JPH0623749A - Foamed rubber heat insulation material - Google Patents

Foamed rubber heat insulation material

Info

Publication number
JPH0623749A
JPH0623749A JP20727692A JP20727692A JPH0623749A JP H0623749 A JPH0623749 A JP H0623749A JP 20727692 A JP20727692 A JP 20727692A JP 20727692 A JP20727692 A JP 20727692A JP H0623749 A JPH0623749 A JP H0623749A
Authority
JP
Japan
Prior art keywords
foamed rubber
heat insulating
rubber
product
pulverized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20727692A
Other languages
Japanese (ja)
Inventor
Kenji Minamigata
賢治 南形
Shoji Suzuki
昭二 鈴木
Katsuhiro Suzuki
克弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MARUKOU KOKURA SEIZAI KK
Toyoda Gosei Co Ltd
Original Assignee
MARUKOU KOKURA SEIZAI KK
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MARUKOU KOKURA SEIZAI KK, Toyoda Gosei Co Ltd filed Critical MARUKOU KOKURA SEIZAI KK
Priority to JP20727692A priority Critical patent/JPH0623749A/en
Publication of JPH0623749A publication Critical patent/JPH0623749A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PURPOSE:To provide a foamed rubber heat insulation material which is superior in cold resistance and moistureproofness. CONSTITUTION:The title material is comprised by turning a waste material such as a semi-product or a defective product of a foamed rubbery vulcanized product 10 into a granular crushed matter 11 having a mean grain diameter of 0.1-50mm by crushing them. The granular crushed matter 11 possesses a large number of independent pores 110. Therefore, the same possesses excellent cold resistance, moistureproofness and sound insulation. A butadiene polymer and isoplene polymer are available as a foamed rubber material.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,耐寒性,防湿性に優れ
た,各種発泡ゴム材料からなる発泡ゴム系断熱材料に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a foamed rubber-based heat insulating material made of various foamed rubber materials having excellent cold resistance and moisture resistance.

【0002】[0002]

【従来技術】従来,断熱材料としては,例えばグラスウ
ール,ロックウール等の無機系断熱材料と,ポリウレタ
ンフォーム,ポリエチレンフォーム,ポリスチレンフォ
ーム等の有機系断熱材料が知られている。断熱材料は,
一般に空隙に富んだ軽量材料よりなる。その理由は,比
較的少量の物質により空気を固定包含し,熱輻射,対流
による熱移動を防止できる材料としての特性を有するこ
とによる。
2. Description of the Related Art Heretofore, as heat insulating materials, there have been known inorganic heat insulating materials such as glass wool and rock wool, and organic heat insulating materials such as polyurethane foam, polyethylene foam and polystyrene foam. The insulation material is
It is generally made of lightweight material with a lot of voids. The reason is that air is fixed and contained by a relatively small amount of substance, and it has a property as a material capable of preventing heat transfer due to heat radiation and convection.

【0003】断熱材料は,上記特性を利用して,各種建
築物,化学プラント等の建造物の壁面等に広く利用され
ている。上記グラスウールは,無機系断熱材料であるた
め,耐熱性に優れるが,一般に有機系断熱材料に比べる
と高価である。上記ポリウレタンフォーム,ポリエチレ
ンフォーム等の有機系断熱材料は,一般に安価である
が,耐熱性に優れない。
Utilizing the above-mentioned characteristics, the heat insulating material is widely used for the wall surface of various buildings and structures such as chemical plants. Since the glass wool is an inorganic heat insulating material, it has excellent heat resistance, but is generally more expensive than an organic heat insulating material. Organic heat insulating materials such as polyurethane foam and polyethylene foam are generally inexpensive, but they are not excellent in heat resistance.

【0004】ところで,上記ポリウレタンフォーム,ポ
リエチレンフォームの製造法として,ポリウレタンフォ
ーム,ポリエチレンフォームの廃材を再利用する方法が
提案されている(例えば,特開昭52−13575号公
報)。上記廃材の際利用法は,資源の有効利用,公害発
生防止の観点より好ましい。また,ポリウレタンフォー
ム,ポリエチレンフォームの保形性,軽量性,断熱材
料,クッション性等の特性を活用して,倉庫の防湿用敷
材や床板基材を,比較的安価に提供するものである。
By the way, as a method for producing the above-mentioned polyurethane foam and polyethylene foam, a method of reusing waste materials of polyurethane foam and polyethylene foam has been proposed (for example, JP-A-52-13575). The above-mentioned method of utilizing waste materials is preferable from the viewpoint of effective use of resources and prevention of pollution. Further, by utilizing the characteristics of polyurethane foam and polyethylene foam such as shape retention, lightness, heat insulating material, and cushioning property, it is possible to provide a moisture-proof floor material for warehouse and a floor board base material at a relatively low cost.

【0005】[0005]

【解決しようとする課題】しかしながら,上記従来技術
には,次の問題点がある。即ちグラスウールは,断熱材
として使用する際に,耐熱性には優れるが,透湿性が大
きく,防湿層の施工をしなければ結露を生じる場合があ
る。その理由は,グラスウールの成分の一部,例えばナ
トリウム(Na)が易水溶解性を有するためと考えられ
る。また,グラスウールは,独立気孔を有しないため,
吸水性を有するからでもあると考えられる。この点は,
上記ロックウールも同様である。
However, the above-mentioned conventional technique has the following problems. That is, when glass wool is used as a heat insulating material, it has excellent heat resistance, but it has a high moisture permeability, and may cause dew condensation unless a moisture-proof layer is applied. The reason is considered that a part of the components of glass wool, for example, sodium (Na), has solubility in water. Also, since glass wool does not have independent pores,
It is also considered to have water absorption. This point is
The same applies to the rock wool.

【0006】一方,上記ポリウレタンフォーム,ポリエ
チレンフォームは保形性に優れるが,比較的低温(例え
ば−20℃以下)の耐寒性が良くない。その理由は,一
般に二次転移点とも称されるガラス転移点(Tg)が約
−7〜−20℃とゴム材料等に比して比較的高いため,
かかる低温になると分子集団変形を生じ,内部歪みや局
部的破壊を生じるためと考えられる。本発明は,かかる
従来の問題点に鑑みてなされたもので,耐寒性,防湿性
に優れた,発泡状ゴム加硫品を提供しようとするもので
ある。
On the other hand, although the polyurethane foam and polyethylene foam have excellent shape-retaining properties, they have poor cold resistance at a relatively low temperature (for example, -20 ° C or lower). The reason is that the glass transition point (Tg), which is also generally called the second-order transition point, is about -7 to -20 ° C, which is relatively high compared to rubber materials, etc.
It is considered that at such low temperature, molecular group deformation occurs, causing internal strain and local fracture. The present invention has been made in view of such conventional problems, and an object thereof is to provide a foamed rubber vulcanized product having excellent cold resistance and moisture resistance.

【0007】[0007]

【課題の解決手段】本発明は,発泡状ゴム加硫品の半製
品,不良品等の廃材を粉砕して,平均粒径が0.1〜5
0mmの粒子状粉砕物にしてなることを特徴とする発泡
ゴム系断熱材料にある。上記発泡状ゴム加硫品として
は,加硫処理した,例えばブタジエン重合体(BR),
ブタジエンとスチレンとの共重合体(SBR,ブナ
S),ブタジエンとアクリロニトリルとの共重合体(N
BR,ブナN),クロロプレンの重合体(CR,ネオプ
レン),イソブチレンとイソプレンとの共重合体(II
R,ブチルゴム),エチレンとプロピレンとの共重合体
(EPR),エチレンとプロピレン,ジシクロペンタジ
エンなどとの共重合体(EPDR),塩素化ポリエチレ
ン系のもの,ブルコラン,アクリルラバー,シリコンラ
バー,エピクロルヒドリンラバー等の合成発泡ゴム材料
及び天然発泡ゴム材料(イソプレンのポリマー)があ
る。
According to the present invention, semi-finished products of foamed rubber vulcanized products, waste products such as defective products are crushed to obtain an average particle size of 0.1 to 5
A foamed rubber-based heat insulating material, characterized in that it is formed into a pulverized product having a particle size of 0 mm. Examples of the foamed rubber vulcanized product include vulcanized products such as butadiene polymer (BR),
Copolymer of butadiene and styrene (SBR, Buna S), copolymer of butadiene and acrylonitrile (N
BR, Buna N), chloroprene polymer (CR, neoprene), isobutylene and isoprene copolymer (II
R, butyl rubber), copolymer of ethylene and propylene (EPR), copolymer of ethylene and propylene, dicyclopentadiene, etc. (EPDR), chlorinated polyethylene type, vulcolan, acrylic rubber, silicone rubber, epichlorohydrin There are synthetic foam rubber materials such as rubber and natural foam rubber materials (polymer of isoprene).

【0008】これらの発泡ゴム材料は,非常に大きなゴ
ム弾性を有し,加工性,物理的諸物性に優れる。特に,
ガラス転移点(Tg)は,一般に−30℃〜−75℃で
ある。そのため,上記ポリウレタンフォーム,ポリエチ
レンフォームのTgが−7℃〜−20℃であるのに対
し,発泡ゴム材料は遙かにTgが低く,耐寒性に優れて
いることが知られる。
These foamed rubber materials have very large rubber elasticity and are excellent in workability and physical properties. In particular,
The glass transition point (Tg) is generally -30 ° C to -75 ° C. Therefore, it is known that the Tg of the polyurethane foam and the polyethylene foam is -7 ° C to -20 ° C, whereas the Tg of the foamed rubber material is much lower and the cold resistance is excellent.

【0009】上記発泡ゴム材料のうち天然ゴム(N
R),イソプレンゴム(IR),ブタジエンゴム(B
R)は,特にTgが−70℃位で低く,優れた復元性,
反発弾性,圧縮強度等の機械的諸特性を有する。また,
ブチルゴム(IIR),クロロプレンゴム(CR),ア
クリルゴム(ACM)は,不飽和結合が少ないか或いは
殆ど有しないため,耐オゾン(O3 )性に優れ,長期間
の耐久性に優れる。上記半製品,不良品等の廃材として
は,例えば上記発泡状ゴム加硫品の製造過程(混練,成
形,加硫等の諸工程)において生じた,各種形態の廃材
を含む。
Natural rubber (N
R), isoprene rubber (IR), butadiene rubber (B
R) has a low Tg, especially at about −70 ° C., and has excellent resilience,
It has various mechanical properties such as impact resilience and compressive strength. Also,
Butyl rubber (IIR), chloroprene rubber (CR), and acrylic rubber (ACM) have few or almost no unsaturated bonds, and thus have excellent ozone (O 3 ) resistance and long-term durability. The waste materials such as the semi-finished products and defective products include various forms of waste materials generated in the manufacturing process (various steps such as kneading, molding, and vulcanization) of the foamed rubber vulcanized product.

【0010】ここで,上記加硫とは,生ゴムに硫黄
(S),その他の架橋剤を添加して加熱し,ゴム分子間
に強固な結合を形成し,広い温度範囲にわたって塑性流
れを減少し,弾性,引張り強さ,耐油,耐薬品性,耐候
性等を増大させる処理である。上記加硫は,元来,天然
ゴムに硫黄を配合して熱を加えることにより,ゴム分子
間を結合させ,三次元的に網状化させることであった。
しかしながら,最近では上記硫黄以外のものを加硫時に
添加する合成発泡ゴム材料が多くなった。それ故,上記
加硫処理とは,一般に架橋反応(結合)又はキュアとい
う意味である。
Here, the above-mentioned vulcanization is to add sulfur (S) or other cross-linking agent to raw rubber and heat it to form a strong bond between rubber molecules and reduce the plastic flow over a wide temperature range. , Is a treatment to increase elasticity, tensile strength, oil resistance, chemical resistance, weather resistance, etc. Originally, the above-mentioned vulcanization was to compound sulfur into natural rubber and to apply heat to bond the rubber molecules to form a three-dimensional network.
However, recently, the number of synthetic foam rubber materials that add other than the above-mentioned sulfur during vulcanization has increased. Therefore, the vulcanization treatment generally means a crosslinking reaction (bonding) or curing.

【0011】また,上記廃材としては,例えば自動車,
各種車両のドア,ウインド,トランクルームに用いられ
るウェザーストリップ或いは各種ホース類等の発泡状ゴ
ム加硫品の廃棄品がある。なお,発泡状ゴム加硫品とし
ては,1工程,2工程以上の複数工程により発泡させ
た,低発泡から高発泡の各種発泡ゴム材料がある。上記
粉砕は,例えばカッティング方式の粉砕機を用いて,上
記発泡状ゴム加硫品の廃材を平均粒径が0.1〜50m
mの粒子状粉砕物となるよう加工する。なお,この時平
均粒径の調整は,例えば粉砕物のスクリーンによる選別
などにより行う。
The above-mentioned waste materials are, for example, automobiles,
There are discarded foamed rubber vulcanized products such as weather strips and various hoses used in doors, windows and trunks of various vehicles. As the foamed rubber vulcanized product, there are various foamed rubber materials of low foaming to high foaming, which are foamed by a plurality of steps including one step, two steps or more. For the pulverization, for example, by using a cutting type pulverizer, the waste material of the foamed rubber vulcanized product has an average particle size of 0.1 to 50 m.
m to be pulverized into particles. At this time, the average particle size is adjusted by, for example, selecting a pulverized material with a screen.

【0012】上記平均粒径が0.1mm未満であると粒
子状粉砕物が殆ど独立気泡を有しない状態になり,優れ
た断熱性を失うことになる。一方,平均粒径が50mm
を越えると粒子状粉砕物の取扱い性が悪くなり,発泡ゴ
ム系断熱材料として使用する場合に粒子相互間に大きな
空隙を生じ断熱材料として好ましくない。また,粒子状
粉砕物の見掛け表面積が大きくなり,粒子状粉砕物の表
面に結露を生じ易くなる。
If the average particle size is less than 0.1 mm, the pulverized particles will be in a state of having almost no closed cells, and the excellent heat insulating property will be lost. On the other hand, the average particle size is 50 mm
If it exceeds, the handleability of the particulate pulverized product deteriorates, and when it is used as a foamed rubber heat insulating material, large voids are generated between the particles, which is not preferable as a heat insulating material. In addition, the apparent surface area of the pulverized particulate matter increases, and dew condensation easily occurs on the surface of the pulverized particulate matter.

【0013】その結果,発泡ゴム系断熱材料が充分な防
湿性を有しないことになり,グラスウールと同様に吸
水,吸湿による変形を生じて,長期間優れた断熱性を保
持し得なくなる。上記発泡ゴム系断熱材料の用途として
は,例えば住宅等の壁材,屋根材,床材,倉庫(特に低
温倉庫)の壁材,屋根材,床材のほか,各種の化学プラ
ントの壁面,冷凍車(クーラー車)の断熱用壁面及び屋
根裏地材等がある。
As a result, the foamed rubber type heat insulating material does not have sufficient moisture proof property, and like the glass wool, it is deformed by water absorption and moisture absorption, and it becomes impossible to maintain excellent heat insulating property for a long time. Examples of applications of the foamed rubber heat insulating material include wall materials for roofs, roof materials, floor materials, wall materials for warehouses (especially low temperature warehouses), roof materials, floor materials, wall surfaces of various chemical plants, and refrigeration. There are walls for heat insulation of cars (cooler cars) and attic materials.

【0014】[0014]

【作用及び効果】本発明の発泡ゴム系断熱材料において
は,発泡状ゴム加硫品の廃材を粉砕して,平均粒径が
0.1〜50mmの粒子状粉砕物にしてある。そのた
め,粒子状粉砕物は,粉砕前と同様に,独立気孔をその
まま保持する(図1参照)。その結果,粒子状粉砕物
が,優れた断熱性を有し,粒子状粉砕物の裏面に結露を
生じない。そのため,粒子状粉砕物は,グラスウール等
の断熱材料のごとく,透水性や吸水性を有しない。従っ
て,粒子状粉砕物の防湿性が向上する。
In the foamed rubber heat insulating material of the present invention, the waste material of the foamed rubber vulcanized product is pulverized into a pulverized product having an average particle diameter of 0.1 to 50 mm. Therefore, the particulate pulverized product retains the independent pores as it is before the pulverization (see FIG. 1). As a result, the particulate pulverized product has an excellent heat insulating property and does not cause dew condensation on the back surface of the particulate pulverized product. Therefore, the particulate pulverized material does not have water permeability or water absorption like an insulating material such as glass wool. Therefore, the moisture resistance of the particulate pulverized product is improved.

【0015】一方,発泡状ゴム加硫品は,加硫により三
次元の網目構造に形成されているため,ガラス転移点
(Tg)がポリウレタンフォーム,ポリエチレンフォー
ム等のプラスチックフォームに比し著しく低くなる(例
えば−30℃〜−70℃)。そのため,発泡ゴム系断熱
材料は,−30℃以下の低温においても優れた諸物性を
有し,耐寒性が向上する。それ故,本発明によれば,耐
寒性,防湿性に優れた,発泡ゴム系断熱材料を提供する
ことができる。
On the other hand, since the foamed rubber vulcanized product is formed into a three-dimensional network structure by vulcanization, its glass transition point (Tg) is significantly lower than that of plastic foam such as polyurethane foam and polyethylene foam. (For example, -30 ° C to -70 ° C). Therefore, the foamed rubber heat insulating material has excellent physical properties even at a low temperature of −30 ° C. or lower, and has improved cold resistance. Therefore, according to the present invention, it is possible to provide a foamed rubber heat insulating material having excellent cold resistance and moisture resistance.

【0016】[0016]

【実施例】【Example】

実施例1 本発明の実施例にかかる発泡ゴム系断熱材料につき,図
1〜図4を用いて説明する。図1に示すごとく,発泡状
ゴム加硫品10の半製品,不良品等の廃材を粉砕して,
平均粒径が0.1〜50mmの粒子状粉砕物11にして
なる。上記発泡状ゴム加硫品10としては,自動車のド
ア,ウインド,トランクルーム等のウェザーストリップ
の廃材を用いる。発泡状ゴム加硫品10は,ブタジエン
ゴムを主成分とする発泡ゴム材料よりなる。この発泡ゴ
ム材料は,加硫により架橋された三次元網目構造を有す
る。
Example 1 A foam rubber-based heat insulating material according to an example of the present invention will be described with reference to FIGS. As shown in Fig. 1, waste materials such as semi-finished products and defective products of foamed rubber vulcanized product 10 are crushed,
It is made into a particulate pulverized product 11 having an average particle size of 0.1 to 50 mm. As the foamed rubber vulcanized product 10, waste materials of weather strips such as automobile doors, windows, and trunk rooms are used. The foamed rubber vulcanized product 10 is made of a foamed rubber material containing butadiene rubber as a main component. This foamed rubber material has a three-dimensional network structure crosslinked by vulcanization.

【0017】上記発泡状ゴム加硫品10は,図1に示す
ごとく,多数の独立気孔110を有する。また,粒子状
粉砕物11は,平均粒径が約25mmのチップ状の発泡
ゴム材料に粉砕してある。粉砕は,カッティング方式の
粉砕機を用いて,約2000回/分の回転数により行
う。次に,上記粒子状粉砕物11の使用例について説明
する。図2に示すごとく,粒子状粉砕物11は,簡易低
温倉庫2における断熱壁面材21及び断熱天井裏地材2
2として使用する。
The foamed rubber vulcanized product 10 has a large number of independent pores 110 as shown in FIG. The pulverized particulate matter 11 is pulverized into a foam rubber material in the form of chips having an average particle diameter of about 25 mm. The crushing is performed using a cutting type crusher at a rotation speed of about 2000 times / minute. Next, an example of use of the particulate pulverized material 11 will be described. As shown in FIG. 2, the particulate pulverized material 11 is the heat insulating wall material 21 and the heat insulating ceiling lining material 2 in the simple low temperature warehouse 2.
Used as 2.

【0018】上記断熱壁面材21は,図3に示すごと
く,乾式壁材211間に形成された空隙部210内に粒
子状粉砕物11を充填してなる。また,乾式壁材211
は,防火材として石膏ボードを裏打ちしたカラー鋼板サ
イディング材を用いる。これにより,防火断熱壁面が形
成される。上記断熱天井裏地材22は,図4に示すごと
く,天然木板221と石膏裏地板222及びその表面に
接着された吸音化粧板223との間に形成された空隙部
220内に粒子状粉砕物11を充填したものである。こ
れにより,防火断熱性の天井材が形成される。
As shown in FIG. 3, the heat insulating wall material 21 is formed by filling the crushed particles 11 into the voids 210 formed between the dry wall materials 211. In addition, dry type wall material 211
Is a color steel siding material lined with gypsum board as a fireproof material. As a result, a fireproof insulating wall surface is formed. As shown in FIG. 4, the heat-insulating ceiling lining material 22 has a particulate pulverized material 11 in a void 220 formed between a natural wood board 221, a gypsum lining board 222, and a sound absorbing decorative board 223 adhered to the surface thereof. Is filled. As a result, a fireproof and insulating ceiling material is formed.

【0019】次に作用効果につき説明する。本例の発泡
ゴム系断熱材料においては,発泡状ゴム加硫品等の廃材
を粉砕して,平均粒径が0.1〜50mmの粒子状粉砕
物にしてある。そのため,図1に示すごとく,粒子状粉
砕物1が粉砕前と同様に,独立気孔110をそのまま保
持する。
Next, the function and effect will be described. In the foamed rubber heat insulating material of this example, a waste material such as a foamed rubber vulcanized product is pulverized into a pulverized product having an average particle diameter of 0.1 to 50 mm. Therefore, as shown in FIG. 1, the particulate pulverized product 1 retains the independent pores 110 as it is before pulverization.

【0020】その結果,粒子状粉砕物1が粉砕前と同様
の,優れた断熱性を有し,粒子状粉砕物1の表面に結露
を生じない。そのため,粒子状粉砕物は,グラスウール
等の断熱材料のごとく,透水性や吸湿性を有しない。し
たがって,粒子状粉砕物の防湿性が向上する。また,遮
音性,吸音性も向上する。一方,発泡状ゴム加硫品,発
泡状ゴム加硫品の半製品,発泡状ゴム加硫品の不良品
は,加硫により架橋された三次元網目構造を有する。そ
のため,ガラス転移点(Tg)が一般に−7℃〜−20
℃のポリウレタンフォーム,ポリエチレンフォーム等の
プラスチックフォームに比し,著しく低くなる(例えば
−30℃〜−70℃)。
As a result, the particulate pulverized product 1 has the same excellent heat insulating property as that before the pulverization, and dew condensation does not occur on the surface of the particulate pulverized product 1. Therefore, the particulate pulverized material does not have water permeability or hygroscopicity like a heat insulating material such as glass wool. Therefore, the moisture resistance of the particulate pulverized product is improved. In addition, sound insulation and sound absorption are also improved. On the other hand, foamed rubber vulcanized products, semi-finished products of foamed rubber vulcanized products, and defective products of foamed rubber vulcanized products have a three-dimensional network structure cross-linked by vulcanization. Therefore, the glass transition point (Tg) is generally -7 ° C to -20
It becomes significantly lower than that of plastic foam such as polyurethane foam and polyethylene foam at ℃ (for example, -30 ℃ ~ -70 ℃).

【0021】そのため,発泡ゴム系断熱材料は,−30
℃以下の低温においても優れた諸物性を有するため,耐
寒性が向上する。また,上記粒子状粉砕物11は,加硫
により形成した,強固な三次元網目構造を有する。その
ため,粒子状粉砕物11は,優れた加工性,復元性(圧
縮永久歪み性なし),反発弾性,圧縮強度等の諸物理特
性を有する。それ故,本例によれば,耐寒性,防湿性,
遮音性に優れた,簡易低温倉庫を得ることができる。
Therefore, the foamed rubber heat insulating material is -30
It has excellent physical properties even at low temperatures below ℃, improving cold resistance. The pulverized particulate matter 11 has a strong three-dimensional network structure formed by vulcanization. Therefore, the particulate pulverized product 11 has various physical properties such as excellent workability, resilience (no compression set), impact resilience, and compressive strength. Therefore, according to this example, cold resistance, moisture resistance,
It is possible to obtain a simple low-temperature warehouse with excellent sound insulation.

【0022】実施例2 本例は,発泡ゴム系断熱材料としての粒子状粉砕物と,
従来の断熱材料として代表的なグラスウールとの試験体
4の断熱性能を比較測定するものである。上記粒子状粉
砕物11は,図5,図6に示すごとく,縦12.6c
m,横10cm,高さ6.1cmの容積を有するパネル
枠体内に充填する。なお,パネル枠体の両面には,面材
40を貼り合わせる。この時,充填した粒子状粉砕物1
1の重量は,238gである。そのため,粒子状粉砕物
11の見掛け比重は,238g/12.6×10×6.
1cm3 =0.3(g/cm3 )である。なお,粒子状
粉砕物11は,平均粒径が5mmである。
Example 2 In this example, a particulate pulverized product as a foam rubber heat insulating material,
This is to compare and measure the heat insulating performance of the test body 4 with a typical glass wool as a conventional heat insulating material. The particulate pulverized material 11 has a length of 12.6c as shown in FIGS.
It is filled in a panel frame body having a volume of m, a width of 10 cm, and a height of 6.1 cm. A face material 40 is attached to both sides of the panel frame. At this time, the packed particulate pulverized product 1
The weight of 1 is 238 g. Therefore, the apparent specific gravity of the particulate pulverized product 11 is 238 g / 12.6 × 10 × 6.
It is 1 cm 3 = 0.3 (g / cm 3 ). The average particle size of the particulate pulverized material 11 is 5 mm.

【0023】これに対し,グラスウールは,縦44c
m,横20cm,高さ5cmの容積を有するパネル枠内
に充填する。この時,充填したグラスウールの重量は,
56gである。そのため,グラスウールの見掛け比重
は,56g/44×20×5cm3 =0.013(g/
cm3 )である。なお,グラスウールの測定試験体は,
2点準備した。これをグラスウール1,2の試験体とす
る。次に,図5,図6に示すごとく,上記パネル枠の両
面に,アスベストからなる面材40を貼り合わせる。次
いで,面材40の片面には,緩衝材41を当接する。こ
の緩衝材41の外側は室温状態(低温側L)にする。
On the other hand, the length of glass wool is 44c.
It is filled in a panel frame having a volume of m, width 20 cm, and height 5 cm. At this time, the weight of the filled glass wool is
It is 56 g. Therefore, the apparent specific gravity of glass wool is 56 g / 44 × 20 × 5 cm 3 = 0.013 (g /
cm 3 ). The measurement sample of glass wool is
I prepared 2 points. This is used as a test piece of glass wool 1 and 2. Next, as shown in FIGS. 5 and 6, a face material 40 made of asbestos is attached to both surfaces of the panel frame. Next, the cushioning material 41 is brought into contact with one surface of the face material 40. The outside of the cushioning material 41 is at room temperature (low temperature side L).

【0024】一方,同図に示すごとく,上記面材40の
他面側には,ヒータ43をセットする。このヒータ43
をセットした側は加熱状態(高温側H)にする。上記粒
子状粉砕物11及びグラスウールの試験体の各部の温度
を測定するために,図6に示すごとく,低温側Lに4か
所,高温側Hに4か所,ヒータ43の近傍に2か所の合
計10か所に,銅−コンスタンタンの熱電対44を配置
する。また,この熱電対44は,自記記録温度計に接続
する。
On the other hand, as shown in the figure, a heater 43 is set on the other side of the face member 40. This heater 43
The side where is set is heated (high temperature side H). In order to measure the temperature of each part of the particulate pulverized material 11 and the test piece of glass wool, as shown in FIG. 6, there are four locations on the low temperature side L, four locations on the high temperature side H, and two locations near the heater 43. Copper-constantan thermocouples 44 are arranged at a total of 10 places. Further, the thermocouple 44 is connected to a self-recording thermometer.

【0025】ここで,まず上記ヒータ43(100V)
に,スライダックにより調整しながら電流(AC)を流
す。上記高温側Hの試験体4の表面温度(TH )が約7
0℃になるまで徐々に昇温する。次に,高温側Hにおけ
る上記表面温度(TH )が約70℃に達した時点で,ヒ
ータ43の電流を弱める。次いで,この温度を維持する
ように,ヒータ43に流す電流を制御し,試験体4の低
温側(L)の表面温度(TL )の推移を観察する。な
お,図5中の符号TA は,室温に接した試験体4の表面
温度を示す。
First, the heater 43 (100V)
Then, a current (AC) is applied while adjusting with a slidac. The surface temperature (T H ) of the test body 4 on the high temperature side H is about 7
Gradually raise the temperature to 0 ° C. Next, when the surface temperature (T H ) on the high temperature side H reaches about 70 ° C., the current of the heater 43 is weakened. Then, so as to maintain the temperature, to control the current supplied to the heater 43, to observe the transition of the surface temperature of the cold side of the specimen 4 (L) (T L) . The symbol T A in FIG. 5 indicates the surface temperature of the test body 4 in contact with room temperature.

【0026】そして,上記試験体4の低温側(L)の表
面温度(TL )が一定に達した時点で,各温度測定部の
表面温度(TA ,TL ,TH )をそれぞれ計測する。な
お,通電後,高温側(H)が目標温度に達するまでに約
5時間,低温側(L)の目標温度に達するまでに約15
時間を要した。上記各温度測定部の表面温度(TA ,T
L ,TH )の測定結果は,表1の通りである。
Then, when the surface temperature (T L ) on the low temperature side (L) of the test body 4 reaches a constant value, the surface temperatures (T A , T L , T H ) of the temperature measuring parts are measured respectively. To do. After energization, it takes about 5 hours for the high temperature side (H) to reach the target temperature, and about 15 hours for the low temperature side (L) to reach the target temperature.
It took time. Surface temperature (T A , T
Table 1 shows the measurement results of ( L , T H ).

【0027】[0027]

【表1】 この結果から,熱の伝わりの目安となる熱伝導率の相対
的な比較をすると,下記表2のようになる。この値の大
きいほど熱が伝わりやすい。つまり,熱の損失が大きい
ことを示す。 λ=(TL −TA )/(TH −TL ) ただし,このλの値は,相対的な熱伝導率で,絶対的な
ものではない。
[Table 1] Based on these results, the relative comparison of thermal conductivity, which is a measure of heat transfer, is shown in Table 2 below. The larger this value is, the easier heat is transferred. In other words, it indicates that the heat loss is large. lambda = however (T L -T A) / ( T H -T L), the value of the lambda is the relative thermal conductivity, not absolute.

【0028】[0028]

【表2】 表2より知られるごとく,粒子状粉砕物及びグラスウー
ルの各試験体のλは,0.79〜0.88と大差がな
い。但し,グラスウールは,前述のごとく,透水性,吸
湿性を有するため,長期間上記のλの値を保持すること
ができない。これに対し,粒子状粉砕物は,独立気泡を
有し,防湿性に優れるため,長期間上記λの値(0.8
8)を保持することができる。
[Table 2] As is known from Table 2, the λ of each of the particulate pulverized material and the glass wool test body is 0.79 to 0.88, which is not so different. However, since glass wool has water permeability and hygroscopicity as described above, it cannot hold the above value of λ for a long period of time. On the other hand, the particulate pulverized product has closed cells and is excellent in moisture resistance, so that the value of λ (0.8
8) can be retained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1にかかる発泡ゴム系断熱材料における
粒子状粉砕物の模式断面図。
FIG. 1 is a schematic cross-sectional view of a particulate pulverized material in a foamed rubber heat insulating material according to a first embodiment.

【図2】実施例1にかかる発泡ゴム系断熱材料を簡易低
温倉庫に用いた状態を示す斜視図。
FIG. 2 is a perspective view showing a state in which the foamed rubber heat insulating material according to the first embodiment is used in a simple low temperature warehouse.

【図3】実施例1における発泡ゴム系断熱材料としての
断熱壁面材の断面図。
FIG. 3 is a cross-sectional view of a heat insulating wall material as a foam rubber heat insulating material in Example 1.

【図4】実施例1における発泡ゴム系断熱材料としての
断熱天井裏地材の断面図。
FIG. 4 is a cross-sectional view of a heat insulating ceiling lining material as a foam rubber heat insulating material in Example 1.

【図5】実施例2における,発泡ゴム系断熱材料の断熱
性測定の温度勾配を示す説明図。
FIG. 5 is an explanatory view showing a temperature gradient for measuring the heat insulating property of the foam rubber-based heat insulating material in Example 2.

【図6】図5のY−Y線矢視断面図。6 is a cross-sectional view taken along the line YY of FIG.

【符号の説明】[Explanation of symbols]

1...発泡状ゴム加硫品の廃材, 11...粒子状粉砕物, 110...独立気孔, 2...低温倉庫, 21...断熱壁面材, 22...断熱天井裏地材, 4...断熱性測定の試験体, 1. . . Waste material of vulcanized foamed rubber, 11. . . Particulate pulverized product, 110. . . Independent pores, 2. . . Low temperature warehouse, 21. . . Insulation wall material, 22. . . Insulation ceiling lining material, 4. . . Adiabatic test specimen,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 B29K 105:26 (72)発明者 鈴木 昭二 愛知県西春日井郡春日町大字落合字長畑1 番地 豊田合成株式会社内 (72)発明者 鈴木 克弘 静岡県周智郡森町森1035番地 丸宏小倉製 材株式会社内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical display location B29K 105: 26 (72) Inventor Shoji Suzuki 1 Nagachihata, Ochiai, Kasuga-cho, Nishikasugai-gun, Aichi Toyoda Gosei Co., Ltd. (72) Inventor Katsuhiro Suzuki 1035 Mori, Mori-machi, Shuchi-gun, Shizuoka Prefecture Maruhiro Ogura Lumber Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発泡状ゴム加硫品の半製品,不良品等の
廃材を粉砕して,平均粒径が0.1〜50mmの粒子状
粉砕物にしてなることを特徴とする発泡ゴム系断熱材
料。
1. A foamed rubber system, characterized in that a waste material such as a semi-finished product or a defective product of a foamed rubber vulcanized product is pulverized into a pulverized product having an average particle diameter of 0.1 to 50 mm. Insulation material.
JP20727692A 1992-07-10 1992-07-10 Foamed rubber heat insulation material Pending JPH0623749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20727692A JPH0623749A (en) 1992-07-10 1992-07-10 Foamed rubber heat insulation material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20727692A JPH0623749A (en) 1992-07-10 1992-07-10 Foamed rubber heat insulation material

Publications (1)

Publication Number Publication Date
JPH0623749A true JPH0623749A (en) 1994-02-01

Family

ID=16537117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20727692A Pending JPH0623749A (en) 1992-07-10 1992-07-10 Foamed rubber heat insulation material

Country Status (1)

Country Link
JP (1) JPH0623749A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834020A (en) * 1994-07-21 1996-02-06 Kyushu Gomme Kizai Kk Powdered rubber having many hollow parts and its production, powdered rubber and its production, adsorbent of oil and solvent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0834020A (en) * 1994-07-21 1996-02-06 Kyushu Gomme Kizai Kk Powdered rubber having many hollow parts and its production, powdered rubber and its production, adsorbent of oil and solvent

Similar Documents

Publication Publication Date Title
US3557840A (en) Cellular plastic foam insulation board structures
US5784845A (en) Open-cell foams in roofing systems
US20070227814A1 (en) Lightweight pelletized materials
Alvey et al. Experimental study on the effects of humidity and temperature on aerogel composite and foam insulations
JPH10502144A (en) Open cell foam in roofing system
US10808398B1 (en) Joint seal with internal bodies and vertically-aligned major bodies
KR102476674B1 (en) Composite insulation for buildings with excellent flame retardant and moisture-proof performance and improved energy efficiency
US20030213525A1 (en) Insulative support apparatus
JPH0623749A (en) Foamed rubber heat insulation material
US3438163A (en) Wall construction
US20090056261A1 (en) Roofing membrane comprising microspheres
KR102445442B1 (en) Composite insulation for buildings with excellent flame retardant and moisture-proof performance and improved energy efficiency
KR102445441B1 (en) Composite insulation for buildings with excellent flame retardant and moisture-proof performance and improved energy efficiency
Bomberg et al. Laboratory and roofing exposures of cellular plastic insulation to verify a model of aging
Koontz The effects of hail on residential roofing products
CN209397845U (en) A kind of waterproof heat insulation heat insulation structural of building roof
McFadden Thermal performance degradation of wet insulations in cold regions
GB2097402A (en) Foamable phenolic resin compositions for building materials
CA3154936C (en) Bitumen product comprising closed cell expanded perlite
EA035258B1 (en) Insulator, method of manufacture and use thereof
JPH07329228A (en) Heat insulation waterproof sheet for trim of tunnel
JPH039273B2 (en)
JPH081833A (en) Insulated section profile and manufacture thereof
JP3740441B2 (en) Seismic slitting device
EP0792732A1 (en) Softening a rigid open-cell PU foam to make insulation slabs between rafters