発信するとともに、リフクタ(8)から
の反射光を受信し、レーザ・センサ(24)の位置PO
とリフクタ(8)の位置PR に関する情報を演算処理装
置(4)に出力し、前記ヘリポ−トの演算処理装置
(4)は、レーザ・センサ(24)から入力した信号に
基づき、基準座標系に対するヘリポ−ト側の着陸基準点
(21)と機体側のリフクタ(8)との間の相対距離
(PB PR )と相対速度の演算をし、データ送信装置
(5)とデータ受信装置(6)を介して機体側の演算処
理装置(7)に出力し、前記機体側の演算処理装置
(7)はデータ受信装置(6)を介して入力した信号
と、機体の動揺センサ(10)から入力した信号に基づ
き、基準座標系に対するヘリポ−ト側の着陸基準点(2
1)と機体側の基準点(22)の間の相対距離(PB P
M )と相対速度を演算し、その演算結果をコックピット
の表示装置(9)に出力することを特徴とする着陸支援
センサ装置。
1. A supporting device for landing an aircraft, such as a helicopter or a vertical take-off and landing aircraft, in a narrow space.
Laser sensor (24) and processing unit (4)
Equipped with a data transmitter (5)
Cube reflector (8) and data receiver (6)
And a processor (7), a display device (9) and a motion sensor (10) of the airframe, and the laser sensor (2).
4) emits a laser beam toward the corner cube reflector (8), receives the reflected light from the reflector (8), and detects the position PO of the laser sensor (24).
And the information on the position PR of the lifter (8) are output to the arithmetic processing unit (4), and the arithmetic processing unit (4) of the heliport is based on the signal input from the laser sensor (24). The relative distance (PB PR) between the landing reference point (21) on the heliport side and the lifter (8) on the airframe side and the relative speed are calculated, and the data transmission device (5) and the data reception device (6) are calculated. ) To the arithmetic processing unit (7) on the airframe side, and the arithmetic processing unit (7) on the airframe side inputs the signal input via the data receiving device (6) and the motion sensor (10) of the airframe. Based on the input signal, the landing reference point (2
1) and the reference distance (22) on the aircraft side (PBP
M) and a relative speed are calculated, and the calculation result is output to the display device (9) of the cockpit.
【請求項2】 船上のヘリポ−トに着船する航空機を
支援する装置において、船側にはレーザ・センサ(2
4)と、船の動揺センサ(3)と、演算処理装置(4)
と、データ送信装置(5)を備え、機体側にはコーナ・
キューブ・リフレクタ(8)と、データ受信装置(6)
と、演算処理装置(7)と、表示装置(9)と、機体の
動揺センサ(10)と、自動操縦装置(11)を備え、
前記レーザ・センサ(24)は、レーザ式レーダ(1)
と自動追尾装置付ジンバル機構(2)からなり、レーザ
式レーダ(1)はレーザ光線をコーナ・キューブ・リフ
レクタ(8)に向けて発信するとともに、リフクタ
(8)からの反射光を受信し、レーザ・センサ(24)
の位置PO とリフクタ(8)の位置PR に関する情報を
演算処理装置(4)に出力し、前記船側の演算処理装置
(4)は、(A)レーザ式レーダ(1)から入力した信
号に基づき基準座標系に対するレーザ・センサ(24)
とリフクタ(8)との間の相対距離(PO PR )と相対
速度を演算し、(B)船に搭載した船の動揺センサ
(3)からの信号に基づき基準座標系に対するレーザ・
センサ(24)と船側の抱束装置(21)との間の相対
距離(POPB )と相対速度を演算し、(C)前記相対
距離(PO PR )と(PO PB )から基準座標系に対す
る船側の抱束装置(21)と機体側のリフクタ(8)と
の間の相対距離(PB PR )と相対速度の演算をし、
(D)その演算結果をデータ送信装置(5)に出力し、
前記機体側の演算処理装置(7)は(E)データ受信装
置(6)を介してデータ送信装置(5)からのデータを
受信し、(F)機体に搭載した機体の動揺センサ(1
0)からの信号に基づき基準座標系に対するリフクタ
(8)と機体側の抱束装置(22)との間の相対距離
(PRPM )と相対速度を演算し、(G)前記相対距離
(PB PR )と(PR PM )から基準座標系に対する船
側の抱束装置(21)と機体側の抱束装置(22)の間
の相対距離(PB PM )と相対速度を演算し、(H)そ
の演算結果をコックピットの表示装置(9)および/ま
たは自動操縦装置(11)に出力することを特徴とする
着船支援センサ装置。
2. A device for supporting an aircraft landing on a heliport on board, wherein a laser sensor (2
4), a ship motion sensor (3), and a processor (4)
Equipped with a data transmitter (5)
Cube reflector (8) and data receiver (6)
And an arithmetic processing unit (7), a display unit (9), a body motion sensor (10), and an autopilot unit (11),
The laser sensor (24) is a laser radar (1)
And a gimbal mechanism (2) with an automatic tracking device, the laser radar (1) emits a laser beam toward a corner cube reflector (8) and receives reflected light from the reflector (8), Laser sensor (24)
Of the position PO of the ship and the position PR of the lifter (8) are output to the processor (4), and the processor (4) on the ship side is based on the signal input from (A) the laser radar (1). Laser sensor for reference frame (24)
The relative distance (PO PR) and relative speed between the ship and the lifter (8) are calculated, and (B) the laser for the reference coordinate system based on the signal from the motion sensor (3) of the ship mounted on the ship.
The relative distance (POPB) and the relative speed between the sensor (24) and the hugging device (21) on the ship side are calculated, and (C) the ship side relative to the reference coordinate system from the relative distances (POPR) and (POPB). The relative distance (PB PR) and relative speed between the hugging device (21) and the lifter (8) on the machine side are calculated,
(D) The calculation result is output to the data transmission device (5),
The machine side processor (7) receives data from the data transmitter (5) via (E) data receiver (6), and (F) machine shake sensor (1) mounted on the machine.
0), the relative distance (PRPM) and relative speed between the lifter (8) and the hugging device (22) on the machine side with respect to the reference coordinate system are calculated, and (G) the relative distance (PB PR ) And (PR PM) to calculate the relative distance (PB PM) and relative speed between the ship-side hugging device (21) and the fuselage-side hugging device (22) with respect to the reference coordinate system, and (H) the calculation A landing assistance sensor device, which outputs the result to a display device (9) and / or an automatic control device (11) in a cockpit.
【請求項3】船側の演算処理装置(4)は、(A)レー
ザ式レーダ(1)から入力した信号に基づき基準座標系
に対するレーザ・センサ(24)とリフクタ(8)との
間の相対距離(PO PR )との相対速度を演算し、
(B)船に搭載した船の動揺センサ(3)からの信号に
基づき基準座標系に対するレーザ・センサ(24)と船
側の特定箇所PS との間の相対距離(PO PS) と相
対速度を演算し、(C)前記相対距離(PO PR )と
(PO PS )から基準座標系に対する船側の特定箇所P
S と機体側のリフクタ(8)との間の相対距離(PS P
R )と相対速度の演算をし、(D)その演算結果をデー
タ送信装置(5)に出力し、機体側の演算処理装置
(7)は、(E)データ受信装置(6)を介してデータ
送信装置(5)からのデータを受信し、(F)機体に搭
載した機体の動揺センサ(10)からの信号に基づき基
準座標系に対するリフクタ(8)と機体側の特定箇所P
A との間の相対距離(PR PA) と相対速度を演算
し、(G)前記相対距離(PS PR )と(PR PA )か
ら基準座標系に対する船側の特定箇所PS と機体側の特
定箇所PA との間の相対距離(PS PM )と相対速度を
演算し、(H)その演算結果をコックピットの表示装置
(9)および/または自動操縦装置(11)に出力する
ことを特徴とする請求項2記載の着船支援センサ装置。
3. An arithmetic processing unit (4) on the side of a ship, based on a signal input from (A) a laser radar (1), relative to a reference coordinate system between a laser sensor (24) and a reflector (8). Calculate the relative speed with the distance (PO PR),
(B) Calculate the relative distance (PO PS) and relative speed between the laser sensor (24) and the specific point PS on the ship side with respect to the reference coordinate system based on the signal from the motion sensor (3) of the ship Then, (C) a specific point P on the ship side with respect to the reference coordinate system based on the relative distances (PO PR) and (PO PS).
Relative distance between S and the airframe side lifter (8) (PS P
R) and the relative velocity are calculated, and (D) the calculation result is output to the data transmission device (5), and the arithmetic processing unit (7) on the side of the aircraft transmits the data via the (E) data reception device (6). The data from the data transmission device (5) is received, and (F) the lifter (8) with respect to the reference coordinate system and the specific portion P on the aircraft side based on the signal from the motion sensor (10) of the aircraft mounted on the aircraft.
The relative distance (PR PA) from A and the relative speed are calculated, and (G) From the relative distances (PS PR) and (PR PA), a specific point PS on the ship side and a specific point PA on the aircraft side with respect to the reference coordinate system. A relative distance (PS PM) and a relative speed between the two are calculated, and (H) the calculation result is output to a cockpit display device (9) and / or an autopilot device (11). 2. The landing assistance sensor device according to 2.
JP03315293A 1993-02-23 1993-02-23 Landing support sensor device and landing support sensor device Expired - Lifetime JP3413777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03315293A JP3413777B2 (en) 1993-02-23 1993-02-23 Landing support sensor device and landing support sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03315293A JP3413777B2 (en) 1993-02-23 1993-02-23 Landing support sensor device and landing support sensor device

Publications (2)

Publication Number Publication Date
JPH06247394A true JPH06247394A (en) 1994-09-06
JP3413777B2 JP3413777B2 (en) 2003-06-09

Family

ID=12378613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03315293A Expired - Lifetime JP3413777B2 (en) 1993-02-23 1993-02-23 Landing support sensor device and landing support sensor device

Country Status (1)

Country Link
JP (1) JP3413777B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282170A (en) * 2006-06-16 2006-10-19 Sharp Corp Taking-off and landing assist device
DE102008022838A1 (en) * 2008-05-08 2009-11-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Landing aid device for helicopter, has sensor unit with sensors for detecting relative position between landing platform and helicopter, where sensors are arranged for detecting relative velocity of landing platform against helicopter
JP2012505106A (en) * 2008-10-13 2012-03-01 デセエンエス Method and system for controlling automatic landing / takeoff to and from a circular landing grid, in particular a naval platform
DE102008064712B4 (en) * 2008-05-08 2013-02-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Landing aid device for helicopter, has sensor unit with sensors for detecting relative position between landing platform and helicopter, where sensors are arranged for detecting relative velocity of landing platform against helicopter
JP2017161495A (en) * 2015-12-04 2017-09-14 ザ・ボーイング・カンパニーThe Boeing Company Using radar derived location data in gps landing system
WO2023127289A1 (en) * 2021-12-27 2023-07-06 三菱重工業株式会社 Automatic takeoff/landing system for vertical takeoff/landing aircraft, vertical takeoff/landing aircraft, and control method for takeoff/landing of vertical takeoff/landing aircraft

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102508219B1 (en) * 2022-09-20 2023-03-09 한화시스템(주) Aircraft landing apparatus on aircraft carrier and method therefor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282170A (en) * 2006-06-16 2006-10-19 Sharp Corp Taking-off and landing assist device
DE102008022838A1 (en) * 2008-05-08 2009-11-19 Deutsches Zentrum für Luft- und Raumfahrt e.V. Landing aid device for helicopter, has sensor unit with sensors for detecting relative position between landing platform and helicopter, where sensors are arranged for detecting relative velocity of landing platform against helicopter
DE102008022838B4 (en) * 2008-05-08 2011-06-30 Deutsches Zentrum für Luft- und Raumfahrt e.V., 51147 Land auxiliary device
DE102008064712B4 (en) * 2008-05-08 2013-02-28 Deutsches Zentrum für Luft- und Raumfahrt e.V. Landing aid device for helicopter, has sensor unit with sensors for detecting relative position between landing platform and helicopter, where sensors are arranged for detecting relative velocity of landing platform against helicopter
JP2012505106A (en) * 2008-10-13 2012-03-01 デセエンエス Method and system for controlling automatic landing / takeoff to and from a circular landing grid, in particular a naval platform
JP2017161495A (en) * 2015-12-04 2017-09-14 ザ・ボーイング・カンパニーThe Boeing Company Using radar derived location data in gps landing system
WO2023127289A1 (en) * 2021-12-27 2023-07-06 三菱重工業株式会社 Automatic takeoff/landing system for vertical takeoff/landing aircraft, vertical takeoff/landing aircraft, and control method for takeoff/landing of vertical takeoff/landing aircraft

Also Published As

Publication number Publication date
JP3413777B2 (en) 2003-06-09

Similar Documents

Publication Publication Date Title
US8457813B2 (en) Measuring of a landing platform of a ship
EP3239730B1 (en) Method for improving platform guidance or navigation using uniquely coded signals
US20190346562A1 (en) Systems and methods for radar control on unmanned movable platforms
JP5414540B2 (en) Optical system for determining and displaying aircraft position and status during aircraft landing and takeoff
US8554395B2 (en) Method and system for facilitating autonomous landing of aerial vehicles on a surface
US7561067B2 (en) Airspeed / wind speed measurement device for aircraft, and display device for same
ES2397546T3 (en) Precision approach control
US20190088146A1 (en) Method and a device for avoiding an object by detecting its approach to an aircraft
KR20180031298A (en) The drone with the real time weather complex observation sensors such as self sensing of the direction and velocity of wind
Amzajerdian et al. Lidar sensors for autonomous landing and hazard avoidance
US9341705B2 (en) Passive ranging of a target
JP3175960B2 (en) Ship arrival guidance sensor system
CN108255190A (en) Precision landing method based on multisensor and it is tethered at unmanned plane using this method
US11105921B2 (en) Systems and methods for vehicle navigation
Garratt et al. Visual tracking and lidar relative positioning for automated launch and recovery of an unmanned rotorcraft from ships at sea
JP3413777B2 (en) Landing support sensor device and landing support sensor device
JP3526403B2 (en) Landing guidance system
RU120077U1 (en) ON-BOARD RADIOTECHNICAL COMPLEX OF NAVIGATION AND LANDING OF MARINE BASING AIRCRAFT
RU2543144C2 (en) Aircraft landing process
CN112986958B (en) Large-range laser scanning device based on high-density echo analysis and control system thereof
RU2214943C1 (en) Method of landing flying vehicle
Garratt et al. Systems for automated launch and recovery of an unmanned aerial vehicle from ships at sea
JPH09184720A (en) Geodetic survey method and device therefor
JP2020160018A (en) Quantity acceptance inspection system for load of vessel
Matayoshi et al. Flight test evaluation of a helicopter airborne lidar

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030225

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080404

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090404

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100404

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 10

EXPY Cancellation because of completion of term