JPH06235704A - Monochromatic x-ray ct system - Google Patents

Monochromatic x-ray ct system

Info

Publication number
JPH06235704A
JPH06235704A JP5044505A JP4450593A JPH06235704A JP H06235704 A JPH06235704 A JP H06235704A JP 5044505 A JP5044505 A JP 5044505A JP 4450593 A JP4450593 A JP 4450593A JP H06235704 A JPH06235704 A JP H06235704A
Authority
JP
Japan
Prior art keywords
ray
dimensional
subject
monochromatic
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5044505A
Other languages
Japanese (ja)
Inventor
Kazuyuki Hyodo
一行 兵藤
Hironao Yamaji
宏尚 山地
Yasuaki Nagata
泰昭 永田
Kazuo Hayashi
一雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOUENERUGII BUTSURIGAKU KENKYU SHOCHO
Nippon Steel Corp
Original Assignee
KOUENERUGII BUTSURIGAKU KENKYU SHOCHO
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOUENERUGII BUTSURIGAKU KENKYU SHOCHO, Nippon Steel Corp filed Critical KOUENERUGII BUTSURIGAKU KENKYU SHOCHO
Priority to JP5044505A priority Critical patent/JPH06235704A/en
Publication of JPH06235704A publication Critical patent/JPH06235704A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PURPOSE:To provide a monochromatic X-ray CT system in which a high resolution, high contrast tomographic image can be obtained by performing monochromatization and magnification at an arbitrary wavelength through a single crystal using white X-rays having high parallelism as an X-ray source. CONSTITUTION:The monochromatic X-ray CT system comprises an asymmetric reflection single crystal element 3 disposed in the rear of a specimen A in order to diffract X-rays transmitted through the specimen A to y-direction normal to x-direction, i.e., the direction of straight polarized vector of white X-rays 1 having strong directivity, a two-dimensional X-ray detector 4 performing scanning in x or y-direction while varying the detecting region arbitrarily, a high resolution specimen stage 6 for aligning the rotational axis of the specimen A with x-direction for observing the microspecimen A on a high resolution tomographic image when a two-dimensional projection image transmitted through the specimen A is diffracted by the asymmetric reflection single crystal element 3 and detected by the two-dimensional X-ray detector 4, and means 5 for collimating the X-ray beam in x-direction.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、X線源として平行度が
高い白色X線(例えばシンクロトロン放射光)から、単
結晶等を利用して任意の波長で単色化および拡大を行う
ことにより、高分解能および高コントラストな断層像を
得ることができる単色X線CT装置に関する。
BACKGROUND OF THE INVENTION The present invention uses a single crystal or the like for monochromaticization and expansion from white X-rays (for example, synchrotron radiation) having a high degree of parallelism as an X-ray source. , A monochromatic X-ray CT apparatus capable of obtaining a high resolution and high contrast tomographic image.

【0002】[0002]

【従来の技術】X線CT法は、現在では医療診断の有力
な手法として、広く医療機関で用いられている。最近、
本手法は工業材料の特定元素分布や微小欠陥の観察に応
用されるなど、その広い技術的可能性が注目されてい
る。このような背景のもとに、X線CT装置において被
検体に対する高分解能および定量的な断層面計測の機能
を実現する試みがなされている。
2. Description of the Related Art The X-ray CT method is now widely used in medical institutions as a powerful method for medical diagnosis. Recently,
This method has been attracting attention for its wide technical potential, such as being applied to the observation of specific element distributions and minute defects in industrial materials. Against this background, attempts have been made to realize a high-resolution and quantitative tomographic plane measurement function for an object in an X-ray CT apparatus.

【0003】定量的な元素・密度分布計測には、単色X
線を利用する必要があり、シンクロトロン放射光などの
指向性が強い白色X線を結晶分光器により単色化し、そ
れを光源としたCT装置によりCT画像を得る方法があ
る。単色X線を利用する理由は、物質のX線吸収係数が
X線の波長に依存しており、波長幅が狭い単色X線を用
いると波長依存性による影響を低減することができ、こ
れにより定量性が優れた測定を行えることによる。
For quantitative element / density distribution measurement, single color X
There is a method in which it is necessary to use a line, and white X-rays having strong directivity such as synchrotron radiation are made monochromatic by a crystal spectroscope and a CT image is obtained by a CT device using the same as a light source. The reason for using monochromatic X-rays is that the X-ray absorption coefficient of a substance depends on the wavelength of X-rays, and using monochromatic X-rays with a narrow wavelength width can reduce the effect of wavelength dependence. This is because the measurement can be performed with excellent quantification.

【0004】一方、高分解能なX線CT装置は、被検体
透過後の単色・平行な透過X線を、単結晶の非対称反射
を利用することにより拡大する手法となっている。ここ
に、単結晶の非対称反射とは、結晶表面とブラッグ反射
を生じる格子面が平行でない場合にブラッグ反射後に入
射X線像が拡大される現象のことである。したがって、
小さい物体に対して単結晶の非対称反射を利用して投影
像を拡大することによって、検出器の一画素の大きさが
一定であっても、相対的に検出器の画素の大きさを小さ
くし、かつ有効画素数を増大させることができ、これに
より高分解能CT像を得ることができる。
On the other hand, the high-resolution X-ray CT apparatus is a method of enlarging the monochromatic and parallel transmitted X-rays that have passed through the object by utilizing the asymmetric reflection of a single crystal. Here, the asymmetric reflection of a single crystal is a phenomenon in which an incident X-ray image is enlarged after Bragg reflection when the crystal surface and the lattice plane that causes Bragg reflection are not parallel. Therefore,
By enlarging the projected image by using asymmetric reflection of a single crystal for a small object, even if the size of one pixel of the detector is constant, the size of the pixel of the detector can be made relatively small. In addition, the number of effective pixels can be increased, whereby a high resolution CT image can be obtained.

【0005】図3は、これらの方法を用いた従来のX線
CT装置を示している。この装置では、まず白色X線
(入射X線11)を結晶分光器の単結晶12a,12b
のブラッグ反射を用いて所望のX線エネルギーに単色化
し、これを被検体15に照射する。そして、透過したX
線像を単結晶13の非対称反射を利用して拡大し、この
拡大された投影像は、X線検出器14によって検出され
る。上記のような単色X線を利用したX線CT装置とし
て、例えば特開昭63−53456号公報、特開昭61
−256243号公報等により開示されている。
FIG. 3 shows a conventional X-ray CT apparatus using these methods. In this apparatus, first, white X-rays (incident X-rays 11) are converted into single crystals 12a and 12b of a crystal spectroscope.
The target 15 is irradiated with the desired X-ray energy by using the Bragg reflection. And the transmitted X
The line image is magnified by utilizing the asymmetric reflection of the single crystal 13, and the magnified projected image is detected by the X-ray detector 14. As an X-ray CT apparatus using the above-mentioned monochromatic X-ray, for example, JP-A-63-53456 and JP-A-61.
It is disclosed in Japanese Patent Publication No. 2562633.

【0006】[0006]

【発明が解決しようとする課題】従来の技術では、上述
のように単結晶3の非対称反射により透過X線を拡大す
ることで、相対的な検出器の分解能の向上を図ってい
る。しかしながら、かかる従来装置の光学系おいて、以
下の問題があった。
In the conventional technique, the transmitted X-rays are enlarged by the asymmetrical reflection of the single crystal 3 as described above, so that the relative resolution of the detector is improved. However, the optical system of such a conventional device has the following problems.

【0007】シンクロトロン放射光などの指向性が強い
白色X線の場合、X線に偏光性があり、この偏光ベクト
ルは、シンクロトロン放射光の軌道面に水平な方向であ
る。また、結晶素子を利用して偏光ベクトルを含む平面
内でのX線の回折は、θB をブラッグ反射角としたとき
cos2θB 倍の強度減少を伴い、偏光ベクトルを含む
平面に対する直交方向への回折は強度減少が伴わないこ
とが知られている。
In the case of white X-rays having a strong directivity such as synchrotron radiation, the X-rays have polarizability, and this polarization vector is a direction horizontal to the orbital plane of the synchrotron radiation. The diffraction of X-rays in a plane including the polarization vector by using a crystal element, theta B with the intensity decrease of the cos B times when the Bragg reflection angle, in the direction perpendicular to the plane including the polarization vector It is known that diffraction is not accompanied by a decrease in intensity.

【0008】ところが、従来の装置は、指向性が強い白
色X線(入射X線11)からの連続X線を結晶分光器
(12a,12b)により単色化し、それを光源に用い
て、図3に示すように、被検体14の投影データをビー
ム幅が広い水平方向で検出するように非対称結晶素子1
3を配置する。このため、回折したX線は拡大による強
度減少に加えて、偏光性によるcos2θB 倍の強度減
少が生じていた。したがって、従来装置では強度低下を
抑えるためにはθB はできるだけ小さくする必要があ
る。そして低指数の回折面の使用に限定される、あるい
は単色化するX線の波長が限定されるという問題があっ
た。また、θB を小さくすることから結晶表面の加工精
度を著しく良くしなければ、品質の良い反射X線が得ら
れないといった問題もあった。
However, in the conventional device, the continuous X-rays from the white X-rays (incident X-rays 11) having a strong directivity are monochromaticized by the crystal spectroscopes (12a, 12b) and used as a light source, and as shown in FIG. As shown in FIG. 1, the asymmetric crystal element 1 is designed to detect the projection data of the subject 14 in the horizontal direction where the beam width is wide.
Place 3. Therefore, the diffracted X-ray had a cos 2θ B- fold intensity decrease due to the polarization property in addition to the intensity decrease due to expansion. Therefore, in the conventional device, it is necessary to make θ B as small as possible in order to suppress the strength reduction. Then, there is a problem that the use of a diffractive surface having a low index is limited, or the wavelength of an X-ray that is monochromatic is limited. Further, there is also a problem that a high-quality reflected X-ray cannot be obtained unless the processing accuracy of the crystal surface is remarkably improved because θ B is made small.

【0009】ここで、図4は、非対称反射単結晶による
入射X線の拡大光学系の原理を示している。非対称反射
単結晶は、結晶表面20と所望の回折面30とが角度α
をなす結晶分光素子である。入射X線11は、非対称反
射単結晶の回折面30によってブラッグ反射される。そ
して、結晶表面20に対する入射角(θIN)と反射角
(θOUT )が異なるために、入射X線11は拡大されて
反射される。非対称因子bをb=sinθOUT /sin
θINとすると、X線幅の拡大率はLOUT /LIN=bで表
される。ここで、θIN=θB −α、θOUT =θB +α、
θB はブラッグ角であり、次式で示される。 θB =sin-1(λ・(h2 +k2 +l2 1/2 /d) 但し、λは回折X線の波長、(hkl)は結晶格子面、
dは結晶格子定数である。したがって、偏光性による強
度減少を抑えるためにθB を小さくするには、低指数の
結晶格子面、あるいは短波長を選択する必要があった。
また結晶の表面粗さrはr=sinθINで決定されるの
で、θB が小さくなると入射角θINが小さくなることか
ら、表面粗さrの許容範囲も小さくなり平面加工精度も
厳しいものとなる。
Here, FIG. 4 shows the principle of an incident X-ray magnifying optical system using an asymmetric reflection single crystal. In the asymmetric reflection single crystal, the crystal surface 20 and the desired diffraction surface 30 form an angle α.
It is a crystal spectroscopic element that forms The incident X-ray 11 is Bragg-reflected by the diffractive surface 30 of the asymmetric reflection single crystal. Since the incident angle (θ IN ) and the reflection angle (θ OUT ) with respect to the crystal surface 20 are different, the incident X-ray 11 is magnified and reflected. The asymmetry factor b is b = sin θ OUT / sin
When θ IN is set, the expansion rate of the X-ray width is represented by L OUT / L IN = b. Where θ IN = θ B −α, θ OUT = θ B + α,
θ B is the Bragg angle and is represented by the following equation. θ B = sin −1 (λ · (h 2 + k 2 + l 2 ) 1/2 / d) where λ is the wavelength of the diffracted X-ray, (hkl) is the crystal lattice plane,
d is a crystal lattice constant. Therefore, in order to reduce θ B in order to suppress the intensity decrease due to the polarization property, it is necessary to select a crystal lattice plane with a low index or a short wavelength.
Further, since the surface roughness r of the crystal is determined by r = sin θ IN , the incident angle θ IN becomes smaller as θ B becomes smaller. Therefore, the allowable range of the surface roughness r becomes smaller and the surface processing accuracy becomes severe. Become.

【0010】本発明は上記事情に基づいてなされたもの
であり、簡便な手段によりX線の偏光性の影響なしに、
微小な被検体を観察する際に高分解能なCT画像が得ら
れ、かつ大きな被検体のCT画像を観察する場合にも好
適な単色X線CT装置を提供することを目的とするもの
である。
The present invention has been made based on the above circumstances, and it is possible to use a simple means without affecting the polarization of X-rays.
It is an object of the present invention to provide a monochromatic X-ray CT apparatus that can obtain a high-resolution CT image when observing a minute subject and is suitable for observing a CT image of a large subject.

【0011】[0011]

【課題を解決するための手段】本発明の単色X線CT装
置は、指向性が強い白色X線から任意の波長を取り出す
X線分光器と、被検体を走査・回転することができる被
検体ステージと、二次元X線検出器と、該二次元X線検
出器からの信号の収集,X線分光器及び前記被検体の位
置制御を行うコンピュータと、CT画像再構成用のソフ
トウェアまたはハードウェアとを備えている 特に、指向性が強い白色X線の直進偏光ベクトルの方向
をx方向、x方向に垂直な方向をy方向として、被検体
後方に、被検体を透過した透過X線をy方向に回折する
非対称反射単結晶素子を設け、x方向あるいはy方向に
検出走査を行いかつ検出領域が任意に変化できる二次元
X線検出器を設け、被検体を透過した二次元投影像を前
記非対称反射単結晶素子で回折させた後、前記二次元X
線検出器で検出する際に、微小な被検体を高分解能な断
層像で観察するx方向と被検体の回転軸とを一致させる
高分解能用被検体ステージと、x方向にX線ビームをコ
リメートする手段と、を設けたものである。
A monochromatic X-ray CT apparatus of the present invention is an X-ray spectroscope for extracting an arbitrary wavelength from a white X-ray having a strong directivity, and an object capable of scanning and rotating the object. Stage, two-dimensional X-ray detector, computer for collecting signals from the two-dimensional X-ray detector, X-ray spectroscope and position control of the subject, and software or hardware for CT image reconstruction In particular, the direction of the straight polarization vector of the white X-ray having strong directivity is the x direction, and the direction perpendicular to the x direction is the y direction, and the transmitted X-ray transmitted through the subject is y behind the subject. A two-dimensional X-ray detector, which is provided with an asymmetric reflection single crystal element that diffracts in the direction, performs a scanning scan in the x direction or the y direction, and can arbitrarily change the detection region, Asymmetric reflective single crystal element After folding, the two-dimensional X
When detecting with a line detector, a high-resolution object stage for observing a minute object with a high-resolution tomographic image so that the x-direction and the rotation axis of the object coincide with each other, and an X-ray beam is collimated in the x-direction. And means for doing so.

【0012】また、本発明の単色X線CT装置は、大き
な被検体を観察する際に、上記y方向と被検体の回転軸
とを一致させる大型被検体ステージを設け、上記高分解
能用被検体ステージと該大型被検体ステージを適宜切り
替える移動手段を設けたものである。
Further, the monochromatic X-ray CT apparatus of the present invention is provided with a large-sized subject stage for aligning the y-direction with the rotation axis of the subject when a large subject is observed, A moving means for appropriately switching the stage and the large subject stage is provided.

【0013】[0013]

【作用】本発明に係る単色X線CT装置は上記の構成に
よって、X線分光器の単結晶のロッキング・カーブの分
散角によって支配される分散角を持つ単色X線束が、被
検体に照射される。微小な被検体を高分解能で観察する
際には、高分解能用被検体ステージにより、x方向と被
検体の回転軸とが一致するように設定されて、被検体を
透過後の二次元投影像が被検体後方に設けた、y方向に
回折する非対称反射単結晶素子に入射される。このとき
X線分光器の単結晶のロッキング・カーブによって決定
されるy方向の分散角は数秒から数十秒と極めて小さい
ので、二次元投影像は分散角により生じる投影像のボケ
が低減される。被検体後方に設置した、y方向に回折す
る非対称反射単結晶素子は、X線の直進偏光ベクトルを
含む平面に対して鉛直方向に回折するので、X線の偏光
性による強度減少を生じること無く、被検体に照射され
たX線の波長以外の散乱X線を除去する。またy方向に
投影像を拡大し、x方向をコリメートする手段によりx
方向に生じる散乱線の影響が低減されるので、y方向に
分解能が高い二次元投影像が得られる。
In the monochromatic X-ray CT apparatus according to the present invention, the subject is irradiated with a monochromatic X-ray flux having a dispersion angle dominated by the dispersion angle of the rocking curve of the single crystal of the X-ray spectroscope. It When observing a minute object with high resolution, the high-resolution object stage is set so that the x-direction and the rotation axis of the object are aligned, and a two-dimensional projection image after passing through the object is obtained. Is incident on an asymmetric reflective single crystal element diffracted in the y direction, which is provided behind the subject. At this time, the dispersion angle in the y direction determined by the rocking curve of the single crystal of the X-ray spectroscope is as small as several seconds to several tens seconds, so that the two-dimensional projection image has a reduced blur of the projection image caused by the dispersion angle. . Since the asymmetric reflection single crystal element diffracted in the y direction, which is installed behind the object, diffracts in the vertical direction with respect to the plane containing the linear polarization vector of the X-ray, there is no decrease in the intensity due to the polarization of the X-ray. The scattered X-rays other than the wavelength of the X-rays irradiated on the subject are removed. In addition, the projection image is magnified in the y direction and x
Since the influence of scattered rays generated in the direction is reduced, a two-dimensional projection image with high resolution in the y direction can be obtained.

【0014】得られた二次元投影像は検出走査を垂直方
向に行いかつ検出領域が任意に変化可能な二次元X線検
出器によって、二次元投影像の拡大率に適した有効画素
数で、二次元投影像の高分解能なy方向成分が再構成投
影データとして収集される。したがって、X線の影響を
考慮することなく任意の波長を選択することができ、か
つ高次の結晶格子面を任意に選択できるので、結晶表面
の加工精度も緩くて何ら差し支えない。
The obtained two-dimensional projection image is detected by a two-dimensional X-ray detector that performs detection scanning in the vertical direction and the detection area can be arbitrarily changed, and has an effective pixel number suitable for the magnification of the two-dimensional projection image. The high-resolution y-direction component of the two-dimensional projection image is collected as reconstructed projection data. Therefore, an arbitrary wavelength can be selected without considering the influence of X-rays, and a high-order crystal lattice plane can be arbitrarily selected, so that the processing accuracy of the crystal surface is low and there is no problem.

【0015】また、大きな被検体の三次元断層像を観察
する際は、高分解能用被検体ステージと大型用被検体ス
テージを切り替える手段により、大型被検体ステージに
切り替えられる。そしてX線分光器により拡大された入
射X線が、y方向と被検体の回転軸とを一致させる大型
被検体ステージにより、x方向のビーム幅と同程度の大
きさの被検体二次元投影像として被検体後方に設置した
非対称反射単結晶素子に入射される。上述したようにX
線の偏光性により強度減少なしにS/N比の良い高コン
トラストな投影像が反射され、検出走査をx方向に行
い、かつ検出領域が任意に変化可能な二次元X線検出器
によって、二次元投影像の大きさに適した有効画素数で
x方向成分が再構成投影データとして収集される。
Further, when observing a three-dimensional tomographic image of a large subject, the means for switching between the high-resolution subject stage and the large subject stage can be switched to the large subject stage. Then, the incident X-ray magnified by the X-ray spectroscope is subjected to a two-dimensional projection image of the subject having a size almost equal to the beam width in the x direction by the large subject stage that matches the y-direction with the rotation axis of the subject. Is incident on the asymmetric reflection single crystal element installed behind the subject. X as above
Due to the polarizability of the line, a high-contrast projected image with a good S / N ratio is reflected without intensity reduction, the detection scan is performed in the x-direction, and a two-dimensional X-ray detector capable of arbitrarily changing the detection region is used to The x-direction component is collected as reconstructed projection data with the number of effective pixels suitable for the size of the three-dimensional projection image.

【0016】[0016]

【実施例】以下に、本発明による単色X線CT装置の一
実施例について図面を参照して、詳細に説明する。図1
及び図2は、本発明の単色X線CT装置の一実施例によ
る主構成部分の配置関係を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a monochromatic X-ray CT apparatus according to the present invention will be described in detail below with reference to the drawings. Figure 1
2 and 2 are views showing the arrangement relationship of the main constituent parts according to one embodiment of the monochromatic X-ray CT apparatus of the present invention.

【0017】本発明装置は、白色で平行なX線1が結晶
分光器2の単結晶2a,2bにより単色化されたX線束
8、被検体に入射するX線の形状を決めるコリメータ
5、被検体を支持する回転・走査可能な高分解能用被検
体ステージ6、大型用被検体ステージ7、X線像の垂直
成分を拡大する単結晶素子3及び二次元X線検出器4に
より構成される。図1において高分解能で断層像を観察
したい微小被検体をA、また図2において高コントラス
トで断層像を観察したい大型被検体をBにより、それぞ
れ示してある。また図中、X線の直進偏光ベクトルの方
向をx軸、このx軸に垂直な方向をy軸として示してあ
る。
The apparatus of the present invention comprises an X-ray flux 8 in which white and parallel X-rays 1 are monochromatized by the single crystals 2a and 2b of the crystal spectroscope 2, a collimator 5 for determining the shape of X-rays incident on the subject, and an object to be examined. It is composed of a rotatable and scannable high-resolution subject stage 6 that supports the subject, a large-sized subject stage 7, a single crystal element 3 that magnifies the vertical component of the X-ray image, and a two-dimensional X-ray detector 4. In FIG. 1, a small object for which a tomographic image is to be observed with high resolution is indicated by A, and a large object for which a tomographic image is to be observed with high contrast is indicated by B in FIG. Further, in the figure, the direction of the linearly polarized light vector of the X-ray is shown as the x-axis, and the direction perpendicular to this x-axis is shown as the y-axis.

【0018】本実施例では、シンクロトロン放射光の白
色X線源から、ビームサイズが水平方向(x方向)、垂
直方向(y方向)にそれぞれ150mm、3mmのX線
1が結晶分光器2の単結晶2aに入射される。結晶分光
器2の単結晶2a,2b、非対称反射単結晶素子3には
Ge単結晶を用い、回折を生じさせる単結晶2a,2b
及び3の結晶格子面をそれぞれ(333),(511)
及び(511)に選定し、単結晶2a,3の結晶格子面
(511)と実際の結晶表面とのなす角αを30°に設
定する。また二次元X線検出器としては、蛍光体でX線
像を可視光に変換し、光学レンズ系を用いて二次元CC
D上で結像する検出器が使用される。
In the present embodiment, from the white X-ray source of synchrotron radiation, X-rays 1 having a beam size of 150 mm and 3 mm in the horizontal direction (x direction) and the vertical direction (y direction) are emitted from the crystal spectrometer 2. It is incident on the single crystal 2a. Ge single crystals are used for the single crystals 2a and 2b of the crystal spectroscope 2 and the asymmetric reflection single crystal element 3, and the single crystals 2a and 2b for causing diffraction are used.
And the crystal lattice planes of 3 are (333) and (511), respectively.
And (511), and the angle α between the crystal lattice plane (511) of the single crystals 2a and 3 and the actual crystal surface is set to 30 °. As a two-dimensional X-ray detector, a fluorescent substance converts an X-ray image into visible light, and an optical lens system is used to generate a two-dimensional CC.
A detector that images on D is used.

【0019】まず、図1において、結晶分光器2により
白色X線から波長1.54オングストロームのX線を単
色化し、被検体Aの断層像を高分解能に観察する場合に
ついて説明する。結晶分光器2によって単色化される波
長1.54オングストロームのX線束8は、単結晶2b
によって縦の広がりが11.2mmのX線束に拡大され
る。すなわちX線束8は3.37倍に拡大される。被検
体Aは高分解能用被検体ステージ6によって、x方向と
該被検A体の回転軸とが一致するように設定される。こ
のため、被検体Aを透過し、被検体Aの波長1.54オ
ングストロームのX線吸収係数に依存した強度分布を有
する、y方向の広がり11.2mmのX線束は、非対称
反射結晶素子3の(511)面で回折・拡大されて、縦
方向の広がり41.8mmのX線束となる。そして、二
次元X線検出器4で拡大率に適した有効画素数で被検体
Aの断面方向(垂直方向)に検出走査され、投影データ
として収集される。
First, referring to FIG. 1, a case will be described in which the X-ray having a wavelength of 1.54 angstrom is converted into a monochromatic color from the white X-ray by the crystal spectroscope 2 and the tomographic image of the subject A is observed with high resolution. The X-ray flux 8 having a wavelength of 1.54 angstrom which is monochromatic by the crystal spectrometer 2 is a single crystal 2b.
Extends the longitudinal extent to an X-ray flux of 11.2 mm. That is, the X-ray flux 8 is magnified 3.37 times. The subject A is set by the high-resolution subject stage 6 so that the x direction and the rotation axis of the subject A body coincide with each other. For this reason, an X-ray flux having an intensity distribution dependent on the X-ray absorption coefficient of the wavelength of 1.54 angstroms of the subject A and having a spread of 11.2 mm in the y-direction is generated by the asymmetric reflection crystal element 3. It is diffracted / enlarged by the (511) plane to form an X-ray flux having a longitudinal spread of 41.8 mm. Then, the two-dimensional X-ray detector 4 detects and scans in the cross-sectional direction (vertical direction) of the subject A with the number of effective pixels suitable for the magnification, and collects it as projection data.

【0020】このとき非対称反射結晶素子3は、二次元
投影像をX線の偏光ベクトルの方向に対して鉛直方向に
回折・拡大しているので、偏光性による強度減少は生じ
ない。非対称反射単結晶素子3に入射する二次元投影像
の被検体断面方向の成分は分散角により生じるボケや散
乱X線による投影データの劣化を著しく低減することが
できる。さらに上記のように、3.73倍に拡大される
ので、X線検出器固有の分解能に対し3.73倍の空間
分解能で、偏光性による強度減少を生じることなく投影
データを収集することが可能となる。
At this time, since the asymmetric reflection crystal element 3 diffracts and enlarges the two-dimensional projection image in the direction perpendicular to the direction of the polarization vector of the X-ray, the intensity reduction due to the polarization does not occur. The component of the two-dimensional projection image incident on the asymmetric reflection single crystal element 3 in the cross-sectional direction of the subject can significantly reduce the blurring caused by the dispersion angle and the deterioration of the projection data due to scattered X-rays. Further, as described above, since the magnification is 3.73 times, projection data can be collected with a spatial resolution of 3.73 times the resolution specific to the X-ray detector without causing intensity decrease due to polarization. It will be possible.

【0021】次に、図2において、大きな被検体を観察
する場合について説明する。高分解能用被検体ステージ
6及び大型被検体ステージ7は、観察する被検体の目的
により、図には示さない適宜の移動機構により切り替わ
るように設定されている。図2に示すように大きな被検
体は,大型被検体ステージ7に設置された構成となる。
大型被検体Bは大型被検体ステージ7によって、y方向
と被検体の回転軸とが一致するように設定される。これ
により水平方向のビームサイズ150mm以内の断面の
観察が可能となる。本実施例のような光学系では水平方
向の拡大は行われることはないので、被検体Bを透過
し、被検体Bの波長1.54オングストロームのX線の
吸収係数に依存した強度を有する、x方向の広がり15
0mmのX線束が、非対称反射結晶素子3の(551)
面で回折され、二次元X線検出器20で断面方向(水平
方向)に検出走査され、投影データとして収集される。
Next, referring to FIG. 2, a case of observing a large object will be described. The high-resolution subject stage 6 and the large-sized subject stage 7 are set so as to be switched by an appropriate moving mechanism (not shown) depending on the purpose of the subject to be observed. As shown in FIG. 2, a large subject is installed on the large subject stage 7.
The large subject B is set by the large subject stage 7 so that the y-direction and the rotation axis of the subject match. This makes it possible to observe a cross section within a horizontal beam size of 150 mm. In the optical system as in the present embodiment, since the horizontal expansion is not performed, the light having the intensity which is transmitted through the subject B and depends on the X-ray absorption coefficient of the subject B having a wavelength of 1.54 angstroms is obtained. Spread in the x direction 15
The 0 mm X-ray flux is (551) of the asymmetric reflection crystal element 3
The light is diffracted on the surface, detected and scanned in the cross-sectional direction (horizontal direction) by the two-dimensional X-ray detector 20, and collected as projection data.

【0022】[0022]

【発明の効果】以上説明したように本発明によれば、X
線源として平行度が高い白色X線(例えばシンクロトロ
ン放射光)から単結晶等を利用して任意の波長で単色化
および拡大を行うことにより、高分解能および高コント
ラストな断層像を得る単色X線CT装置において、X線
の偏光性による強度減少、選択波長や結晶格子面の選択
の制限に関係せずに、微小な被検体を観察する際には高
分解能なCT画像が得られ、また大きな被検体のCT画
像も得ることができるX線CT装置を実現することがで
きる。これにより工業材料、生体などの検査に大きく寄
与する等の利点を有している。
As described above, according to the present invention, X
A monochromatic X that obtains a high-resolution and high-contrast tomographic image by performing monochromaticization and expansion at a desired wavelength from a white X-ray with high parallelism (eg, synchrotron radiation) as a radiation source using a single crystal or the like. In a linear CT apparatus, a high-resolution CT image can be obtained when observing a minute object regardless of a decrease in intensity due to the polarization of X-rays and restrictions on selection wavelength and selection of crystal lattice planes. It is possible to realize an X-ray CT apparatus capable of obtaining a CT image of a large subject. This has the advantage that it greatly contributes to the inspection of industrial materials and living bodies.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の単色X線CT装置の一実施例による構
成例を示す斜視図である。
FIG. 1 is a perspective view showing a configuration example according to an embodiment of a monochromatic X-ray CT apparatus of the present invention.

【図2】本発明の上記単色X線CT装置において、大き
な被検体を観察する場合の構成例を示す斜視図である。
FIG. 2 is a perspective view showing a configuration example when a large subject is observed in the monochromatic X-ray CT apparatus of the present invention.

【図3】従来の単色X線CT装置の構成を示す図であ
る。
FIG. 3 is a diagram showing a configuration of a conventional monochromatic X-ray CT apparatus.

【図4】従来の単色X線CT装置における非対称単結晶
素子により入射X線を単色・拡大する原理を説明するた
めの上記非対称単結晶素子の部分拡大図である。
FIG. 4 is a partially enlarged view of the asymmetric single crystal element for explaining the principle of monochromatic / enlarged incident X-ray by the asymmetric single crystal element in the conventional monochromatic X-ray CT apparatus.

【符号の説明】[Explanation of symbols]

1 白色で平行なX線 2 結晶分光器 2a,2b 結晶分光器の単結晶 3 非対称反射単結晶素子 4 二次元X線検出器 5 コリメータ 6 高分解能用被検体ステージ 7 大型被検体ステージ 8 単色X線束 11 入射X線 12a,12b 結晶分光器の単結晶 13 非対称反射単結晶素子 14 X線検出器 20 結晶表面 30 結晶の回折面 50 被検体 A 微小被検体 B 大型被検体 1 White and parallel X-rays 2 Crystal spectrometers 2a, 2b Single crystal of crystal spectrometer 3 Asymmetric reflection single crystal element 4 Two-dimensional X-ray detector 5 Collimator 6 High resolution sample stage 7 Large sample stage 8 Monochromatic X Ray bundle 11 Incident X-rays 12a, 12b Single crystal of crystal spectroscope 13 Asymmetric reflection single crystal element 14 X-ray detector 20 Crystal surface 30 Crystal diffraction surface 50 Specimen A Small specimen B Large specimen

───────────────────────────────────────────────────── フロントページの続き (72)発明者 永田 泰昭 相模原市淵野辺5−10−1 新日本製鐵株 式会社エレクトロニクス研究所内 (72)発明者 林 一雄 相模原市淵野辺5−10−1 新日本製鐵株 式会社エレクトロニクス研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuaki Nagata 5-10-1 Fuchinobe, Sagamihara-shi Nippon Steel Corp. Electronics Research Laboratories (72) Inventor Kazuo Hayashi 5-10-1, Fuchinobe, Sagamihara-shi New Japan Electronics Co., Ltd. Electronics Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 指向性が強い白色X線から任意の波長を
取り出すX線分光器と、被検体を走査・回転することが
できる被検体ステージと、二次元X線検出器と、該二次
元X線検出器からの信号の収集,X線分光器及び前記被
検体の位置制御を行うコンピュータと、CT画像再構成
用のソフトウェアまたはハードウェアからなる単色X線
CT装置において、 指向性が強い白色X線の直進偏光ベクトルの方向をx方
向、x方向に垂直な方向をy方向として、前記被検体後
方に、該被検体を透過した透過X線をy方向に回折する
非対称反射単結晶素子を設け、 x方向あるいはy方向に検出走査を行いかつ検出領域が
任意に変化できる二次元X線検出器を設け、 被検体を透過した二次元投影像を前記非対称反射単結晶
素子で回折させた後、前記二次元X線検出器で検出する
際に、微小な被検体を高分解能な断層像で観察するx方
向と被検体の回転軸とを一致させる高分解能用被検体ス
テージと、 x方向にX線ビームをコリメートする手段と、を設けた
ことを特徴とする単色X線CT装置。
1. An X-ray spectroscope for extracting an arbitrary wavelength from a highly directional white X-ray, an object stage capable of scanning and rotating an object, a two-dimensional X-ray detector, and the two-dimensional X-ray detector. A monochromatic X-ray CT apparatus including a computer that collects signals from an X-ray detector, an X-ray spectroscope, and a position control of the subject, and software or hardware for CT image reconstruction. An asymmetric reflective single crystal element that diffracts a transmitted X-ray transmitted through the subject in the y-direction behind the subject with the direction of the linearly polarized vector of the X-ray as the x-direction and the direction perpendicular to the x-direction as the y-direction. Provided is a two-dimensional X-ray detector that performs detection scanning in the x direction or the y direction and the detection area can be changed arbitrarily, and after diffracting the two-dimensional projection image transmitted through the subject with the asymmetric reflection single crystal element , The two-dimensional When detecting with an X-ray detector, a high-resolution object stage for observing a minute object with a high-resolution tomographic image so that the x-direction and the rotation axis of the object coincide with each other, and an X-ray beam is emitted in the x-direction. A monochromatic X-ray CT apparatus provided with a means for collimating.
【請求項2】 大きな被検体を観察する際に、上記y方
向とその被検体の回転軸とを一致させる大型被検体ステ
ージを設け、上記高分解能用被検体ステージと該大型被
検体ステージを適宜切り替える移動手段を設けたことを
特徴とする請求項1記載の単色X線CT装置。
2. When observing a large object, a large-sized object stage for aligning the y direction with the rotation axis of the object is provided, and the high-resolution object stage and the large object stage are appropriately used. The monochromatic X-ray CT apparatus according to claim 1, further comprising a moving means for switching.
JP5044505A 1993-02-09 1993-02-09 Monochromatic x-ray ct system Withdrawn JPH06235704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5044505A JPH06235704A (en) 1993-02-09 1993-02-09 Monochromatic x-ray ct system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5044505A JPH06235704A (en) 1993-02-09 1993-02-09 Monochromatic x-ray ct system

Publications (1)

Publication Number Publication Date
JPH06235704A true JPH06235704A (en) 1994-08-23

Family

ID=12693414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5044505A Withdrawn JPH06235704A (en) 1993-02-09 1993-02-09 Monochromatic x-ray ct system

Country Status (1)

Country Link
JP (1) JPH06235704A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961379A (en) * 1995-08-25 1997-03-07 Sumitomo Electric Ind Ltd Soft x-ray tomography
WO2004010125A1 (en) * 2002-07-18 2004-01-29 Hitachi Zosen Corporation X-ray inspection device and x-ray inspection method
EP3723103A1 (en) 2019-04-09 2020-10-14 European XFEL GmbH Method and apparatus for x-ray shaft expansion and/or compression and/or collimation and/or focusing and/or x-ray magnification
KR20210138260A (en) * 2020-05-12 2021-11-19 경북대학교 산학협력단 Synchrotron Radiation Based Monochromatic X-ray Large Area CT Imaging Device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0961379A (en) * 1995-08-25 1997-03-07 Sumitomo Electric Ind Ltd Soft x-ray tomography
WO2004010125A1 (en) * 2002-07-18 2004-01-29 Hitachi Zosen Corporation X-ray inspection device and x-ray inspection method
EP3723103A1 (en) 2019-04-09 2020-10-14 European XFEL GmbH Method and apparatus for x-ray shaft expansion and/or compression and/or collimation and/or focusing and/or x-ray magnification
KR20210138260A (en) * 2020-05-12 2021-11-19 경북대학교 산학협력단 Synchrotron Radiation Based Monochromatic X-ray Large Area CT Imaging Device

Similar Documents

Publication Publication Date Title
Poulsen et al. X-ray diffraction microscopy based on refractive optics
Gureyev et al. Quantitative in-line phase-contrast imaging with multienergy x rays
Mayo et al. Quantitative X‐ray projection microscopy: phase‐contrast and multi‐spectral imaging
US5802137A (en) X-ray optics, especially for phase contrast imaging
KR100455232B1 (en) Phase contrast imaging method and apparatus and method for determining phase distribution using same
JP4676244B2 (en) X-ray imaging device
JPH09187455A (en) Phase type x-ray ct apparatus
Hayakawa et al. Development of a scanning x‐ray microprobe with synchrotron radiation
JP5483840B2 (en) X-ray imaging apparatus and X-ray imaging method
US5864599A (en) X-ray moire microscope
JPH06235704A (en) Monochromatic x-ray ct system
Jacobsen et al. Zone-plate x-ray microscopy
US11796485B2 (en) X-ray scattering apparatus
JP5256352B2 (en) X-ray imaging apparatus and X-ray imaging method
JP2005265840A (en) Analyzer
Robisch et al. Nanoscale x-ray holo-tomography of human brain tissue with phase retrieval based on multiphoton energy recordings
JPH05340894A (en) X-ray picture photographing device and x-ray ct device using k-absorption edge difference method
JPH1151881A (en) X-ray imaging device and x-ray imaging method
Takeuchi et al. Differential phase contrast x-ray microimaging with scanning-imaging x-ray microscope optics
Born et al. Perspective fields of application of texture topography and further development of its apparatus
JP4561312B2 (en) X-ray image reconstruction device
JPS63302829A (en) X-ray tomographic imaging method and its apparatus
JP2000356603A (en) X-ray phase difference photographing device
JP2023539007A (en) Laboratory-based 3D scanning X-ray Laue microdiffraction system and method (LAB3DμXRD)
JP2023166197A (en) X-ray detection device and X-ray detection method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000509