JPH06239689A - Method for growing single crystal - Google Patents

Method for growing single crystal

Info

Publication number
JPH06239689A
JPH06239689A JP2563293A JP2563293A JPH06239689A JP H06239689 A JPH06239689 A JP H06239689A JP 2563293 A JP2563293 A JP 2563293A JP 2563293 A JP2563293 A JP 2563293A JP H06239689 A JPH06239689 A JP H06239689A
Authority
JP
Japan
Prior art keywords
raw material
single crystal
temperature
crystal growth
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2563293A
Other languages
Japanese (ja)
Inventor
Toshiro Nagata
俊郎 永田
Sukeyoshi Narita
祐喜 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Mineral Co Ltd
Original Assignee
Kawatetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawatetsu Mining Co Ltd filed Critical Kawatetsu Mining Co Ltd
Priority to JP2563293A priority Critical patent/JPH06239689A/en
Publication of JPH06239689A publication Critical patent/JPH06239689A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To produce a long single crystal having a uniform component and a large sectional area by continuously growing a single crystal while supplying a raw material in a method for growing the single crystal from a molten raw material. CONSTITUTION:A raw material melting zone 5 and a single crystal growing zone 6 are separately formed and both temperatures in the molten raw materials in the melting zone 5 and the single crystal growing zone 6 are directly measured. The temperatures are independently controlled to make the temperatures agree with fixed set temperatures, respectively.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ブリッジマン法等を用
いる単結晶成長方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal growth method using the Bridgman method or the like.

【0002】[0002]

【従来の技術】ブリッジマン法を用いる単結晶成長方法
は、るつぼ内に溶融原料を収納し、これを適当な温度勾
配を有する炉内で移動させ、溶融原料を徐々に固化させ
て単結晶を成長させる方法である。従来、このような単
結晶成長方法は、炉温を目標温度分布に設定し、炉内各
所の壁又は雰囲気温度を測定し、これらの温度を目標に
一致させるように炉温制御すると共に、固体原料をるつ
ぼ中に収納し、このるつぼを高温区域を移動させて原料
を溶解し、さらに凝固温度に保った一定温度区域を移動
させて一方向に固化させて単結晶を成長させるものであ
った。
2. Description of the Related Art A single crystal growth method using the Bridgman method stores a molten raw material in a crucible and moves it in a furnace having an appropriate temperature gradient to gradually solidify the molten raw material to form a single crystal. It is a method of growing. Conventionally, such a single crystal growth method, the furnace temperature is set to a target temperature distribution, the wall or atmosphere temperature of each place in the furnace is measured, and the furnace temperature is controlled so as to match these temperatures with the target. The raw material was stored in a crucible, and the crucible was moved in a high temperature area to melt the raw material, and further moved in a constant temperature area kept at the solidification temperature to solidify in one direction to grow a single crystal. .

【0003】この場合、溶解量を増加すると、高温で揮
発する成分等を含む場合、時間の経過と共に溶融原料の
成分組成が変化するという問題があるために、溶解量に
制限がある。従ってこのような方法では、成長させるこ
とができる単結晶の長さは、るつぼ中で溶解できる量に
限定される。このような、単結晶長さの制約を除いて、
長尺の単結晶を製造する技術は、特開昭55−1288
01号公報に開示されている。しかし、原料供給量のわ
ずかな変動でも溶融原料の性状に変化を与えるので、均
質な単結晶を製造することは困難であった。
In this case, when the amount of dissolution is increased, there is a problem that the component composition of the molten raw material changes with the lapse of time when a component that volatilizes at a high temperature is included, so that the amount of dissolution is limited. Thus, in such a method, the length of single crystal that can be grown is limited to the amount that can be melted in the crucible. Except for such single crystal length restrictions,
A technique for producing a long single crystal is disclosed in JP-A-55-1288.
No. 01 publication. However, even a slight change in the amount of raw material supplied changes the properties of the molten raw material, making it difficult to produce a homogeneous single crystal.

【0004】また従来の単結晶成長技術の基本的思想
は、固液界面近傍の炉温を一定に保つようにヒータを制
御し、るつぼを徐々に移動させて結晶を成長させるよう
になっている。ところが、炉内の雰囲気温度又は炉壁の
温度を一定に保持しても溶融原料の温度、結晶成長面の
温度が一定になるとは限らず、各種の外乱の影響によ
り、変動する。
Further, the basic idea of the conventional single crystal growth technique is that the heater is controlled so as to keep the furnace temperature near the solid-liquid interface constant, and the crucible is gradually moved to grow the crystal. . However, even if the temperature of the atmosphere in the furnace or the temperature of the furnace wall is kept constant, the temperature of the molten raw material and the temperature of the crystal growth surface do not always become constant, and they change due to the influence of various disturbances.

【0005】特開平2−309179号公報は、高温下
での等高温帯を幅広く保持できるとともに温度分布を任
意に調節することができる竪型電気炉を開示している。
この炉は図8中に示すように上段31、中段32、下段
33に分割されており、それぞれ独立に温度制御できる
ようになっている。このような炉を用いて単結晶育成を
行うと、炉の雰囲気の温度制御の精度を高めることがで
きるとしても、単結晶の成長過程を直接制御することは
できない。
Japanese Unexamined Patent Publication (Kokai) No. 2-309179 discloses a vertical electric furnace capable of holding a wide range of iso-high temperature zones under high temperature and adjusting the temperature distribution arbitrarily.
As shown in FIG. 8, this furnace is divided into an upper stage 31, a middle stage 32, and a lower stage 33, and the temperature can be controlled independently of each other. When a single crystal is grown using such a furnace, the temperature of the furnace atmosphere can be controlled with high accuracy, but the growth process of the single crystal cannot be directly controlled.

【0006】[0006]

【発明が解決しようとする課題】本発明は、溶融原料か
ら単結晶を成長させる方法に改善を加え、原料を供給し
ながら連続的に単結晶成長を行い、長大で成分が均一な
単結晶を製造する単結晶成長方法を提供することを目的
とする。
DISCLOSURE OF THE INVENTION The present invention has improved the method for growing a single crystal from a molten raw material, and continuously grows the single crystal while supplying the raw material to obtain a long single crystal having a uniform composition. It is an object of the present invention to provide a method for growing a single crystal.

【0007】[0007]

【課題を解決するための手段】本発明の上記目的を達成
するための技術手段は、溶融原料から単結晶を成長させ
る方法において、 a)原料溶解ゾーンと単結晶成長ゾーンを別に設けるこ
と b)原料溶解ゾーンに粉体原料を粉体及び焼結体状で供
給して溶解し、溶解した原料を単結晶成長ゾーンに供給
すること c)溶解ゾーンと単結晶成長ゾーンのそれぞれの溶融原
料の温度を測定し、それらの温度がそれぞれ一定の設定
温度に一致するようにそれぞれ独立に温度を制御しつつ
結晶成長を行うこと を特徴とする単結晶成長方法である。
The technical means for achieving the above-mentioned object of the present invention is, in a method for growing a single crystal from a molten raw material, a) providing a raw material melting zone and a single crystal growth zone separately b) The powder raw material is supplied to the raw material melting zone in the form of powder and a sintered body to be melted, and the melted raw material is supplied to the single crystal growth zone. C) Temperature of the molten raw material in each of the melting zone and the single crystal growth zone Is measured, and the crystal growth is performed while controlling the temperature of each of them independently so that the temperatures thereof match a fixed set temperature.

【0008】[0008]

【作用】従来の単結晶成長方法は、炉の温度を一定に保
ち、この一定温度のもとにおいて固液界面の条件を一定
に保つことによって、均一な品質の単結晶を製造すると
いう基本的な技術思想に立脚している。本発明者らの研
究によれば、単結晶成長方法の温度制御において、電気
炉の炉体や電気炉内の雰囲気を一定に保っていても、結
晶及び融液の入ったるつぼの移動によって温度の変化に
敏感な結晶成長面では、温度変動が生じ、結晶成長速度
が不均一になることが知見された。この温度変動や結晶
成長速度の変動は、特に多成分系では、固相と液相の成
分に偏差を生じ、単結晶の成分にばらつきを生じる。
According to the conventional single crystal growth method, the temperature of the furnace is kept constant, and the condition of the solid-liquid interface is kept constant under this constant temperature, thereby producing a single crystal of uniform quality. It is based on various technical ideas. According to the research conducted by the present inventors, in the temperature control of the single crystal growth method, even if the atmosphere in the furnace body of the electric furnace or the electric furnace is kept constant, the temperature is changed by the movement of the crucible containing the crystal and the melt. It was found that on the crystal growth surface, which is sensitive to changes in temperature, temperature fluctuations occur and the crystal growth rate becomes non-uniform. The fluctuations in temperature and fluctuations in the crystal growth rate cause deviations in the solid phase and liquid phase components, especially in the multi-component system, and variations in the single crystal components.

【0009】また微細な原料を溶融原料の周囲に供給す
ることによって、結晶成長領域に影響を及ぼすことなく
連続的に操業しようとする従来方法は、相互に温度条件
が影響しあって、一定条件を保持することが困難であ
る。図2は原料ペレットを供給しながら長大な単結晶を
成長させる従来方法の説明図である。炉は、図2の左端
部に示したように、上段炉、中段炉、下段炉からなる3
段炉にその下部に補助炉を備えたものである。3段炉の
炉内温度分布は、図2の右端部に示してある。単結晶成
長工程が図2に左側から右側に順次描かれている。先ず
るつぼ初期位置ではるつぼは補助炉内のレベルにある。
炉を加熱して炉内温度分布が曲線(a)となったとき、
るつぼを中段炉のレベルに引き上げ、初期原料溶解を行
う。次に種結晶を溶解し、るつぼを下降して初期原料の
育成を行う。初期原料の育成が完了すると、原料ペレッ
トを添加して滴下育成を開始する。炉外から原料ペレッ
トを供給し、そのシュートの下端に滴下用の小さいるつ
ぼを備え、これを高温領域に保ち、ペレットを供給する
と、溶解してオーバーフローして、るつぼ内の溶融原料
に少しずつ移行する。このとき炉内温度分布は、滴下溶
融原料の影響及びるつぼ降下に伴い曲線(b)に示す温
度分布に移行し、単結晶成長速度が遅くなり、さらにこ
の傾向が加速されて、溶融原料の厚さが増大し、温度分
布も曲線(c)に至る。滴下終了すると、溶融原料の厚
さは減少し始め、ついに完全結晶化するに至る。このよ
うな結晶成長過程において、溶融原料の温度が変化する
と、溶融原料の深さが変化する。図4はMn−Zn系の
フェライトの単結晶成長における溶融原料深さと液面付
近の温度との関係を示したものである。このように液相
の温度が変化し、溶融原料の量が変化すると液相と固相
の成分にずれが生じる。図3はMn−Zn系フェライト
の状態図を示すもので、Mn−Zn系フェライトはMn
O・Fe23 とZnO・Fe23 との2相系とする
ことができる。図3に示すような2相系では、液相線と
固相線が離れているので、結晶成長過程で液相と固相の
組成比が変化する。このため、図2に示すような、溶融
原料の深さが単結晶成長過程で変化する場合には成長し
た単結晶の長手方向における成分が変化することとな
る。
Further, in the conventional method in which a fine raw material is supplied to the periphery of the molten raw material to continuously operate without affecting the crystal growth region, the temperature conditions influence each other and a constant condition is exerted. Is difficult to hold. FIG. 2 is an explanatory view of a conventional method for growing a long single crystal while supplying a raw material pellet. The furnace consists of an upper furnace, a middle furnace, and a lower furnace, as shown in the left end of FIG.
It is a staged furnace equipped with an auxiliary furnace below it. The temperature distribution in the furnace of the three-stage furnace is shown at the right end of FIG. The single crystal growth process is depicted sequentially from left to right in FIG. First, in the initial crucible position, the crucible is at the level in the auxiliary furnace.
When the furnace is heated and the temperature distribution in the furnace becomes the curve (a),
Raise the crucible to the level of the middle stage furnace and perform initial raw material melting. Next, the seed crystal is melted, and the crucible is lowered to grow an initial raw material. When the growth of the initial raw material is completed, the raw material pellets are added to start the dropping growth. Feed the raw material pellets from outside the furnace, equip the lower end of the chute with a small crucible for dropping, keep this in the high temperature area, and feed the pellets, melt and overflow, gradually transfer to the molten raw material in the crucible To do. At this time, the temperature distribution in the furnace shifts to the temperature distribution shown in the curve (b) with the influence of the dripping molten raw material and the crucible descending, the single crystal growth rate becomes slower, and this tendency is accelerated, and Increases, and the temperature distribution reaches the curve (c). When the dropping is completed, the thickness of the molten raw material starts to decrease and finally complete crystallization is reached. In such a crystal growth process, when the temperature of the molten raw material changes, the depth of the molten raw material changes. FIG. 4 shows the relationship between the depth of the molten raw material and the temperature near the liquid surface in the single crystal growth of Mn-Zn ferrite. As described above, when the temperature of the liquid phase changes and the amount of the molten raw material changes, the components of the liquid phase and the solid phase deviate. FIG. 3 shows a phase diagram of Mn-Zn based ferrite.
Can be a two-phase system with O · Fe 2 O 3 and ZnO · Fe 2 O 3. In the two-phase system as shown in FIG. 3, since the liquidus line and the solidus line are separated, the composition ratio of the liquid phase and the solid phase changes during the crystal growth process. Therefore, when the depth of the molten raw material changes during the single crystal growth process as shown in FIG. 2, the component in the longitudinal direction of the grown single crystal changes.

【0010】本発明は、溶解ゾーンと結晶成長ゾーンと
を分離し、それぞれ独立に温度制御することによって、
相互の干渉を排除し、それぞれの温度を最適な一定温度
になり、溶融原料の深さも一定になるように制御する。
図5は炉内雰囲気温度又は炉体の温度を一定に制御する
場合に、溶融原料の温度がどのように変化するかを示し
たものである。例えば、図5中のEで示した段階におい
て原料融解部の炉体温度A曲線及び結晶成長面近傍の炉
体温度D曲線を一定値に保ったとき、溶解原料の温度は
B曲線のように漸増する。今、図中のFで示した段階に
おいて原料融解部の炉体温度A曲線を上昇させると、溶
解原料の温度はB曲線のように増加するとともに、結晶
成長面近傍の溶融原料の温度であるC曲線も上昇する。
そこでG段階で、結晶成長面近傍の炉体温度D曲線を下
降させると、溶解原料の温度B曲線もこの影響を受けて
漸減する。また、例えばH段階において原料融解部の炉
体温度A曲線を下げると、溶解原料の温度はB曲線は下
がるが、同時に、結晶成長面近傍の溶融原料の温度であ
るC曲線も影響を受けて下降する。このように従来の、
炉内雰囲気又は炉壁の温度を制御する方法では、溶解部
の溶融原料の温度、結晶成長面の溶融原料の温度への相
互干渉を避けることができず、これらの温度を一定に保
つことは困難である。
According to the present invention, the melting zone and the crystal growth zone are separated and the temperature is controlled independently of each other.
Mutual interference is eliminated, and each temperature is controlled to an optimum constant temperature and the depth of the molten raw material is also constant.
FIG. 5 shows how the temperature of the molten raw material changes when the temperature of the atmosphere in the furnace or the temperature of the furnace body is controlled to be constant. For example, when the furnace body temperature A curve of the raw material melting portion and the furnace body temperature D curve in the vicinity of the crystal growth surface are maintained at constant values at the stage indicated by E in FIG. Gradually increase. Now, when the furnace body temperature A curve of the raw material melting portion is raised at the stage indicated by F in the figure, the temperature of the molten raw material increases as shown by the B curve and is the temperature of the molten raw material near the crystal growth surface. The C curve also rises.
Therefore, when the furnace body temperature D curve near the crystal growth surface is lowered in the G stage, the temperature B curve of the melting raw material is also affected by this and gradually decreases. Further, for example, when the furnace body temperature A curve of the raw material melting portion is lowered in the H stage, the temperature of the molten raw material decreases the B curve, but at the same time, the C curve which is the temperature of the molten raw material in the vicinity of the crystal growth surface is also affected. To descend. Thus, conventional
With the method of controlling the temperature in the furnace atmosphere or the furnace wall, mutual interference with the temperature of the molten raw material in the melting part and the temperature of the molten raw material in the crystal growth surface cannot be avoided, and these temperatures cannot be kept constant. Have difficulty.

【0011】図6は、本発明における温度制御方法を示
したものである。本発明では、溶解原料の温度B曲線、
結晶成長面の溶融原料の温度C曲線が一定になるように
ヒータを制御する。この場合、炉壁の温度は図6中のA
曲線、D曲線のように変化するが、B曲線、C曲線は、
相互干渉もなくまたA曲線やD曲線の影響を受けない。
従って、炉の温度勾配を一定に保ち、結晶成長界面の近
傍の炉の温度を一定に保つ従来の手段では、決して除去
することができなかった相互干渉や外乱の影響を完全に
除去することができ、原料溶解、原料供給、結晶成長の
条件を厳密に一定に保つことができ、単結晶成長装置の
許容する限度まで、均質で長尺の単結晶を製造すること
が可能となった。
FIG. 6 shows a temperature control method according to the present invention. In the present invention, the temperature B curve of the melting raw material,
The heater is controlled so that the temperature C curve of the molten raw material on the crystal growth surface becomes constant. In this case, the temperature of the furnace wall is A in FIG.
It changes like a curve and a D curve, but a B curve and a C curve
There is no mutual interference and it is not affected by the A and D curves.
Therefore, it is possible to completely eliminate the effects of mutual interference and disturbance that could never be eliminated by the conventional means of keeping the temperature gradient of the furnace constant and the temperature of the furnace near the crystal growth interface constant. It was possible to maintain the conditions of raw material dissolution, raw material supply, and crystal growth strictly constant, and it became possible to manufacture a homogeneous and long single crystal up to the limit allowed by the single crystal growth apparatus.

【0012】以上のように、従来は、例えば結晶化温度
を下げるときは、原料溶解速度を考慮して条件を決めた
り、また原料融解速度を速くするために温度を上げる場
合にも、結晶化ゾーンの温度上昇による結晶成長への影
響を考慮して条件を決定していたものが本発明により独
自の条件決定が可能となりそれぞれ最適な条件で単結晶
の成長を行うことが可能となった。
As described above, conventionally, for example, when lowering the crystallization temperature, the conditions are determined in consideration of the raw material melting rate, and when the temperature is raised to increase the raw material melting rate, the crystallization is also performed. Although the conditions were determined in consideration of the influence of the zone temperature rise on the crystal growth, the present invention enables the original conditions to be determined, and the single crystal can be grown under the optimum conditions.

【0013】また溶融原料の単結晶成長面における温度
を固化温度に十分に近い最低の温度に制御することがで
き、一部成分の揮発の抑制にもつながる。このため、結
晶の品質が一定な長尺の単結晶を製造することができ
る。
Further, the temperature at the single crystal growth surface of the molten raw material can be controlled to the lowest temperature sufficiently close to the solidification temperature, which leads to suppression of volatilization of some components. Therefore, a long single crystal having a constant crystal quality can be manufactured.

【0014】[0014]

【実施例】図1は本発明の実施例の単結晶成長方法の説
明図である。先ず、装置について説明する。単結晶成長
装置1は、るつぼ2内に溶融原料3を収納し、これをヒ
ータ7によって加熱した炉6内を下方に移動させ、るつ
ぼ2の下端に種結晶を配置して単結晶4を成長させる装
置である。炉は高さ方向に複数のブロックに分割され、
それぞれ独立に温度制御することができる。分割したブ
ロックには、それぞれ温度計a、b、c、d、e、f、
gが配設されている。そしてこの分割ブロックは、原料
溶解ゾーン5と単結晶成長ゾーン6を別に設けている。
原料溶解ゾーンには溶解槽を備え、この溶解槽に粉体原
料を供給するシュート14が設けられている。溶解槽で
溶解した原料は、溶解槽をオーバーフローして少量づつ
単結晶成長ゾーンに滴下して供給される。溶解ゾーンと
単結晶成長ゾーンのそれぞれの溶融原料の温度を測定す
る温度計11、13がそれぞれ一定の設定温度に一致す
るようにそれぞれ独立に温度を制御することができるよ
うになっている。
EXAMPLE FIG. 1 is an explanatory view of a single crystal growth method of an example of the present invention. First, the device will be described. The single crystal growth apparatus 1 stores a molten raw material 3 in a crucible 2, moves it downward in a furnace 6 heated by a heater 7, and arranges a seed crystal at the lower end of the crucible 2 to grow a single crystal 4. Device. The furnace is divided into blocks in the height direction,
Each can be temperature controlled independently. Thermometers a, b, c, d, e, f, and
g are provided. The divided block has a raw material melting zone 5 and a single crystal growth zone 6 separately.
The raw material melting zone is provided with a melting tank, and a chute 14 for supplying the powder raw material to the melting tank is provided. The raw material melted in the melting tank overflows the melting tank and is gradually added dropwise to the single crystal growth zone. The thermometers 11 and 13 for measuring the temperatures of the molten raw materials in the melting zone and the single crystal growth zone can be independently controlled so that the thermometers 11 and 13 respectively match a predetermined set temperature.

【0015】以上の図1の装置を用いて、Mn−Zn系
フェライトの単結晶の製造に本発明を実施した。図7は
従来技術と本発明の実施例を比較したグラフである。従
来、直径60mmφの長さ200mmの単結晶を製造す
ることができたが、このような単結晶を製造したとき
の、成分の長手方向分布は図7のaに示すように変化
し、組成適合領域は長さ160mm程度であった。実施
例では、直径100mmφの長さ500mmの単結晶を
容易に製造することができ、この場合の組成適合領域は
長さ450mm程度であった。実施例では、理論的に
は、組成適合領域の長さは制限がなく、装置的に許容さ
れれば、いくらでも長いものを製造することができる。
The present invention was carried out for producing a single crystal of Mn-Zn ferrite by using the apparatus shown in FIG. FIG. 7 is a graph comparing the prior art with the embodiment of the present invention. Conventionally, it was possible to manufacture a single crystal having a diameter of 60 mmφ and a length of 200 mm. However, when such a single crystal is manufactured, the longitudinal distribution of the components changes as shown in FIG. The area was about 160 mm in length. In the example, a single crystal having a diameter of 100 mm and a length of 500 mm could be easily manufactured, and the composition compatible region in this case was about 450 mm in length. In the examples, theoretically, the length of the composition-compatible region is not limited, and as long as the device allows, it is possible to manufacture as long as possible.

【0016】[0016]

【発明の効果】本発明によれば、従来製造することがで
きなかった大きい直径の均一な組成の単結晶を、理論的
には無限の長さを製造することができるようになった。
According to the present invention, it is now possible to theoretically produce an infinite length of a single crystal having a large diameter and a uniform composition, which could not be produced conventionally.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の単結晶成長方法を示す図であ
る。
FIG. 1 is a diagram showing a single crystal growth method according to an embodiment of the present invention.

【図2】単結晶成長方法の説明図である。FIG. 2 is an explanatory diagram of a single crystal growth method.

【図3】Mn−Zn系フェライトの2成分系状態図であ
る。
FIG. 3 is a two-component phase diagram of Mn-Zn ferrite.

【図4】溶融原料の深さと表面付近温度の関係図であ
る。
FIG. 4 is a relationship diagram between the depth of the molten raw material and the temperature near the surface.

【図5】従来の温度制御の温度推移説明図である。FIG. 5 is a temperature transition explanatory diagram of conventional temperature control.

【図6】本発明の温度制御の温度推移説明図である。FIG. 6 is a temperature transition explanatory diagram of temperature control of the present invention.

【図7】本発明の効果を示す説明図である。FIG. 7 is an explanatory diagram showing an effect of the present invention.

【図8】従来技術を示す説明図である。FIG. 8 is an explanatory diagram showing a conventional technique.

【符号の説明】[Explanation of symbols]

1 単結晶成長装置 2 るつぼ 3 溶融原料 4 単結晶 5 原料溶解ゾーン 6 単結晶成
長ゾーン 7 ヒータ 11、12、1
3 温度計 14 シュート 21 比較装置 22 設定装置 23 炉温制御
装置
1 Single Crystal Growth Device 2 Crucible 3 Melting Raw Material 4 Single Crystal 5 Raw Material Melting Zone 6 Single Crystal Growth Zone 7 Heaters 11, 12, 1
3 Thermometer 14 Chute 21 Comparison Device 22 Setting Device 23 Furnace Temperature Control Device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 溶融原料から単結晶を成長させる方法に
おいて、原料溶解ゾーンと単結晶成長ゾーンを別に設
け、該原料溶解ゾーンに粉体原料を供給して溶解し、溶
解した原料を単結晶成長ゾーンに供給し、溶解ゾーンと
単結晶成長ゾーンのそれぞれの溶融原料の温度を測定
し、該温度がそれぞれ一定の設定温度に一致するように
それぞれ独立に温度を制御しつつ結晶成長を行うことを
特徴とする単結晶成長方法。
1. A method for growing a single crystal from a molten raw material, wherein a raw material melting zone and a single crystal growth zone are separately provided, and a powder raw material is supplied to the raw material melting zone to melt the raw material, and the melted raw material is grown as a single crystal. It is supplied to the zone, the temperature of the molten raw material of each of the melting zone and the single crystal growth zone is measured, and crystal growth is performed while controlling the temperature independently so that the temperature matches a fixed set temperature. Characteristic single crystal growth method.
JP2563293A 1993-02-15 1993-02-15 Method for growing single crystal Pending JPH06239689A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2563293A JPH06239689A (en) 1993-02-15 1993-02-15 Method for growing single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2563293A JPH06239689A (en) 1993-02-15 1993-02-15 Method for growing single crystal

Publications (1)

Publication Number Publication Date
JPH06239689A true JPH06239689A (en) 1994-08-30

Family

ID=12171243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2563293A Pending JPH06239689A (en) 1993-02-15 1993-02-15 Method for growing single crystal

Country Status (1)

Country Link
JP (1) JPH06239689A (en)

Similar Documents

Publication Publication Date Title
US5087429A (en) Method and apparatus for manufacturing silicon single crystals
KR0157323B1 (en) Process and apparatus for mn-zn ferrite signal crystal formation using regional melting zone forming method
KR20150105142A (en) Apparatus for manufacturing ingot and method for the same
JPH06239689A (en) Method for growing single crystal
JPH01122988A (en) Growth of single crystal and apparatus for production thereof
JPH06239690A (en) Device for growing single crystal
KR100327475B1 (en) Continuous growing apparatus for single crystal
JP3386335B2 (en) Single crystal growth method and apparatus
JPS5815472B2 (en) crystal growth equipment
JPS6136192A (en) Crucible for producing single crystal
JPS62880B2 (en)
JPS5997592A (en) Manufacture of single crystal
JPS61242981A (en) Production of single crystal
Robertson et al. Observations on the unrestrained growth of germanium crystals
JPS62128995A (en) Production of single crystal
JPH05310493A (en) Apparatus for producing single crystal
KR950013001B1 (en) Preparation of mn-zn ferrite single crystal
KR0157324B1 (en) Process and apparatus for mn-zn ferrite signal crystal
KR0124981Y1 (en) Manufacturing apparatus of mn-zn ferrite crystal
JPH01242480A (en) Apparatus for producing single crystal
JPS5983994A (en) Preparation of single crystal
JPS61174189A (en) Method and device for production of single crystal
JPH1171194A (en) Production of single crystal by vertical bridgman method and determination of feed rate of raw material used for the production
KR101339151B1 (en) Apparatus and method for growing monocrystalline silicon ingots
JPH0513915B2 (en)

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030218