JPH06244824A - Multiplexing transmission system - Google Patents

Multiplexing transmission system

Info

Publication number
JPH06244824A
JPH06244824A JP3016293A JP3016293A JPH06244824A JP H06244824 A JPH06244824 A JP H06244824A JP 3016293 A JP3016293 A JP 3016293A JP 3016293 A JP3016293 A JP 3016293A JP H06244824 A JPH06244824 A JP H06244824A
Authority
JP
Japan
Prior art keywords
signal
station
transmission
difference
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3016293A
Other languages
Japanese (ja)
Inventor
Takashi Yamagishi
孝 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3016293A priority Critical patent/JPH06244824A/en
Publication of JPH06244824A publication Critical patent/JPH06244824A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detection And Prevention Of Errors In Transmission (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PURPOSE:To improve noise resistance by canceling noise generating in the vicinity of a multiplexing transmission line by the signal on each transmission line by taking the difference of two signals whose polarities are inverted with each other of each signal when a second station receives each signal from a first station and inputting the difference signal with each signal in parallel. CONSTITUTION:In a transmission station, a first physical layer is provided with a first transmission modem 30 and a second physical layer is provided with a second transmission modem 31 and a polarity inversion circuit 32. In a reception station, first and third physical, layers are provided with first and third reception modems 33 and 34, and a second physical layer is provided with a second reception modem 35 and a polarity inversion circuit 36. When the transmission station transmits signals via A system and B system transmission lines 21 and 22, the transmission is performed by inverting the signal polarity of the B system transmission line 22 for the signal polarity of the A system transmission line 21. when the reception station receives each signal for which the polarity inversion is performed, the station takes the difference of this each signal and inputs the difference signal with each signal in parallel.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばLAN(local
area network)に用いられる多重化伝送方式に関する。
BACKGROUND OF THE INVENTION The present invention relates to a LAN (local
area network).

【0002】[0002]

【従来の技術】従来、LANでは、局(以下、ステーシ
ョンという)間に二系統の同一の伝送路を接続すること
により、信号伝送を二重化して伝送路の故障率を下げる
多重化伝送方式が広く用いられている。
2. Description of the Related Art Conventionally, in a LAN, there has been a multiplex transmission system in which two systems of the same transmission line are connected between stations (hereinafter referred to as stations) to duplicate the signal transmission and reduce the failure rate of the transmission line. Widely used.

【0003】図5はこの種の多重化伝送方式を用いたス
テーションの構成を示すブロック図である。このステー
ションにおいては、図示しない他ステーションから伝送
された信号がA系及びB系の伝送路1,2を個別に介し
て自ステーションでA系及びB系に対応する物理層3,
4にそれぞれ受信され、各物理層3,4で受信した信号
のうち、エラーの無い信号が二重化伝送路選択回路5に
よって選択され、該選択された信号がMAC層6を介し
て上位層7に送られている。
FIG. 5 is a block diagram showing the structure of a station using this type of multiplex transmission system. In this station, the signals transmitted from other stations (not shown) individually pass through the transmission paths 1 and 2 of the A system and B system, respectively, and the physical layer 3 corresponding to the A system and B system in the own station.
Among the signals received by each of the physical layers 3 and 4 and having no error, signals having no error are selected by the duplex transmission path selection circuit 5, and the selected signals are transmitted to the upper layer 7 via the MAC layer 6. Has been sent.

【0004】ここで、物理層3,4はモデムに該当し、
上位層7はOSI(open systems interconnection)に
おけるLLC(ロジカル・リンク・コントロール)層以
上の層に該当する。また、二重化伝送路切換回路5は、
自ステーションからの送信の場合、二系統の物理層3,
4に同一の信号を送出する。
Here, the physical layers 3 and 4 correspond to modems,
The upper layer 7 corresponds to a layer above the LLC (logical link control) layer in OSI (open systems interconnection). Further, the redundant transmission line switching circuit 5 is
In the case of transmission from the own station, the physical layer of two systems 3,
4 sends the same signal.

【0005】次に、このようなステーションによる信号
伝送を図6及び図7を用いて詳細に説明する。なお、各
ステーションは送信回路と受信回路を備えているが、説
明の便宜上、送信ステーションによるデータの送信から
受信ステーションによる当該データの受信までの期間中
において重要な回路のみを図示し、他の回路の詳しい説
明を省略する。また、ステーションの構成要素を、送信
ステーションに用いる際には当該要素に添字tを付し、
受信ステーションに用いる際には当該要素に添字rを付
して説明する。図6はこのステーションの内部構成を示
すブロック図である。
Next, signal transmission by such a station will be described in detail with reference to FIGS. 6 and 7. Note that each station includes a transmission circuit and a reception circuit, but for convenience of explanation, only important circuits are illustrated during the period from the transmission station transmitting data to the receiving station receiving the data, and the other circuits are illustrated. The detailed description of is omitted. In addition, when a constituent element of a station is used as a transmitting station, the subscript t is added to the element,
When used for the receiving station, the subscript r is added to the element for description. FIG. 6 is a block diagram showing the internal structure of this station.

【0006】いま、送信ステーションにおいては、図示
しないMAC層から図7(a)に示すディジタル元デー
タが二重化伝送路選択回路5tに送出され、この二重化
伝送路選択回路によって当該ディジタル元データがそれ
ぞれA系及びB系の送信モデム8,9に出力される。各
送信モデム8,9は、このディジタル元データを変調
し、図7(b)に示す該変調信号をそれぞれ対応するA
系又はB系の伝送路1,2に送出する。なお、A系及び
B系の伝送路1,2は、同軸ケーブルであり、互いに隣
接して敷設されている。
Now, in the transmitting station, the digital source data shown in FIG. 7A is sent from the MAC layer (not shown) to the duplicated transmission path selection circuit 5t, and the duplicated transmission path selection circuit outputs the digital original data A respectively. It is output to the transmission modems 8 and 9 of the system B and the system B. The transmitting modems 8 and 9 modulate the digital original data and convert the modulated signals shown in FIG.
It is sent to the transmission paths 1 and 2 of the system or the B system. The A and B transmission lines 1 and 2 are coaxial cables and are laid adjacent to each other.

【0007】一方、受信ステーションにおいては、A系
及びB系の受信モデム10,11がそれぞれ対応する伝
送路1,2から該変調信号を受けると、該変調信号を復
調してそれぞれ二重化伝送路選択回路5rに送出する。
二重化伝送路選択回路5rは該復調された図7(c)に
示すディジタルデータを各受信モデム10,11から受
信し、これらディジタルデータのうち、伝送エラーの無
いディジタルデータを選択してMAC層に送出する。ま
た、このような送信ステーション及び受信ステーション
はノイズに対して強力にシールドされている。
On the other hand, in the receiving station, when the A-system and B-system receiving modems 10 and 11 receive the modulated signals from the corresponding transmission lines 1 and 2, respectively, the modulated signals are demodulated to select the duplicated transmission lines. It is sent to the circuit 5r.
The duplicated transmission path selection circuit 5r receives the demodulated digital data shown in FIG. 7 (c) from each of the reception modems 10 and 11, selects digital data having no transmission error from among these digital data and outputs it to the MAC layer. Send out. Moreover, such transmitting and receiving stations are strongly shielded against noise.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、以上の
ような多重化伝送方式では、二系統の伝送路に特にノイ
ズ対策が取られておらず、また、両伝送路が互いに隣接
して敷設されているので、伝送路近傍で図7(d)に示
す波形のノイズが発生したとき、両伝送路に同様に図7
(e)に示すようにノイズが重畳されるという問題があ
る。
However, in the above-described multiplex transmission system, no particular noise countermeasure is taken for the two transmission lines, and both transmission lines are laid adjacent to each other. Therefore, when noise with the waveform shown in FIG. 7D is generated near the transmission lines, the same noise as in FIG.
There is a problem that noise is superimposed as shown in (e).

【0009】このとき、両伝送路のデータがノイズ発生
時点で破壊され、データが含まれるパケットが受信ステ
ーションに到着しないため、復調信号が図7(f)に示
すようになり、同図(a)の元データを再現できない。
すなわち、ノイズの発生により、二系統が同時に伝送異
常になって二重化の利点を生かせない問題がある。
At this time, the data on both transmission lines are destroyed at the time of noise generation, and the packet containing the data does not arrive at the receiving station, so that the demodulated signal becomes as shown in FIG. 7 (f). ) Original data cannot be reproduced.
That is, there is a problem that the generation of noise causes abnormal transmission of the two systems at the same time, and the advantage of the duplexing cannot be utilized.

【0010】本発明は上記実情を考慮してなされたもの
で、多重化伝送路近傍で発生するノイズを各伝送路上の
信号で打ち消し合うことにより、ノイズ耐性を格段に向
上し得る多重化伝送方式を提供することを目的とする。
The present invention has been made in consideration of the above-mentioned circumstances, and the noise generated in the vicinity of the multiplexed transmission line is canceled by the signals on the respective transmission lines, whereby the noise resistance can be remarkably improved. The purpose is to provide.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するため
に本発明の多重化伝送方式は、複数の局を複数系統に多
重化した伝送路を介して接続し、送信局となる第1局か
ら伝送路の複数系統に対し信号を送出し、受信局となる
第2局で多重化された複数系統の中から信号を選択入力
する多重化伝送方式において、第1局から第2局への信
号伝送は、少なくとも2つの系統の間では互いに信号極
性を反転させる方式である。
In order to achieve the above object, the multiplex transmission system of the present invention is a first station which serves as a transmitting station by connecting a plurality of stations through a transmission line in which a plurality of systems are multiplexed. In a multiplex transmission system in which a signal is transmitted from a plurality of systems of a transmission path to a plurality of systems of a receiving station and a signal is selectively input from a plurality of systems multiplexed by a second station, which is a receiving station, from the first station to the second station. Signal transmission is a method of inverting the signal polarities between at least two systems.

【0012】また、特に上記第2局においては、第1局
から各信号を受けると、当該各信号のうち、互いに極性
が反転された2つの信号の差分を取り、その差分信号を
各信号と共に並列入力する方式である。
Further, in particular, in the above-mentioned second station, when receiving each signal from the first station, the difference between the two signals of which the polarities are inverted is taken out of the respective signals, and the difference signal is taken together with each signal. It is a parallel input method.

【0013】[0013]

【作用】従って、本発明の多重化伝送方式においては、
第1局では、第2局に対して少なくとも2つの系統の間
で互いに信号がその極性を反転されて伝送され、第2局
では、第1局から各信号を受けると、当該各信号のう
ち、互いに極性が反転された2つの信号の差分が取ら
れ、その差分信号が各信号と共に並列入力される。これ
により、多重化伝送路近傍で発生するノイズを各伝送路
上の信号で打ち消し合うため、ノイズ耐性を格段に向上
させることができる。
Therefore, in the multiplex transmission system of the present invention,
In the first station, the signals are transmitted to the second station between the at least two systems with their polarities reversed, and when the second station receives each signal from the first station, , The difference between two signals whose polarities are inverted is obtained, and the difference signal is input in parallel with each signal. As a result, the noises generated in the vicinity of the multiplexed transmission lines are canceled by the signals on the respective transmission lines, so that the noise resistance can be significantly improved.

【0014】[0014]

【実施例】以下、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】図1は本発明の一実施例に係る多重化伝送
方式を用いたステーションの構成を示すブロック図であ
る。このステーションにおいては、図示しない他ステー
ションから伝送された信号がA系及びB系の伝送路2
1,22を個別に介して自ステーションでA系に対応す
る第1の物理層23及びB系に対応する第2の物理層2
4に受信され、かつ、両系の信号の差分を送出する差分
回路25を介して第3の物理層26に受信されている。
FIG. 1 is a block diagram showing the configuration of a station using a multiplex transmission system according to an embodiment of the present invention. In this station, the signals transmitted from other stations (not shown) are transmitted through the A and B transmission lines 2
The first physical layer 23 corresponding to the A-system and the second physical layer 2 corresponding to the B-system at the own station via the respective units 1 and 22.
4 and is received by the third physical layer 26 via the difference circuit 25 which outputs the difference between the signals of both systems.

【0016】また、二重化伝送路選択回路27は、第1
乃至第3の物理層23,24,26で受信された信号の
うち、エラーの無い信号を選択する機能をもち、該選択
した信号をMAC層28を介して上位層29に与えてい
る。なお、この二重化伝送路選択回路27は、MAC層
28から与えられたデータを送信する際には、第1及び
第2の物理層23,24にそれぞれ同一のデータ信号を
送出している。
The redundant transmission path selection circuit 27 has a first
It also has a function of selecting a signal having no error among the signals received by the third physical layers 23, 24, and 26, and gives the selected signal to the upper layer 29 via the MAC layer 28. When transmitting the data given from the MAC layer 28, the duplicated transmission path selection circuit 27 sends the same data signal to the first and second physical layers 23 and 24, respectively.

【0017】次にこのようなステーションの具体的な構
成を説明する。なお、ここでは、前述した通りに各ステ
ーションによるデータの送信から受信までの期間中に必
要な回路のみを第1局としての送信ステーション及び第
2局としての受信ステーション内に図示し、他の回路の
詳しい説明を省略する。
Next, a specific configuration of such a station will be described. Here, as described above, only the circuits required during the period from the data transmission to the reception by each station are shown in the transmitting station as the first station and the receiving station as the second station, and other circuits are shown. The detailed description of is omitted.

【0018】図2はこれら送信及び受信ステーションの
具体的な構成を示すブロック図である。各ステーション
においては、図1に示す装置において、第1乃至第3の
物理層23,24,26がそれぞれモデムを有し、特に
第2の物理層24がモデムとB系の伝送路22との間に
信号の極性反転回路を備えている。
FIG. 2 is a block diagram showing a concrete configuration of these transmitting and receiving stations. In each station, in the device shown in FIG. 1, the first to third physical layers 23, 24, and 26 each have a modem, and in particular, the second physical layer 24 is a modem and a B-system transmission line 22. A signal polarity reversal circuit is provided between them.

【0019】すなわち、送信ステーションにおいては、
第1の物理層23が第1の送信モデム30を有すると共
に、第2の物理層24が第2の送信モデム31及び極性
反転回路32を備え、かつ、受信ステーションにおいて
は、第1及び第3の物理層23,26が第1,第3の受
信モデム33,34を有し、第2の物理層26が第2の
受信モデム35及び極性反転回路36を備えている。
That is, in the transmitting station,
The first physical layer 23 has a first transmitting modem 30, the second physical layer 24 has a second transmitting modem 31 and a polarity reversing circuit 32, and at the receiving station, first and third The physical layers 23 and 26 of FIG. 2 have first and third receiving modems 33 and 34, and the second physical layer 26 of FIG.

【0020】次に、このように構成された各ステーショ
ンによる多重化伝送の動作を説明する。なお、モデムに
よる変調方式としては位相同期周波数変調を用いてい
る。ここでは、送信されるディジタル元データのビット
データが“0”のときに周波数fの信号1サイクルが送
出され、該ビットデータが“1”のときに周波数2fの
信号2サイクルが送出されるように設定されている。
Next, the operation of multiplex transmission by each station thus constructed will be described. Phase-modulated frequency modulation is used as the modulation method by the modem. Here, when the bit data of the transmitted digital original data is "0", one cycle of the signal of frequency f is transmitted, and when the bit data is "1", two cycles of the signal of frequency 2f are transmitted. Is set to.

【0021】いま、上位層29では、送信対象のディジ
タル元データがMAC層28を介して二重化伝送路選択
回路27tに与えられる。この二重化伝送路選択回路2
7tでは図3(g)に示す該ディジタル元データが第1
及び第2の送信モデム30,31に送出され、各送信モ
デム30,31では該ディジタル元データが図3(h)
に示すように変調される。ここで、第1の送信モデム3
0ではこの変調信号がA系の伝送路21に送出されて受
信ステーションに伝送される。
Now, in the upper layer 29, the digital original data to be transmitted is given to the duplicated transmission path selection circuit 27t via the MAC layer 28. This duplex transmission path selection circuit 2
At 7t, the digital original data shown in FIG.
And the second transmission modems 30 and 31, and the digital original data is transmitted to the respective transmission modems 30 and 31 as shown in FIG.
Is modulated as shown in. Where the first transmitting modem 3
At 0, this modulated signal is sent to the transmission path 21 of the A system and transmitted to the receiving station.

【0022】一方、第2の送信モデム31では該変調信
号が極性反転回路32に送出され、極性反転回路32で
は、該変調信号が図3(i)に示すように極性反転さ
れ、該反転された変調信号がB系の伝送路22を介して
受信ステーションに伝送される。このとき、伝送路の途
中でノイズが図3(j)に示すように発生すると、A系
及びB系の伝送路21,22の信号にそれぞれノイズが
重畳される。
On the other hand, in the second transmission modem 31, the modulation signal is sent to the polarity inverting circuit 32, and in the polarity inverting circuit 32, the modulation signal is polarity-inverted and inverted as shown in FIG. 3 (i). The modulated signal is transmitted to the receiving station via the B-system transmission path 22. At this time, if noise is generated in the middle of the transmission path as shown in FIG. 3 (j), the noise is superimposed on the signals of the A and B transmission paths 21 and 22, respectively.

【0023】なお、A系の伝送路21では該変調信号に
図3(k)のようにノイズが重畳され、B系の伝送路で
は該反転された変調信号に図3(l)のようにノイズが
重畳される。図示するように、A系及びB系の重畳信号
はノイズの重畳された部分が大きく崩れている。
Noise is superimposed on the modulated signal on the A-system transmission line 21 as shown in FIG. 3 (k), and on the inverted modulation signal on the B-system transmission line as shown in FIG. 3 (l). Noise is superimposed. As shown in the figure, in the superimposed signals of the A system and the B system, the portion where the noise is superimposed is largely destroyed.

【0024】このとき、受信ステーションでは、A系の
伝送路21からノイズの重畳信号を受けると、この重畳
信号が第1の受信モデム33及び差分回路25に入力さ
れ、B系の伝送路22からノイズの重畳信号を受ける
と、極性反転回路36及び差分回路25に入力され、か
つ、極性反転回路36から第2の受信モデム35に入力
される。
At this time, in the receiving station, when the superimposed signal of noise is received from the transmission line 21 of the A system, this superimposed signal is input to the first reception modem 33 and the difference circuit 25, and is transmitted from the transmission line 22 of the B system. When the noise superposed signal is received, it is input to the polarity inversion circuit 36 and the difference circuit 25, and is also input from the polarity inversion circuit 36 to the second reception modem 35.

【0025】差分回路25では、A系の信号からB系の
信号を引くことにより、図3(m)のように差分信号が
求められ、該差分信号が第3の受信モデム34に入力さ
れる。この差分信号においては、図示するように、ノイ
ズが重畳しなかった部分では信号レベルが2倍になり、
ノイズが重畳した部分ではノイズが打ち消しあってノイ
ズレベルが零又は少なくとも減少している。すなわち、
この差分信号は、ノイズの影響が全く無く、第1及び第
2の送信モデム30,31による変調信号と同一波形で
あって、振幅が大きくなっている。
The difference circuit 25 subtracts the B-system signal from the A-system signal to obtain the difference signal as shown in FIG. 3M, and the difference signal is input to the third reception modem 34. . In this difference signal, as shown in the figure, the signal level is doubled in a portion where noise is not superimposed,
In the portion where the noise is superimposed, the noises cancel each other and the noise level is zero or at least decreases. That is,
This difference signal has no influence of noise at all, has the same waveform as the modulation signal by the first and second transmission modems 30 and 31, and has a large amplitude.

【0026】第1の受信モデム33ではA系の重畳信号
が図3(n)のように復調されて二重化伝送路選択回路
に送出され、第2の受信モデムではB系の重畳信号が図
3(o)のように復調されて二重化伝送路選択回路に送
出される。また、第3の受信モデムでは図3(p)に示
すように差分信号が復調されて二重化伝送路選択回路に
送出される。
The first receiving modem 33 demodulates the A-system superimposed signal as shown in FIG. 3 (n) and sends it to the duplicated transmission path selection circuit, and the second receiving modem 33 transmits the B-system superimposed signal. It is demodulated as shown in (o) and sent to the duplicated transmission path selection circuit. Further, in the third receiving modem, the differential signal is demodulated as shown in FIG. 3 (p) and sent to the duplicated transmission path selection circuit.

【0027】二重化伝送路選択回路27rでは、第1乃
至第3の受信モデム33,34,35から送出された各
復調信号のうち、伝送エラーの無い信号が選択されてM
AC層28に送出される。なお、本実施例では第3の受
信モデム34から送出された復調信号のみがディジタル
元データを忠実に再現している。続いて、MAC層28
では二重化伝送路選択回路27rから受けた信号が上位
層29に送出される。
In the duplicated transmission path selection circuit 27r, a signal having no transmission error is selected from the demodulated signals transmitted from the first to third reception modems 33, 34 and 35, and M is selected.
It is sent to the AC layer 28. In this embodiment, only the demodulated signal transmitted from the third receiving modem 34 faithfully reproduces the digital original data. Then, the MAC layer 28
Then, the signal received from the duplicated transmission path selection circuit 27r is sent to the upper layer 29.

【0028】上述したように、本実施例では、送信ステ
ーションが、受信ステーションへA系及びB系の伝送路
21,22を介して信号を送信する際に、A系の伝送路
21の信号極性に対してB系の伝送路22の信号極性を
反転して伝送し、受信ステーションが、送信ステーショ
ンから互いに極性反転された各信号を受信すると、これ
ら各信号の差分を取り、その差分信号を各信号と共に並
列入力するようにしたので、多重化伝送路近傍で発生す
るノイズを各伝送路上の信号で打ち消し合ってノイズ耐
性を格段に向上させることができる。
As described above, in this embodiment, when the transmitting station transmits a signal to the receiving station via the transmission lines 21 and 22 of the A and B systems, the signal polarity of the transmission line 21 of the A system is used. , The signal polarity of the transmission path 22 of the B system is inverted and transmitted, and when the receiving station receives the respective signals whose polarities are inverted from the transmitting station, the difference between these signals is calculated and the difference signal is calculated. Since the signals are input in parallel with each other, the noise generated in the vicinity of the multiplexed transmission lines can be canceled by the signals on the respective transmission lines to significantly improve the noise resistance.

【0029】また、本実施例では、変調信号と反転した
変調信号との差分を求めているので、ノイズのないとき
にはA系及びB系の各信号の和を取ることになり、信号
レベルが2倍とし、かつ、ノイズが重畳したときにはA
系とB系との各ノイズが打ち消し合ってノイズレベルが
零とするか、又は少なくとも減少させることができる。
従って、S/N比を向上させ、データの欠落を少なくす
ることができる。
Further, in this embodiment, since the difference between the modulated signal and the inverted modulated signal is obtained, the sum of the signals of the A system and the B system is calculated when there is no noise, and the signal level is 2 Double and when noise is superimposed A
The noises of the system and the system B cancel each other so that the noise level becomes zero, or at least the noise level can be reduced.
Therefore, the S / N ratio can be improved and the loss of data can be reduced.

【0030】また、A系及びB系の伝送路21,22が
互いに近接している場合、近接の度合に比例して両伝送
路の信号に重畳されるノイズが互いにほぼ同一の波形及
び振幅となるので、差分による打ち消し合いの効果をさ
らに向上させることができる。
When the transmission lines 21 and 22 of the A system and the B system are close to each other, the noises superimposed on the signals of both the transmission lines are proportional to the degree of the proximity and have substantially the same waveform and amplitude. Therefore, the effect of cancellation due to the difference can be further improved.

【0031】また、本実施例では、二重化伝送路選択回
路27rがA系の信号、B系の信号及び両系の差分信号
を伝送エラー又は情報の欠落の少ないように常時切換え
て選択することにより、ノイズの影響の少ない伝送シス
テムを構築することができる。次に、本発明の第2の実
施例に係る多重化伝送方式について説明する。
Further, in the present embodiment, the duplicated transmission path selection circuit 27r constantly selects and selects the A system signal, the B system signal, and the differential signal between the two systems so that there is little transmission error or loss of information. It is possible to build a transmission system that is less affected by noise. Next, a multiplexed transmission system according to the second embodiment of the present invention will be described.

【0032】図4(a)はこの多重化伝送方式を用いた
LANシステムの構成を示すブロック図である。このL
ANシステムにおいては、複数のステーション41,4
2,43,…がそれぞれ対応する支線44a,44b,
〜,46a,46b及び分岐器47a,47b,〜,4
9a,49bを介してA系及びB系の伝送路50,51
に接続されている。ここで、B系の分岐器47b,48
b,49bは逆相入力端子を有し、該逆相入力端子によ
って各ステーションの支線44b,45b,46b及び
伝送路51を接続している。なお、A系の分岐器47
a,48a,49aは正相入力端子を用いている。
FIG. 4A is a block diagram showing the configuration of a LAN system using this multiplex transmission system. This L
In the AN system, a plurality of stations 41, 4
2, 43, ... Corresponding branch lines 44a, 44b,
~, 46a, 46b and branching devices 47a, 47b, ~, 4
A and B transmission lines 50 and 51 via 9a and 49b
It is connected to the. Here, B-type branching devices 47b and 48
b and 49b have opposite phase input terminals, and the branch lines 44b, 45b and 46b of each station and the transmission line 51 are connected by the opposite phase input terminals. The A-type branch 47
The positive phase input terminals are used as a, 48a, and 49a.

【0033】すなわち、ステーション41からステーシ
ョン42に信号を伝送する場合、分岐器47bと分岐器
48bとの間では、図4(b)に示すようにA系の伝送
路50上の信号極性に対してB系の伝送路51上の信号
極性が反転された状態で伝送される。
That is, when a signal is transmitted from the station 41 to the station 42, the signal polarity on the A-system transmission line 50 is changed between the branching device 47b and the branching device 48b as shown in FIG. 4 (b). And the signal polarity on the B-system transmission path 51 is inverted.

【0034】これにより、伝送路の途中で発生するノイ
ズは、A系及びB系のうち、一方の系の信号波形を崩す
が、他方の系の信号レベルを増加させるように伝送路5
0,51上の信号に重畳される。従って、受信ステーシ
ョンでは、系の選択を適切に行うことにより、ノイズの
影響を受けることなく、正確に信号を得ることができ
る。
As a result, noise generated in the middle of the transmission line destroys the signal waveform of one of the A and B systems, but increases the signal level of the other system.
It is superimposed on the signal on 0,51. Therefore, by properly selecting the system, the receiving station can accurately obtain the signal without being affected by noise.

【0035】上述したように、第2の実施例によれば、
送信ステーション41及び受信ステーション42を接続
するA系及びB系の伝送路50,51のうち、B系の伝
送路51と各ステーションとを分岐器47b,48bの
逆相入力端子を介して接続したことにより、B系の伝送
路51の信号極性をA系の伝送路50の信号極性と反転
させたので、従来と同一構成のステーションを用いる比
較的簡易な構成で第1の実施例と同様の効果を得ること
ができる。
As described above, according to the second embodiment,
Among the transmission lines 50 and 51 of the A system and the B system which connect the transmission station 41 and the reception station 42, the transmission line 51 of the B system and each station are connected through the reverse phase input terminals of the branchers 47b and 48b. As a result, the signal polarity of the B-system transmission path 51 is inverted with respect to the signal polarity of the A-system transmission path 50. Therefore, the station having the same structure as the conventional one can be used and the comparatively simple structure is similar to that of the first embodiment. The effect can be obtained.

【0036】なお、第1及び第2の実施例では、二重化
された伝送路間で信号の極性を反転させた場合について
説明したが、これに限らず、各伝送路間で、位相をずら
したり、ディジタル元データの論理を反転させたり、ビ
ットデータを遅らせて伝送するようにしても、本発明と
同様の効果を得ることができる。その他、本発明はその
要旨を逸脱しない範囲で種々変形して実施できる。
In the first and second embodiments, the case where the signal polarities are inverted between the duplicated transmission lines has been described, but the present invention is not limited to this, and the phase may be shifted between the transmission lines. Even if the logic of the digital original data is inverted or the bit data is delayed for transmission, the same effect as that of the present invention can be obtained. In addition, the present invention can be modified in various ways without departing from the scope of the invention.

【0037】[0037]

【発明の効果】以上説明したように本発明によれば、第
1局が、第2局に対して少なくとも2つの系統の間で互
いに信号極性を反転して伝送し、第2局が、第1局から
各信号を受けると、当該各信号のうち、互いに極性が反
転された2つの信号の差分を取り、その差分信号を各信
号と共に並列入力するようにしたので、多重化伝送路近
傍で発生するノイズを各伝送路上の信号で打ち消し合う
ことにより、ノイズ耐性を格段に向上できる。
As described above, according to the present invention, the first station inverts the signal polarities of at least two systems with respect to the second station and transmits the signals, and the second station When each signal is received from one station, the difference between the two signals of which the polarities are inverted is taken, and the difference signal is input in parallel with each signal. By canceling the generated noises with the signals on each transmission line, the noise resistance can be significantly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例に係る多重化伝送方式を用い
たステーションの構成を示すブロック図。
FIG. 1 is a block diagram showing a configuration of a station using a multiplex transmission system according to an embodiment of the present invention.

【図2】同実施例における送信及び受信ステーションの
具体的な構成を示すブロック図。
FIG. 2 is a block diagram showing a specific configuration of a transmitting station and a receiving station in the embodiment.

【図3】同実施例における信号波形図。FIG. 3 is a signal waveform diagram in the example.

【図4】本発明の第2の実施例に係るLANシステムの
構成を示すブロック図。
FIG. 4 is a block diagram showing a configuration of a LAN system according to a second embodiment of the present invention.

【図5】従来のステーションの構成を示すブロック図。FIG. 5 is a block diagram showing a configuration of a conventional station.

【図6】従来のステーションの内部構成を示すブロック
図。
FIG. 6 is a block diagram showing an internal configuration of a conventional station.

【図7】従来の信号波形図。FIG. 7 is a conventional signal waveform diagram.

【符号の説明】[Explanation of symbols]

21…A系の伝送路、22…B系の伝送路、23…第1
の物理層、24…第2の物理層、25…差分回路、26
…第3の物理層、27…二重化伝送路選択装置、28…
MAC層、29…上位層、30…第1の送信モデム、3
1…第2の送信モデム、32…極性反転回路、33…第
1の受信モデム、34…第3の受信モデム、35…第2
の受信モデム、36…極性反転回路。
21 ... A transmission line, 22 ... B transmission line, 23 ... First
Physical layer 24, second physical layer 25, differential circuit 26,
... third physical layer, 27 ... duplexed transmission path selection device, 28 ...
MAC layer, 29 ... Upper layer, 30 ... First transmission modem, 3
1 ... Second transmitting modem, 32 ... Polarity inverting circuit, 33 ... First receiving modem, 34 ... Third receiving modem, 35 ... Second
Receiving modem, 36 ... Polarity reversing circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 複数の局を複数系統に多重化した伝送路
を介して接続し、送信局となる第1局から前記伝送路の
複数系統に対し信号を送出し、受信局となる第2局で前
記多重化された複数系統の中から信号を選択入力する多
重化伝送方式において、 前記第1局から前記第2局への信号伝送は、少なくとも
2つの系統の間では互いに信号極性を反転させることを
特徴とする多重化伝送方式。
1. A plurality of stations are connected via a transmission line in which a plurality of systems are multiplexed, a signal is sent from a first station, which is a transmitting station, to a plurality of systems of the transmission line, and a second station is a receiving station. In a multiplex transmission system in which a station selectively inputs a signal from the multiple systems that are multiplexed, in the signal transmission from the first station to the second station, the signal polarities are mutually inverted between at least two systems. A multiplex transmission method characterized by:
【請求項2】 前記第2局は、前記第1局から各信号を
受けると、当該各信号のうち、互いに極性が反転された
2つの信号の差分を取り、その差分信号を前記各信号と
共に並列入力することを特徴とする多重化伝送方式。
2. When the second station receives each signal from the first station, the second station takes the difference between two signals of the respective signals whose polarities are inverted to each other, and outputs the difference signal together with the respective signals. A multiplex transmission method characterized by parallel input.
JP3016293A 1993-02-19 1993-02-19 Multiplexing transmission system Pending JPH06244824A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3016293A JPH06244824A (en) 1993-02-19 1993-02-19 Multiplexing transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3016293A JPH06244824A (en) 1993-02-19 1993-02-19 Multiplexing transmission system

Publications (1)

Publication Number Publication Date
JPH06244824A true JPH06244824A (en) 1994-09-02

Family

ID=12296065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3016293A Pending JPH06244824A (en) 1993-02-19 1993-02-19 Multiplexing transmission system

Country Status (1)

Country Link
JP (1) JPH06244824A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196861A (en) * 2010-03-19 2011-10-06 Chugoku Electric Power Co Inc:The Radiation monitor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011196861A (en) * 2010-03-19 2011-10-06 Chugoku Electric Power Co Inc:The Radiation monitor

Similar Documents

Publication Publication Date Title
EP0676108B1 (en) Apparatus and method for fault detection on redundant signal lines via encryption
JP3333006B2 (en) Device for connecting a station to a local area network including at least one ring
JPH066399A (en) Data transmitting method
JPS59194540A (en) Automatic adaptation type equalizer
JPH06244824A (en) Multiplexing transmission system
JPS62179234A (en) Digital data transmission
US4670873A (en) System for setting up data transmission circuits between a plurality of stations
JPS60141057A (en) Modulation demodulation switching system
JP3497691B2 (en) Transmitter / receiver circuit
JPS59181787A (en) Television transmitting/receiving system
JPS6364931B2 (en)
JPS6282835A (en) Time division multidirectional multiplex communication system
Combellick Synchronization of Single-Sideband Carrier Systems for High-Speed Data Transmission
JPS6286943A (en) Loop network system
JPS615656A (en) Separation transmitting system of digital signal
JPH04348633A (en) Duplex system for local area network
JPH0239667A (en) Modulator/demodulator
JPH0292132A (en) Line concentration device for star type network
JPH02132942A (en) Data transmission system
JPH01261949A (en) Token bus network control system
JPS6037859A (en) Transmitting method utilizing service channel
JPH05260014A (en) System for compensating cross polarized wave interference
JPH05244185A (en) Duplex loop network system
JPS58210746A (en) Fault location pattern generating circuit
JPH0150149B2 (en)