JPH06238578A - Operating device for minute body - Google Patents

Operating device for minute body

Info

Publication number
JPH06238578A
JPH06238578A JP2271393A JP2271393A JPH06238578A JP H06238578 A JPH06238578 A JP H06238578A JP 2271393 A JP2271393 A JP 2271393A JP 2271393 A JP2271393 A JP 2271393A JP H06238578 A JPH06238578 A JP H06238578A
Authority
JP
Japan
Prior art keywords
piezoelectric
ferroelectric
fine object
legs
polarization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2271393A
Other languages
Japanese (ja)
Inventor
Hideo Adachi
日出夫 安達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP2271393A priority Critical patent/JPH06238578A/en
Publication of JPH06238578A publication Critical patent/JPH06238578A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To surely carry out the exfoliation drop of minute bodies by installing ferromagnetic elements inside the top edge part of a pair of nipping holding legs and changing the polarization state in the ferromagnetic element, as for the state where a pair of nipping holding legs are opened and closed by the operation of a piezoelectric actuator. CONSTITUTION:Two nipping holding legs 1a and 1b which are made of stainless steel. aluminium, etc., and extend oppositely to a body are installed, and extremely thin parts 1a' and 1b' are formed at one part of the leg parts 1a and 1b. Two piezoelectric bimorphs 2 and 3 are constituted by installing two piezoelectric elements 2a, 2b: 3a, 3b on both the sides of the extremely thin parts 1a' and 1b'. The top eage parts 4a and 4b of the legs 1a and 1b are closed by the buckling displacement of the piezoelectric bimorphs 2 and 3 by current- carrying. Ferromagnetic elements 5a and 5b arre installed inside the tope edge parts 4a and 4b, and the polarization in the ferromagnetic body is reversed by the electric conduction in the exfoliation drop of fine article, and the exfoliation drop of the fine articles is carried out surely.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、細胞や原核生物、マイ
クロアッセンブリーに用いる各種マイクロ構造部品、医
療分野におけるマイクロサージェリーでの微小生体構成
部位を挟持するのに用いる微細物体操作装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to cells, prokaryotes, various microstructure parts used in microassemblies, and a fine object manipulating device used for holding a minute living body constituent part in a microsurgery in the medical field.

【0002】[0002]

【従来の技術】本出願人は、特開昭62−19379、
特開昭62−24973、特開昭62−140770、
特開昭62−152680、特開昭62−157789
において、細胞操作用の圧電ピンセットや微細物体操作
装置を開示している。その基本構造は、図10に示すよ
うに、開閉可能な一対の挟持脚102を有する本体10
0と、挟持脚102を開閉させる圧電アクチュエーター
(圧電バイモルフ)104とを有している。圧電アクチ
ュエーター104は、印加電圧に比例した屈曲変位を挟
持脚102に発生させ、その先端部で微小物体を把持す
る。また、図11に示すように、挟持脚102を三本に
した構成のものも開示している。この構成によれば、挟
持が更に確実に行なえるようになるとともに、複雑な操
作も行なえるようなる。さらに、図12に示すように、
圧電アクチュエーター104にトランスデューサーの機
能を持たせ、細胞の硬さ等の情報を得ることができるよ
うにした構成のものも開示している。
2. Description of the Related Art The applicant of the present invention is disclosed in JP-A-62-19379.
JP-A-62-24973, JP-A-62-140770,
JP-A-62-152680, JP-A-62-157789
Discloses a piezoelectric tweezers for manipulating cells and a fine object manipulating device. The basic structure is, as shown in FIG. 10, a main body 10 having a pair of holding legs 102 that can be opened and closed.
0 and a piezoelectric actuator (piezoelectric bimorph) 104 that opens and closes the holding leg 102. The piezoelectric actuator 104 causes the clamping leg 102 to generate a bending displacement proportional to the applied voltage, and grips a minute object at its tip. Further, as shown in FIG. 11, a configuration having three sandwiching legs 102 is also disclosed. According to this configuration, the sandwiching can be performed more reliably, and the complicated operation can be performed. Further, as shown in FIG.
It also discloses a configuration in which the piezoelectric actuator 104 has a function of a transducer so that information such as cell hardness can be obtained.

【0003】[0003]

【発明が解決しようとする課題】これらの装置は細胞操
作を目的としていたが、最近ではマイクロマシンの研究
が盛んになるにつれて、細胞以外の微小物体たとえばマ
イクロファブリケーション用マイクロ部品などを把持す
る必要性が生じてきた。また、マイクロサージェリーの
分野でも生体の微小構造部位を把持する必要性がでてき
ている。このため、触診を兼ねた把持・離落ともに容易
に操作できる微細物体操作装置が望まれている。
These devices were intended for cell manipulation, but recently, as research on micromachines has become popular, it is necessary to grasp microscopic objects other than cells, such as micro parts for microfabrication. Has occurred. Further, in the field of microsurgery, it is necessary to grasp a microstructure part of a living body. For this reason, there is a demand for a fine object manipulating device that can be easily manipulated for both grasping and detaching, which also serves as palpation.

【0004】上述の装置は、触診しながら把持する点に
関しては十分に機能を果たすが、把持したものをその種
類に関係なく再現性良く確実に離落させることが出来な
い。特に軽量で小さく粘着性の大きなものは離落が難し
く、微細物体が挟持脚にくっついたままになってしま
う。このように上述の装置をそのまま細胞操作分野ある
いはマイクロサージェリー分野で使用することを考える
と、把持については問題ないが、離落についてはかなり
問題がある。本発明は、把持・離落ともに容易に操作で
きる微細物体操作装置を提供することを目的とする。
Although the above-described device sufficiently functions in terms of gripping while palpating, it is impossible to reliably separate the gripped object regardless of its type. In particular, if it is lightweight, small, and has a large adhesiveness, it is difficult to separate it, and fine objects will remain stuck to the clamp legs. Considering the use of the above-mentioned device as it is in the field of cell manipulation or microsurgery, there is no problem in grasping, but there is a problem in separation. An object of the present invention is to provide a fine object manipulating device that can be easily operated for gripping and detaching.

【0005】[0005]

【課題を解決するための手段】本発明の微細物体操作装
置は、開閉可能な一対の挟持脚を有する本体と、挟持脚
を開閉させる圧電アクチュエーターと、挟持脚の先端部
の内側に設けた強誘電体素子と、強誘電体素子の分極状
態を変化させる手段とを有していることを特徴とする。
A fine object manipulating apparatus according to the present invention comprises a main body having a pair of openable / closable holding legs, a piezoelectric actuator for opening / closing the holding legs, and a strong force provided inside the tip of the holding legs. It is characterized by having a dielectric element and means for changing the polarization state of the ferroelectric element.

【0006】[0006]

【作用】本発明の作用を説明するにあたり、まず把持し
た微細物体が離落しない理由について考えてみよう。
In explaining the operation of the present invention, first consider the reason why the grasped fine object does not fall off.

【0007】微細物体の挟持脚への付着力・粘着力は、
挟持脚表面と微細物体との間の静電相互作用に深く関わ
っている。粘着力は両者の間に介在している粘液の挟持
脚表面や微細物体との濡れに関係し、濡れが良いほど離
落しにくい。この濡れ状態は挟持脚表面や微細物体表面
の電荷状態に依存する。もちろん周囲の状況たとえば温
度や湿度によっても離落のしやすさは変わるが、周囲の
状況が一定であれば離落のしやすさは表面電荷の状態に
大きく依存することに変わりない。固相の表面が負に帯
電している時の粘液の濡れ状態を示すモデル図を図4に
示す。(A)は粘液が電解質溶液の場合、(B)は粘液
がイオンを含まない非電解質たとえば有機溶媒の場合を
示している。後者の場合、有機溶媒はイオンを含まない
双極子(永久双極子または誘起双極子)を含む。いずれ
にしても粘液の正電荷が表面の負の固定表面電荷によっ
て濡れを良くする。このように濡れの程度は、固体表面
電荷量と(負固定層と正固定層からなる)固定複層の誘
電率、つまり粘液の誘電率に影響される。
[0007] The adhesive force and the adhesive force of the fine object to the sandwiching leg are
It is deeply involved in the electrostatic interaction between the surface of the clamp leg and a fine object. The adhesive force is related to the wetness of the mucus intervening between the surface of the sandwiching leg and the fine object, and the better the wetness, the less likely it is to fall off. This wet state depends on the charge state of the surface of the sandwiching leg or the surface of the fine object. Of course, the easiness of detachment also changes depending on the ambient conditions such as temperature and humidity, but if the ambient conditions are constant, the easiness of detachment remains largely dependent on the state of the surface charge. FIG. 4 shows a model diagram showing a wet state of mucus when the surface of the solid phase is negatively charged. (A) shows the case where the mucus is an electrolyte solution, and (B) shows the case where the mucus is a non-electrolyte containing no ions, for example, an organic solvent. In the latter case, the organic solvent comprises ion-free dipoles (permanent dipoles or induced dipoles). In any case, the positive charge of mucus improves the wetting by the negative fixed surface charge of the surface. Thus, the degree of wetting is affected by the amount of solid surface charge and the dielectric constant of the fixed multilayer (consisting of the negative fixed layer and the positive fixed layer), that is, the dielectric constant of mucus.

【0008】このメカニズムを考慮すると、挟持脚の表
面の電荷状態を瞬時に強制的に反転させて正の帯電状態
にでき、しかもこのとき表面電荷の反転速度よりイオン
の拡散速度の方が遅ければ、その正電荷と吸着された粘
液側の正固定層との間に静電的な反発力が生じて粘液が
逃散されるため、濡れを低下させることができる。つま
り、挟持脚の表面の電荷状態を瞬時に強制的に反転させ
る手段を設ければ、微細物体の離落を容易に行なえるよ
うになる。本発明では、微細物体を挟持する部分に強誘
電体素子を設け、強誘電体の分極反転による表面電荷の
変化という現象を利用して、これを行なう。
Considering this mechanism, it is possible to instantaneously and forcibly invert the charge state of the surface of the sandwiching leg to a positive charge state, and at this time, if the ion diffusion speed is slower than the surface charge inversion speed. Since the electrostatic repulsive force is generated between the positive charge and the adsorbed positive fixed layer on the mucus side, and the mucus escapes, wetting can be reduced. That is, if a means for forcibly reversing the electric charge state on the surface of the sandwiching leg is provided instantaneously, it becomes possible to easily separate the minute object. In the present invention, a ferroelectric element is provided in a portion that sandwiches a fine object, and this is performed by utilizing the phenomenon that the surface charge changes due to the polarization reversal of the ferroelectric.

【0009】強誘電体の表面電荷状態は図5の様に表さ
れることが良く知られている。強誘電体の表面電荷は分
極電荷を中和するように発生するものであり、真電荷で
ある。この中和電荷は、結晶面における分極電荷によっ
て生じる電場を打ち消して、外部に電束密度が完全に洩
れないようにして静電エネルギーを減らす。従って、強
誘電体の分極状態を反転させれば、表面電荷状態(中和
電荷)を反転できる。
It is well known that the surface charge state of a ferroelectric substance is represented as shown in FIG. The surface charge of the ferroelectric substance is generated so as to neutralize the polarization charge, and is a true charge. This neutralization charge cancels the electric field generated by the polarization charge on the crystal plane, completely preventing the electric flux density from leaking to the outside, and reducing the electrostatic energy. Therefore, the surface charge state (neutralizing charge) can be reversed by reversing the polarization state of the ferroelectric substance.

【0010】分極状態の反転は、例えば強誘電体に電界
を印加して行なう。あるいは焦電効果や圧電効果を用い
て行なう。電界を印加して反転させる場合、強誘電体の
両面に電極を設けて強誘電体素子を構成し、電極に電圧
を印加することにより行なう。一方の電極には、強誘電
体の表面に発生した中和電荷を利用するため、図6に示
すように開口部が設けられている。図6において、
(A)に示すように強誘電体に電界を印加すると内部に
分極が生じ、電極直下の分極反転は開口部にまで及んで
ゆき、(B)に示すように開口部表面に負電荷が現れ
る。これとは反対に、(C)に示すように逆向きの電界
を印加すると強誘電体内部には逆向きの分極が生じ、開
口部表面には(D)に示すようにそれまでとは逆極性の
正電荷が現れる。この逆極性の電荷の発生によって、そ
れまで開口部表面にあった粘液が逃散されるため、微細
物体は容易に離落されるようになる。
The polarization state is inverted by applying an electric field to the ferroelectric substance, for example. Alternatively, the pyroelectric effect or the piezoelectric effect is used. In the case of applying an electric field to reverse the voltage, electrodes are provided on both sides of the ferroelectric substance to form a ferroelectric element, and voltage is applied to the electrodes. One electrode is provided with an opening as shown in FIG. 6 in order to utilize the neutralization charge generated on the surface of the ferroelectric substance. In FIG.
As shown in (A), when an electric field is applied to the ferroelectric substance, polarization is generated inside, and the polarization reversal immediately below the electrode extends to the opening, and as shown in (B), negative charges appear on the surface of the opening. . On the contrary, when a reverse electric field is applied as shown in (C), reverse polarization occurs inside the ferroelectric substance, and as shown in (D), the opposite polarization is generated on the surface of the opening. A positive positive charge appears. Due to the generation of the electric charges of the opposite polarity, the mucus that has been present on the surface of the opening escapes, so that the minute object is easily separated.

【0011】[0011]

【実施例】次に図面を参照しながら実施例について説明
する。図1に示すように、本体1はステンレス、アルミ
ニウム、チタン等の弾性金属で作られており、対向して
延びる二本の挟持脚1a、1bを有している。挟持脚1
a、1bには一部に極薄部1a’、1b’が設けてあ
り、その先端部4a、4bが接近・離反可能になってい
る。極薄部1a’の両側には二枚の圧電素子2aと2b
が、極薄部1b’の両側には二枚の圧電素子3aと3b
が取り付けてあり、圧電バイモルフ2、3が構成されて
いる。挟持脚1a、1bの先端部4a、4bの内側に
は、それぞれ強誘電体素子5a、5bが取り付けてあ
る。強誘電体素子5a、5bは、図2に示すように、円
板状の強誘電体14と、その両面に設けた電極11と1
2とを備えている。挟持脚1a、1bの先端部4a、4
bに接する側の電極12は円板状で、その反対側すなわ
ち微細物体に接する側の電極11は中央に開口13を有
する円環形状となっている。強誘電体素子5a、5bの
表面には、テフロン、PF(ポリフッ化ビニリデン)、
ウレタン等の高分子樹脂層27がコーティングされてい
る。この高分子樹脂層27は、電極間マイグレーション
等の環境による強誘電体分極特性の劣化防止、細胞物体
の把持性の向上、音響整合層の機能を兼ねている。ま
た、本体1は、接地された基板19に保持具18により
電気的接地状態になるように保持されている(図3参
照)。次に本実施例の微細物体操作装置の動作について
図3を参照しながら説明する。
Embodiments Next, embodiments will be described with reference to the drawings. As shown in FIG. 1, the main body 1 is made of an elastic metal such as stainless steel, aluminum, or titanium, and has two sandwiching legs 1a and 1b extending opposite to each other. Clipping leg 1
Ultra-thin portions 1a 'and 1b' are provided in a part of a and 1b, and the tip portions 4a and 4b thereof can approach and separate from each other. Two piezoelectric elements 2a and 2b are provided on both sides of the ultrathin portion 1a '.
However, two piezoelectric elements 3a and 3b are provided on both sides of the ultrathin portion 1b '.
Are attached, and the piezoelectric bimorphs 2 and 3 are configured. Ferroelectric elements 5a and 5b are attached to the insides of the tip portions 4a and 4b of the holding legs 1a and 1b, respectively. As shown in FIG. 2, the ferroelectric elements 5a and 5b include a disk-shaped ferroelectric material 14 and electrodes 11 and 1 provided on both surfaces thereof.
2 and. Tip portions 4a, 4 of the clamping legs 1a, 1b
The electrode 12 on the side in contact with b has a disc shape, and the electrode 11 on the opposite side, that is, on the side in contact with the fine object has an annular shape having an opening 13 in the center. On the surfaces of the ferroelectric elements 5a and 5b, Teflon, PF (polyvinylidene fluoride),
A polymer resin layer 27 such as urethane is coated. The polymer resin layer 27 also has the functions of preventing the deterioration of the ferroelectric polarization characteristics due to the environment such as migration between electrodes, improving the gripping property of cell objects, and the function of an acoustic matching layer. The main body 1 is held by a holder 18 on a grounded substrate 19 so as to be electrically grounded (see FIG. 3). Next, the operation of the fine object manipulating apparatus of this embodiment will be described with reference to FIG.

【0012】まず、信号処理回路26で挟持応力設定と
挟持モードを設定する。ここで挟持モードとは、一対の
挟持脚の各々をどのようなバランスで屈曲させるかとい
う方法のことである。その一例としては、例えば挟持位
置と離落位置が圧電バイモルフの屈曲変位量以下の場合
に、挟持脚の両方を同方向に屈曲させた後に片方のみを
反対方向へ屈曲させる方法、他のモードとして、単純に
挟持脚を反対方向に屈曲させて開閉する方法、更に他の
モードとして、微小振動を重畳させながら互いに反対方
向に屈曲させ、トランスデューサーからの出力信号をロ
ックイン増幅する時の参照信号として用いる方法などが
ある。
First, the signal processing circuit 26 sets the clamping stress and the clamping mode. Here, the sandwiching mode is a method of how to balance each pair of sandwiching legs. As an example, for example, when the clamping position and the separating position are less than or equal to the bending displacement of the piezoelectric bimorph, both clamping legs are bent in the same direction, and then only one is bent in the opposite direction. , A method of simply bending the clamp legs in opposite directions to open and close, and as another mode, bending in opposite directions while superimposing microvibrations, and a reference signal for lock-in amplification of the output signal from the transducer There is a method used as.

【0013】挟持モードを設定した後、信号処理回路2
6は把持駆動電圧出力命令を電源20a、20bに出力
し、電源20a、20bはこの命令に従って、設定した
挟持モードに対応した電圧波形を信号線6、7を介して
圧電バイモルフ2、3に供給する。これにより圧電バイ
モルフ2、3は挟持動作に入り、挟持脚の先端部を閉じ
て、強誘電体素子5a、5bの間に微細物体を挟む。こ
れと同時に圧電バイモルフ2、3に一体的に設けた屈曲
度検出センサー15a、15bが屈曲量と方向に応じた
屈曲検出信号を出力する。この屈曲検出信号は信号線1
6a、16bを介してアンプ21a、21bに入力さ
れ、増幅後に二つに分けられ、一方は極性判別回路22
a、22bに入力され、他方は信号処理回路26に入力
される。極性判別回路22a、22bは、入力信号の極
性を判別し、その極性に従ってスイッチ回路23a、2
3bを切り替える。挟持動作時には、スイッチ回路23
a、23bを図示の状態に設定する。このような状態に
なった所で、信号処理回路26がアンプ21a、21b
の出力信号に応じて、動作開始命令をパルサーレシーバ
ー回路24a、24bに出力する。
After the pinching mode is set, the signal processing circuit 2
6 outputs a grip drive voltage output command to the power supplies 20a and 20b, and the power supplies 20a and 20b supply voltage waveforms corresponding to the set clamping mode to the piezoelectric bimorphs 2 and 3 via the signal lines 6 and 7 in accordance with this command. To do. As a result, the piezoelectric bimorphs 2 and 3 start a pinching operation, close the tips of the pinching legs, and pinch a fine object between the ferroelectric elements 5a and 5b. At the same time, the bending degree detection sensors 15a and 15b provided integrally with the piezoelectric bimorphs 2 and 3 output a bending detection signal according to the bending amount and direction. This bending detection signal is signal line 1
It is input to the amplifiers 21a and 21b via 6a and 16b, and after amplification is divided into two, one of which is the polarity determination circuit 22.
a and 22b, and the other is input to the signal processing circuit 26. The polarity determination circuits 22a and 22b determine the polarity of the input signal, and switch circuits 23a and 2b according to the polarity.
Switch 3b. During the pinching operation, the switch circuit 23
a and 23b are set to the illustrated state. In such a state, the signal processing circuit 26 causes the amplifiers 21a and 21b to
The operation start command is output to the pulsar receiver circuits 24a and 24b in accordance with the output signal of.

【0014】この命令を受けたパルサーレシーバー回路
24a、24bはパルス電圧を発生させ、信号線9、1
0を介して強誘電体素子5a、5bに供給する。このと
き強誘電体素子は圧電トランスデューサーとして機能す
る。この電気信号は、強誘電体素子すなわち圧電トラン
スデューサー5a、5bの逆圧電変換によって機械的振
動信号(超音波)に変換され、微細物体に超音波を送信
する。超音波は音響インピーダンス不連続部で反射し、
エコー信号として圧電トランスデューサー5a、5bに
入力される。この信号は、圧電トランスデューサー5
a、5bの圧電変換で電気信号に変換され、この電気信
号が信号処理回路26に入力され、微細物体の音響学的
構造としての情報に信号加工される。
The pulser receiver circuits 24a and 24b receiving this command generate pulse voltages, and the signal lines 9 and 1
It is supplied to the ferroelectric elements 5a and 5b via 0. At this time, the ferroelectric element functions as a piezoelectric transducer. This electric signal is converted into a mechanical vibration signal (ultrasonic wave) by the inverse piezoelectric conversion of the ferroelectric element, that is, the piezoelectric transducers 5a and 5b, and the ultrasonic wave is transmitted to the fine object. The ultrasonic waves are reflected by the acoustic impedance discontinuity,
The echo signals are input to the piezoelectric transducers 5a and 5b. This signal is sent to the piezoelectric transducer 5
It is converted into an electric signal by the piezoelectric conversion of a and 5b, and this electric signal is inputted to the signal processing circuit 26 and processed into information as the acoustic structure of the fine object.

【0015】このような挟持動作・診断操作を行なった
後、信号処理回路26は離落動作制御信号を電源20
a、20bに出力し、この信号によって離落動作に対応
した屈曲動作を圧電バイモルフ2、3に与える。このと
き、圧電バイモルフ2、3のセンサー部15a、15b
からは挟持動作時とは逆極性の電圧信号が出力される。
極性判別回路22a、22bが電圧信号の極性の変化を
検知してスイッチ回路23a、23bを切り替えるとと
もに、信号処理回路26からの指令に従って電源25
a、25bから強誘電体素子5a、5bに電圧信号が供
給される。この電圧信号は強誘電体素子の残留分極状態
を反転するのに十分な極性・振幅を持ったもので、これ
により強誘電体素子5a、5bの強誘電体内の分極が反
転する。この分極反転は一回だけでも、複数回繰り返し
行なわれても構わない。この分極状態の反転により、強
誘電体の表面にはそれまでの中和電荷とは逆極性の電荷
が発生する。このように挟持脚が開くと同時に、強誘電
体の表面に新たに生じた逆極性の電荷により、それまで
開口部表面にあった粘液が逃散されるため、微細物体は
容易に離落される。
After performing the pinching operation / diagnosis operation as described above, the signal processing circuit 26 supplies the disconnection operation control signal to the power source 20.
a and 20b, and the bending motion corresponding to the separating motion is given to the piezoelectric bimorphs 2 and 3 by this signal. At this time, the sensor portions 15a and 15b of the piezoelectric bimorphs 2 and 3
Outputs a voltage signal having a polarity opposite to that of the pinching operation.
The polarity discriminating circuits 22a and 22b detect a change in the polarity of the voltage signal and switch the switch circuits 23a and 23b, and at the same time, the power supply 25 is instructed by the signal processing circuit 26.
Voltage signals are supplied from a and 25b to the ferroelectric elements 5a and 5b. This voltage signal has a polarity and amplitude sufficient to invert the remanent polarization state of the ferroelectric element, whereby the polarization in the ferroelectric body of the ferroelectric elements 5a and 5b is inverted. This polarization reversal may be performed only once or may be repeated a plurality of times. Due to the reversal of the polarization state, a charge having a polarity opposite to that of the neutralization charge up to that time is generated on the surface of the ferroelectric substance. Simultaneously with the opening of the clamp legs, the mucus that has been present on the surface of the opening escapes due to the newly-generated electric charge of the opposite polarity on the surface of the ferroelectric substance, so that the minute object is easily separated. .

【0016】本実施例では、把持した微細物体の観測に
超音波エコー法を用いたが、強誘電体素子5a、5bが
微細物体に触れることによるインピーダンス変化や位相
変化を検出することにより微細物体の観測を行なっても
良い。また、屈曲状態の検出センサーは把持・離落動作
駆動用圧電バイモルフと一体化していなくともよい。ま
た、屈曲状態検出センサーの出力が常に一定になるよう
に閉ループ制御で把持・離落動作駆動用圧電バイモルフ
に電圧印加し、把持力制御を容易に行なうことも可能で
ある。
In this embodiment, the ultrasonic echo method is used for observing the grasped minute object, but the minute object is detected by detecting the impedance change or phase change caused by the ferroelectric elements 5a and 5b touching the minute object. May be observed. Further, the bending state detection sensor does not have to be integrated with the piezoelectric bimorph for driving the gripping / separating operation. Further, it is also possible to easily control the gripping force by applying a voltage to the piezoelectric bimorph for driving the gripping / separating motion by the closed loop control so that the output of the bending state detection sensor is always constant.

【0017】次に本発明の第二実施例について図7を参
照しながら説明する。本実施例の微細物体操作装置は、
微細物体把持用プローブで、光ファイバー28と、その
先端に設けた強誘電体素子29と、強誘電体素子29に
電圧を印加するための光ファイバー28の表面に設けた
配線45、46とを有している。強誘電体素子29に
は、図8(A)に示す平行球面板状のもの、図8(B)
に示す平行平板状のもの、いずれを使用してもよい。図
8(A)に示した強誘電体素子29は、光熱変換用黒化
膜を施した平行球面板状の強誘電体30と、その両面に
設けた電極31、32とを有している。図8(B)に示
した強誘電体素子29は、光熱変換用黒化膜を施した平
行平板状の強誘電体33と、その両面に設けた電極3
4、35とを有している。どちらの型の強誘電体素子2
9においても、微細物体に接する側の電極32または3
5には中央部に開口が設けられている。ただし、本実施
例の様に焦電効果の作用を用いる場合、この開口は絶対
必要条件ではない。次に、図9を参照しながら本実施例
の動作について説明する。なお、図には平行平板状の強
誘電体素子29を用いた微細物体操作装置を示してあ
る。
Next, a second embodiment of the present invention will be described with reference to FIG. The fine object manipulating device of this embodiment is
A probe for grasping a fine object, which has an optical fiber 28, a ferroelectric element 29 provided at the tip thereof, and wirings 45, 46 provided on the surface of the optical fiber 28 for applying a voltage to the ferroelectric element 29. ing. The ferroelectric element 29 has the shape of a parallel spherical plate shown in FIG. 8 (A), and FIG.
Any of the parallel flat plates shown in FIG. The ferroelectric element 29 shown in FIG. 8A has a parallel spherical plate-shaped ferroelectric 30 having a photothermal conversion blackening film, and electrodes 31 and 32 provided on both surfaces thereof. . The ferroelectric element 29 shown in FIG. 8B is a parallel plate-shaped ferroelectric 33 having a photothermal conversion blackening film, and electrodes 3 provided on both sides thereof.
4 and 35. Which type of ferroelectric element 2
Also in 9, the electrode 32 or 3 on the side in contact with the fine object
5 has an opening in the center. However, when the action of the pyroelectric effect is used as in this embodiment, this opening is not an absolute requirement. Next, the operation of this embodiment will be described with reference to FIG. In the figure, a fine object manipulating apparatus using a parallel plate ferroelectric element 29 is shown.

【0018】電極34の側が正、電極35の側が負とな
るように電界を印加すると、強誘電体33の内部に図9
(A)に示すような残留分極36が生じ、その分極電荷
を中和するように強誘電体33の表面に電荷が発生す
る。強誘電体33の下面には負電荷39が発生し、この
負電荷39が、正に帯電した微細物体40の正電荷41
を引きつけ、微細物体40を吸着把持する。逆向きの電
界を印加すれば、負に帯電した微細物体を吸着把持す
る。
When an electric field is applied such that the side of the electrode 34 is positive and the side of the electrode 35 is negative, the inside of the ferroelectric substance 33 is shown in FIG.
A remanent polarization 36 as shown in (A) is generated, and a charge is generated on the surface of the ferroelectric 33 so as to neutralize the polarization charge. Negative charges 39 are generated on the lower surface of the ferroelectric 33, and the negative charges 39 are positive charges 41 of the positively charged fine object 40.
To attract and hold the fine object 40. If a reverse electric field is applied, a negatively charged fine object is attracted and gripped.

【0019】このような、帯電した微細物体40を吸着
把持している状態において、図9(B)に示すように、
光ファイバー28に光を導光して強誘電体素子29に光
を照射する。照射した光は黒化膜で熱に変換され、焦電
効果により分極電荷量が変化し(強誘電体33の内部の
分極は符号42で示すようになり)、中和電荷量とのバ
ランスが崩れ、強誘電体33の下面に正電荷43が現れ
る。この正電荷43が、微細物体40の正電荷41と反
発するため、把持していた微細物体40は離落する。
As shown in FIG. 9B, in the state in which the charged fine object 40 is attracted and held, as shown in FIG.
The light is guided to the optical fiber 28 to irradiate the ferroelectric element 29 with the light. The irradiated light is converted into heat by the blackening film, and the polarization charge amount changes due to the pyroelectric effect (the polarization inside the ferroelectric body 33 becomes as indicated by reference numeral 42), and the balance with the neutralization charge amount is obtained. It collapses and a positive charge 43 appears on the lower surface of the ferroelectric 33. Since the positive charge 43 repels the positive charge 41 of the fine object 40, the grasped fine object 40 is separated.

【0020】[0020]

【発明の効果】本発明によれば、微細物体に接している
強誘電体素子の表面電荷を変化させて反発させることに
より、微細物体の離落を確実に行なえる微細物体操作装
置が提供され、高精度の微細物体操作が行なえるように
なる。
According to the present invention, there is provided a fine object manipulating device capable of surely separating a fine object by changing the surface charge of a ferroelectric element in contact with the fine object to repel it. , It becomes possible to perform high-precision fine object operation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第一実施例の微細物体操作装置を示す
斜視図である。
FIG. 1 is a perspective view showing a fine object manipulating apparatus according to a first embodiment of the present invention.

【図2】図1の微細物体操作装置に用いる強誘電体素子
の斜視図(A)と断面図(B)である。
FIG. 2 is a perspective view (A) and a sectional view (B) of a ferroelectric element used in the fine object manipulation apparatus of FIG.

【図3】図1の微細物体操作装置を駆動するための回路
ブロック図である。
FIG. 3 is a circuit block diagram for driving the fine object manipulation apparatus of FIG.

【図4】固相の表面が負に帯電している時の粘液の濡れ
状態を示すモデル図である。
FIG. 4 is a model diagram showing a wet state of mucus when the surface of a solid phase is negatively charged.

【図5】強誘電体の表面電荷状態を模式的に示す図であ
る。
FIG. 5 is a diagram schematically showing a surface charge state of a ferroelectric substance.

【図6】強誘電体の分極の反転に伴って表面に現れる電
荷の極性が反転する様子を示す図である。
FIG. 6 is a diagram showing a state in which the polarities of the charges appearing on the surface are reversed as the polarization of the ferroelectric substance is reversed.

【図7】本発明の第二実施例の微細物体操作装置を示す
斜視図である。
FIG. 7 is a perspective view showing a fine object manipulating apparatus according to a second embodiment of the present invention.

【図8】図7の微細物体操作装置に適用可能な平行球面
板状(A)と平行平板状(B)の強誘電体素子の断面図
である。
8 is a cross-sectional view of a parallel spherical plate-shaped (A) and parallel plate-shaped (B) ferroelectric element applicable to the fine object manipulation apparatus of FIG.

【図9】図7の微細物体操作装置が微細物体を吸着把持
する動作を説明するための図である。
9A and 9B are views for explaining the operation of the fine object manipulating apparatus of FIG. 7 for sucking and grasping a fine object.

【図10】微細物体操作装置の従来例を示す斜視図であ
る。
FIG. 10 is a perspective view showing a conventional example of a fine object operation device.

【図11】微細物体操作装置の別の従来例を示す斜視図
である。
FIG. 11 is a perspective view showing another conventional example of a fine object operation device.

【図12】微細物体操作装置の更に別の従来例を示す斜
視図である。
FIG. 12 is a perspective view showing still another conventional example of a fine object operating device.

【符号の説明】[Explanation of symbols]

1…本体、1a、1b…挟持脚、2、3…圧電バイモル
フ、5a、5b…強誘電体素子。
1 ... Main body, 1a, 1b ... Holding legs, 2, 3 ... Piezoelectric bimorph, 5a, 5b ... Ferroelectric element.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 開閉可能な一対の挟持脚を有する本体
と、挟持脚を開閉させる圧電アクチュエーターとを有し
ている微細物体操作装置において、 挟持脚の先端部の内側に設けた強誘電体素子と、強誘電
体素子の分極状態を変化させる手段とを有していること
を特徴とする微細物体操作装置。
1. A fine object manipulating apparatus having a main body having a pair of openable / closable holding legs and a piezoelectric actuator for opening / closing the holding legs, wherein a ferroelectric element provided inside a tip portion of the holding legs. And a means for changing the polarization state of the ferroelectric element, a fine object manipulating apparatus.
JP2271393A 1993-02-10 1993-02-10 Operating device for minute body Withdrawn JPH06238578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2271393A JPH06238578A (en) 1993-02-10 1993-02-10 Operating device for minute body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2271393A JPH06238578A (en) 1993-02-10 1993-02-10 Operating device for minute body

Publications (1)

Publication Number Publication Date
JPH06238578A true JPH06238578A (en) 1994-08-30

Family

ID=12090467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2271393A Withdrawn JPH06238578A (en) 1993-02-10 1993-02-10 Operating device for minute body

Country Status (1)

Country Link
JP (1) JPH06238578A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001066460A1 (en) * 2000-03-08 2001-09-13 Daiken Chemical Co., Ltd. Nanotweezers and nanomanipulator
JP2007044805A (en) * 2005-08-09 2007-02-22 Aoi Electronics Co Ltd Micro sample gripping method, controller of micro sample gripper and micro sample gripping system
JP2007044804A (en) * 2005-08-09 2007-02-22 Aoi Electronics Co Ltd Nano tweezers device and micro-sample gripping method
JP2008110436A (en) * 2006-10-31 2008-05-15 Aoi Electronics Co Ltd Nano tweezers and its manufacturing method
JP2009184100A (en) * 2008-02-11 2009-08-20 Denshi Buhin Kenkyuin Gripper and drive method used for the same
KR101401642B1 (en) * 2012-10-05 2014-05-30 한국표준과학연구원 Microgripper for gripping the object using change of frictional force and method for controlling thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1315623C (en) * 2000-03-08 2007-05-16 大研化学工业株式会社 Nanotweezers and nanomanipulator
US6669256B2 (en) 2000-03-08 2003-12-30 Yoshikazu Nakayama Nanotweezers and nanomanipulator
US6802549B2 (en) 2000-03-08 2004-10-12 Yoshikazu Nakayama Nanotweezers and nanomanipulator
US6805390B2 (en) 2000-03-08 2004-10-19 Yoshikazu Nakayama Nanotweezers and nanomanipulator
WO2001066460A1 (en) * 2000-03-08 2001-09-13 Daiken Chemical Co., Ltd. Nanotweezers and nanomanipulator
JP2007044805A (en) * 2005-08-09 2007-02-22 Aoi Electronics Co Ltd Micro sample gripping method, controller of micro sample gripper and micro sample gripping system
JP2007044804A (en) * 2005-08-09 2007-02-22 Aoi Electronics Co Ltd Nano tweezers device and micro-sample gripping method
JP4562615B2 (en) * 2005-08-09 2010-10-13 アオイ電子株式会社 Micro sample gripping device
JP2008110436A (en) * 2006-10-31 2008-05-15 Aoi Electronics Co Ltd Nano tweezers and its manufacturing method
JP4712671B2 (en) * 2006-10-31 2011-06-29 アオイ電子株式会社 Nano tweezers and manufacturing method thereof
JP2009184100A (en) * 2008-02-11 2009-08-20 Denshi Buhin Kenkyuin Gripper and drive method used for the same
JP4562782B2 (en) * 2008-02-11 2010-10-13 電子部品研究院 Gripper and driving method thereof
KR101401642B1 (en) * 2012-10-05 2014-05-30 한국표준과학연구원 Microgripper for gripping the object using change of frictional force and method for controlling thereof

Similar Documents

Publication Publication Date Title
Beyeler et al. Monolithically fabricated microgripper with integrated force sensor for manipulating microobjects and biological cells aligned in an ultrasonic field
Dargahi et al. A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication and experiments
EP3430463B1 (en) Acoustic tweezers
EP1737054B1 (en) Piezoelectric transducer
JP4806771B2 (en) Nano tweezers, gripping method, and gripping force detection device
Dahiya et al. Tactile sensing for robotic applications
JP2019517220A (en) Acoustic tweezers
Mukundan et al. MEMS electrostatic actuation in conducting biological media
JPH06238578A (en) Operating device for minute body
Cheng et al. Thin film PZT-based PMUT arrays for deterministic particle manipulation
Kaajakari et al. Ultrasonic actuation for MEMS dormancy-related stiction reduction
Pala et al. Ultrasond-induced haptic sensations via PMUTS
Rajagopalan et al. Advancement of Electroadhesion Technology for Intelligent and Self‐Reliant Robotic Applications
Kobayashi et al. Microelectromechanical systems-based electrostatic field sensor using Pb (Zr, Ti) O3 thin films
Kobayashi et al. A fatigue test method for Pb (Zr, Ti) O3 thin films by using MEMS-based self-sensitive piezoelectric microcantilevers
Avci et al. Dynamic releasing of biological cells at high speed using parallel mechanism to control adhesion forces
Kim et al. Double-layered electrohydraulic actuator for bi-directional bending motion of soft gripper
JPH0732276A (en) Microminiature gripper and microminiature gripper drive device
GB2354114A (en) Micro-scale electrostatic gripper
Gauthier et al. Microhandling and micromanipulation strategies
Georgitzikis et al. 78‐2: A flat‐panel‐display compatible ultrasound platform
Jager et al. Biomedical applications of polypyrrole microactuators: from single-cell clinic to microrobots
CN112746012B (en) Single cell manipulation system and method, monoclonal cell line construction method, single cell droplet generation system and method
CN115323042B (en) Method for realizing non-contact rapid infiltration of nano holes by utilizing ultrasonic waves
JP2003217494A (en) Charged particle beam device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509