JPH06232437A - Flexible thin film photoelectric conversion element - Google Patents

Flexible thin film photoelectric conversion element

Info

Publication number
JPH06232437A
JPH06232437A JP5108617A JP10861793A JPH06232437A JP H06232437 A JPH06232437 A JP H06232437A JP 5108617 A JP5108617 A JP 5108617A JP 10861793 A JP10861793 A JP 10861793A JP H06232437 A JPH06232437 A JP H06232437A
Authority
JP
Japan
Prior art keywords
film
photoelectric conversion
conversion element
transparent electrode
flexible thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5108617A
Other languages
Japanese (ja)
Inventor
敏夫 ▲はま▼
Toshio Hama
Shinji Kato
進二 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5108617A priority Critical patent/JPH06232437A/en
Publication of JPH06232437A publication Critical patent/JPH06232437A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To increase incident light, reduce series resistance and improve durabil ity for a photoelectric conversion layer of a flexible thin film photoelectric conversion element using a plastic film as a substrate. CONSTITUTION:By covering the surface at the incident side of light of a substrate with SiN film 5 or SiOX film, the reflectivity of light decreases and a conversion efficiency rises compared to the case where the plastic is exposed on the surface, and also the deterioration of a film due to ultraviolet rays can be prevented by the absorption of ultraviolet rays. Moreover, ingress of moisture can be restricted. Also by intervening a SiN film 5 or SiOX between the substrate and the transparent electrode 2, the impurities spreading from the plastic to the transparent electrode 2 can be blocked, and the rise in sheet resistance of the transparent electrode 2 due to the impurities can be restricted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、プラスチックフィルム
等を基板とした可撓性薄膜光電変換素子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flexible thin film photoelectric conversion element using a plastic film or the like as a substrate.

【0002】[0002]

【従来の技術】グロー放電プラズマCVD法により形成
されるアモルファスシリコン (以下a−Siと記す) は、
高々1μmの膜厚で光電変換素子として利用できるた
め、低コスト太陽電池材料として注目されている。この
a−Si光電変換素子をポリエチレンテレフタレート (P
ET) 、ポリエチレンナフタレート (PEN) 、ポリエ
チレンサルファイド (PES) およびポリふっ化ビニル
(PVF) 等のプラスチックフィルム上に形成した可撓
性薄膜光電変換素子が知られている。このような可撓性
薄膜光電変換素子は、ガラス板、ステンレス鋼板上にa
−Si光電変換層を形成した薄膜光電変換素子に比べて軽
量であり、かつロール状にして使用できるため、応用上
大きな可能性を有するものである。
2. Description of the Related Art Amorphous silicon (hereinafter referred to as a-Si) formed by glow discharge plasma CVD is
Since it can be used as a photoelectric conversion element with a film thickness of at most 1 μm, it is attracting attention as a low-cost solar cell material. This a-Si photoelectric conversion element is a polyethylene terephthalate (P
ET), polyethylene naphthalate (PEN), polyethylene sulfide (PES) and polyvinyl fluoride
A flexible thin film photoelectric conversion element formed on a plastic film such as (PVF) is known. Such a flexible thin film photoelectric conversion element has a glass plate, a stainless steel plate, and a
Since it is lighter in weight than a thin-film photoelectric conversion element formed with a -Si photoelectric conversion layer and can be used in a roll shape, it has great potential for application.

【0003】[0003]

【発明が解決しようとする課題】屈折率の異なる物質の
界面での反射率Rは、二つの物質の屈折率をn1 、n2
とした場合、簡単に表すと、R= (n2 −n1 ) 2
(n2 +n1 ) 2 となる。ガラス基板の場合、ガラスの
屈折率は1.5であるから、大気中から光が入射するとき
のガラス基板の表面の反射率R=4%となり、反射によ
る損失は極めて少ない。これに対しPETの屈折率は1.
65、PENの屈折率は1.8、PESの屈折率は2.05など
ガラスより屈折率が高くなるため、例えば波長350 〜10
00nmの光のPESフィルムの表面での反射率R=18%と
なる。このため、a−Si光電変換層で利用できる光の割
合が減少し、出力電流がガラス板を基板とした薄膜光電
素子に比べ2割程度低くなる。また、プラスチックフィ
ルムは紫外線を長く照射すると硬化、変色などが生じ、
所期の光学特性を維持できなくなるとともに耐久性が著
しく劣化する。さらに、プラスチックフィルムは吸湿性
を有するため、湿気がa−Si薄膜光電変換層に侵入し、
素子の特性劣化を招く。一方、プラスチックフィルム上
に透明導電膜、a−Si層、金属電極の各薄膜を順次積層
して薄膜光電変換素子を形成していくとき、a−Si層の
形成温度が約200 ℃迄であるため、プラスチックフィル
ムに含まれる酸素、窒素、炭素などの化合物といった不
純物が透明電極の透明導電膜に拡散し、透明電極層の電
気的特性、すなわちシート抵抗の増大などを引きおこし
て、セルの直列抵抗成分が増大し、また光学的特性、す
なわち波長350 〜800nm の光の不純物吸収による透過率
の低下を引きおこし、太陽電池の出力電力を低下させ
る。
The reflectance R at the interface between substances having different refractive indices is calculated by comparing the refractive indices of two substances with n 1 and n 2.
In short, R = (n 2 −n 1 ) 2 /
(n 2 + n 1 ) 2 . In the case of a glass substrate, since the refractive index of glass is 1.5, the reflectance of the surface of the glass substrate when light enters from the atmosphere is R = 4%, and the loss due to reflection is extremely small. In contrast, PET has a refractive index of 1.
65, PEN has a refractive index of 1.8, PES has a refractive index of 2.05, which is higher than that of glass.
The reflectance of 00 nm light on the surface of the PES film is R = 18%. Therefore, the proportion of light that can be used in the a-Si photoelectric conversion layer is reduced, and the output current is about 20% lower than that of a thin film photoelectric element using a glass plate as a substrate. Also, the plastic film is hardened and discolored when it is irradiated with ultraviolet rays for a long time.
The desired optical characteristics cannot be maintained, and the durability is significantly deteriorated. Furthermore, since the plastic film has a hygroscopic property, moisture penetrates into the a-Si thin film photoelectric conversion layer,
This leads to deterioration of device characteristics. On the other hand, when a thin film photoelectric conversion element is formed by sequentially laminating thin films of a transparent conductive film, an a-Si layer, and a metal electrode on a plastic film, the forming temperature of the a-Si layer is up to about 200 ° C. Therefore, impurities such as compounds such as oxygen, nitrogen, and carbon contained in the plastic film diffuse into the transparent conductive film of the transparent electrode, causing the electrical characteristics of the transparent electrode layer, that is, the increase of the sheet resistance, and the series connection of the cells. The resistance component increases, and the optical characteristics, that is, the transmittance due to the absorption of impurities of light having a wavelength of 350 to 800 nm is reduced, and the output power of the solar cell is reduced.

【0004】本発明の目的は、上記問題点を解決し、光
電変換層で利用できる光の割合が高く、かつ耐久性のあ
る可撓性薄膜光電変換素子を提供することにある。
An object of the present invention is to solve the above problems and to provide a flexible thin film photoelectric conversion element having a high proportion of light available in the photoelectric conversion layer and having durability.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は、透光性で絶縁性のプラスチックフィル
ム上に透明電極、a−Si光電変換層、裏面電極を順次積
層してなる可撓性薄膜光電変換素子において、プラスチ
ックフィルムの反透明電極側の面がプラスチックフィル
ムの屈折率より低い屈折率を有するけい素化合物膜によ
って覆われたものとする。また、透光性で絶縁性のプラ
スチックフィルム上に透明電極、a−Si光電変換層、裏
面電極を順次積層してなる可撓性薄膜光電変換素子にお
いて、プラスチックフィルムと透明電極の間にけい素化
合物膜が介在するものとする。そして、けい素化合物が
窒化けい素あるいは酸化けい素であることが有効であ
り、窒化けい素の場合は窒素、酸化けい素の場合は酸素
のけい素に対する比を調整することにより屈折率が制御
されたことが有効である。
In order to achieve the above-mentioned object, the present invention has a method in which a transparent electrode, an a-Si photoelectric conversion layer and a back electrode are sequentially laminated on a transparent and insulating plastic film. In the flexible thin film photoelectric conversion element, the surface of the plastic film on the side opposite to the transparent electrode is covered with a silicon compound film having a refractive index lower than that of the plastic film. Further, in a flexible thin film photoelectric conversion element in which a transparent electrode, an a-Si photoelectric conversion layer, and a back electrode are sequentially laminated on a transparent and insulating plastic film, a silicon film is provided between the plastic film and the transparent electrode. A compound film is interposed. It is effective that the silicon compound is silicon nitride or silicon oxide, and the refractive index can be controlled by adjusting the ratio of nitrogen to silicon in the case of silicon nitride and oxygen to silicon in the case of silicon oxide. What has been done is effective.

【0006】[0006]

【作用】プラスチックフィルムの光入射側にプラスチッ
クより屈折率の低いけい素化合物の膜を形成すると、プ
ラスチックの屈折率をn2 、その膜の屈折率をn3 とし
た場合、反射率は、大気とシリコン化合物膜との界面で
のR1 = (n3 −1) 2/ (n3 +1) 2 と、けい素化
合物膜とフィルムとの界面でのR2 = (n2 −n 3 ) 2
/ (n2 +n3 ) 2 の和R1 +R2 となる。例えばn2
=2.0、n3 =1.5とすると、R1 =4%、R2 =2%
となりR1 +R2 は6%にすぎず、けい素化合物のない
場合の反射率R0 =11%の半分程度に低減し、反射防止
作用が生ずる。一般的に言えば、屈折率n1 とn2 の物
質の間に屈折率n3 の物質を介在させるとき、n3 2
1 2 の場合に合計の反射率が最小になる。そして、
けい素化合物として窒化けい素を用いるときはN/Si
比、酸化けい素を用いるときは図4に示すようにO/Si
比を調整することにより屈折率を制御できるため、プラ
スチックフィルムの材料の屈折率に応じて適切な屈折率
のけい素化合物膜を用いることができる。けい素化合物
膜は反射防止膜としてプラスチックフィルム表面での反
射を低減するとともに、紫外線カットフィルタの役割お
よび湿気カットフィルタとしての役割を果たす。一方、
プラスチックフィルムと透明電極の界面に形成されたSi
N膜はプラスチックフィルムからの不純物の拡散阻止層
としての役割を果たす。
[Function] A plastic film is placed on the light-incident side of the plastic film.
When a silicon compound film with a lower refractive index than
The refractive index of the last is n2, The refractive index of the film is n3age
The reflectance at the interface between the atmosphere and the silicon compound film,
R1= (N3-1)2/ (N3+1)2And siliconization
R at the interface between the compound film and the film2= (N2-N 3)2
/ (N2+ N3)2Sum R1+ R2Becomes For example, n2
= 2.0, n3= 1.5, R1= 4%, R2= 2%
Next R1+ R2Is only 6%, no silicon compound
Case reflectance R0Approximately half of 11%, anti-reflection
The action occurs. Generally speaking, the refractive index n1And n2Thing
Refractive index n between qualities3When interposing the substance of3 2=
n1n2, The total reflectance is minimized. And
N / Si when silicon nitride is used as the silicon compound
When using silicon oxide, as shown in FIG.
Since the refractive index can be controlled by adjusting the ratio,
Suitable refractive index depending on the refractive index of the material of the stick film
A silicon compound film can be used. Silicon compound
The film is used as an antireflection film to protect the plastic film surface from
Reduce the amount of radiation and also serve as a UV cut filter.
And acts as a moisture cut filter. on the other hand,
Si formed at the interface between the plastic film and the transparent electrode
N film is a diffusion prevention layer for impurities from the plastic film
Play a role as.

【0007】[0007]

【実施例】図1は本発明の一実施例の薄膜光電変換素子
の断面構造を示す。この光電変換素子は、一面上に透明
電極2、pin構造をもつa−Si光電変換層3および裏
面電極4を積層したプラスチックフィルム1の他面に反
射防止膜としてSiN膜5を形成したものである。プラス
チックフィルム1は、ポリエチレンテレフタレート(P
ET) 、ポリエチレンナフタレート (PEN) 、ポリエ
チレンサルファイド(PES) あるいはポリふっ化ビニ
ル (PVF) 等の屈折率1.6以上の材料のいずれかから
なり、SiN膜5は、このフィルム1をロールから引き出
し、電力密度0.5〜1.2W/cm2 の高周波電圧の印加さ
れる対向電極の間にモノシラン (SiH 4 ) とN2 との混
合ガス、あるいはSiH4 とH2 で希釈したNH3 との混
合ガスを導入して生ずるプラズマ中を通し、フィルム温
度をプラスチックの融点200 〜300 ℃より低い100 〜18
0 ℃にしてプラズマCVD法により100 〜300 nmの厚さ
に成膜され、N/Si比を1.0〜1.5にすることにより屈
折率が1.5〜1.9になるように制御されている。a−Si
光電変換層3は、SiH4 とH2 の混合ガスに必要に応じ
てB2 6 あるいはPH3 を添加した反応ガスを導入し
た反応室内に、スパッタリング法によりITO、SnO2
あるいはZnO等からなる透明電極2をSiN膜5と反対側
に形成したフィルム1を通し、フィルム温度100 〜180
℃、放電電力密度0.1〜0.9W/cm2 の条件で成膜す
る。裏面電極4はスパッタリング法により金属によって
形成する。この薄膜光電変換素子では、プラスチックフ
ィルム1への光6の入射側にプラスチックフィルムの屈
折率より低い屈折率をもつSiN膜5が存在しているた
め、プラスチックフィルム表面での反射率は10%以下と
低減され、紫外線は90%以上をSiN膜で吸収することが
できた。しかし、それより高い波長の光は95%以上透過
する。この結果、面積1cm2 の素子で変換効率が従来の
5〜6%から7%以上に向上した。また、プラスチック
フィルムの水蒸気透過率を評価したところ、例えばPE
Tフィルムの場合、24時間で28g/m2 であったが、Si
N膜5を被覆することにより5g/m2 以下と大幅に減
少し、耐湿性が向上した。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a thin film photoelectric conversion device according to an embodiment of the present invention.
The cross-sectional structure of is shown. This photoelectric conversion element is transparent on one side
Electrode 2, a-Si photoelectric conversion layer 3 having pin structure, and back
The other side of the plastic film 1 on which the surface electrode 4 is laminated
The SiN film 5 is formed as a protection film. plus
Tick film 1 is polyethylene terephthalate (P
ET), polyethylene naphthalate (PEN), polyethylene
Tylene sulfide (PES) or polyvinylidene fluoride
(PVF) or other material with a refractive index of 1.6 or more
Then, the SiN film 5 pulls out this film 1 from the roll.
Power density 0.5-1.2W / cm2High frequency voltage applied
Monosilane (SiH Four) And N2Mixed with
Compound gas or SiHFourAnd H2NH diluted with3Mixed with
The film temperature is passed through the plasma generated by introducing the combined gas.
Degree of melting point of plastic is 100 ~ 18, which is lower than 200 ~ 300 ℃
Thickness of 100-300 nm by plasma CVD method at 0 ℃
The film is deposited on the substrate and the N / Si ratio is adjusted to 1.0-1.5
The folding rate is controlled to be 1.5 to 1.9. a-Si
The photoelectric conversion layer 3 is SiHFourAnd H2As required for mixed gas
B2H6Or PH3Introduce the reaction gas with
In the reaction chamber, ITO and SnO were formed by the sputtering method.2
Alternatively, the transparent electrode 2 made of ZnO or the like is provided on the side opposite to the SiN film 5.
Through the film 1 formed on the film, the film temperature 100 ~ 180
℃, discharge power density 0.1-0.9W / cm2Film formation under the conditions
It The back electrode 4 is made of metal by the sputtering method.
Form. In this thin film photoelectric conversion element,
The plastic film is bent on the incident side of the light 6 to the film 1.
There is a SiN film 5 having a refractive index lower than the bending index.
Therefore, the reflectance on the surface of the plastic film is less than 10%.
It is reduced, and 90% or more of ultraviolet rays can be absorbed by the SiN film.
did it. However, light with wavelengths higher than that transmits 95% or more
To do. As a result, the area is 1 cm2The conversion efficiency of conventional elements
It improved from 5 to 6% to 7% or more. Also plastic
When the water vapor transmission rate of the film was evaluated, for example PE
In case of T film, 28g / m in 24 hours2Was, but Si
5 g / m by coating N film 52Greatly reduced to
Moisture resistance was slightly improved.

【0008】本発明の別の実施例の薄膜光電変換素子
は、断面構造は図1と同様であるが反射防止膜としてSi
N膜の代わりにSiOx 膜を用いた。SiOx 膜の成膜は、
Arガス圧力2Pa、スパッタ投入電力300 Wの条件下のR
Fマグネトロンスパッタ法によりプラスチックフィルム
を加熱しないで行った。SiOx 膜の膜厚が薄いと厚さむ
らが生ずるので50nmとし、成膜条件を調整してx値を制
御することにより、図4に示すようにフィルムの屈折率
に対応した屈折率をもつ膜を成膜した。これにより、プ
ラスチックフィルム表面での光の反射率を10%以下にす
ることができた。また、SiOx 膜の形成により、大気中
の酸素や水蒸気のプラスチックフィルムへの吸着を防
ぎ、プラスチックフィルムの光の透過率を維持すること
が可能になった。図2に示す実施例では、プラスチック
フィルム1と透明電極の間にSiN膜5が存在する。すな
わち、プラスチックフィルム1の一面上に図1に示した
実施例と同様のプラズマCVD法により成膜温度180 ℃
以下で100 〜300nm の膜厚のSiN膜5を形成後、その上
に透明電極2、a−Si変換層3、裏面電極4を順次積層
したものである。このSiN膜5により、その上のa−Si
層3の成膜時の温度上昇により、プラスチックフィルム
に含まれる水素、酸素、炭素、窒素等の化合物などの不
純物が透明電極2側へ拡散するのを阻止することができ
る。このような不純物遮蔽膜のSiN膜5を挿入しない素
子と挿入した素子を面積1cm2 で作製し、特性を比較し
たところ、前者では直列抵抗成分が6〜10Ωと高く、変
換効率が5〜6%であったが、後者では直列抵抗成分が
2〜4Ωと通常のガラス基板を用いた光電変換素子とほ
ぼ同じとなり、8%以上の変換効率が得られた。
The thin-film photoelectric conversion device of another embodiment of the present invention has the same sectional structure as that of FIG.
A SiO x film was used instead of the N film. The formation of the SiO x film is
R under Ar gas pressure of 2 Pa and sputter input power of 300 W
It was carried out by the F magnetron sputtering method without heating the plastic film. If the thickness of the SiO x film is thin, unevenness in thickness occurs, so the thickness is set to 50 nm, and by controlling the x value by adjusting the film forming condition, a refractive index corresponding to the refractive index of the film is obtained as shown in FIG. A film was formed. As a result, the reflectance of light on the surface of the plastic film could be reduced to 10% or less. Further, the formation of the SiO x film makes it possible to prevent adsorption of oxygen and water vapor in the atmosphere to the plastic film and maintain the light transmittance of the plastic film. In the embodiment shown in FIG. 2, the SiN film 5 exists between the plastic film 1 and the transparent electrode. That is, a film forming temperature of 180 ° C. was formed on one surface of the plastic film 1 by the same plasma CVD method as that of the embodiment shown in FIG.
In the following, a SiN film 5 having a thickness of 100 to 300 nm is formed, and then a transparent electrode 2, an a-Si conversion layer 3 and a back surface electrode 4 are sequentially laminated thereon. This SiN film 5 allows the a-Si on
It is possible to prevent impurities such as hydrogen, oxygen, compounds such as carbon and nitrogen contained in the plastic film from diffusing to the transparent electrode 2 side due to the temperature rise during the formation of the layer 3. A device in which the SiN film 5 of such an impurity shielding film is not inserted and a device in which the SiN film 5 is inserted are produced with an area of 1 cm 2 and characteristics are compared. In the former case, the series resistance component is as high as 6 to 10Ω and the conversion efficiency is 5 to 6 However, in the latter case, the series resistance component was 2 to 4Ω, which was almost the same as that of a photoelectric conversion element using a normal glass substrate, and a conversion efficiency of 8% or more was obtained.

【0009】図3に示す実施例の薄膜光電変換素子は、
プラスチックフィルム1の両面をSiN膜5により被覆し
たのち、透明電極2、a−Si光電変換層3、裏面電極4
を順次形成したもので、表面反射率の低下、透明電極の
シート抵抗の低下により面積1cm2 の素子で変換効率が
9%向上し、耐湿性も良好であった。図2、図3に示す
実施例においても、SiN膜5の代わりに、Arガス圧力2
Pa、スパッタ投入電力30Wの条件下でのRFマグネトロ
ンスパッタ法で形成した50nm以上の膜厚のSiOx 膜を不
純物遮蔽膜として用いることができた。
The thin film photoelectric conversion element of the embodiment shown in FIG.
After covering both surfaces of the plastic film 1 with the SiN film 5, the transparent electrode 2, the a-Si photoelectric conversion layer 3, the back electrode 4
In the device having an area of 1 cm 2 , the conversion efficiency was improved by 9% and the moisture resistance was also good because the surface reflectance was lowered and the sheet resistance of the transparent electrode was lowered. Also in the embodiment shown in FIGS. 2 and 3, instead of the SiN film 5, Ar gas pressure 2
It was possible to use an SiO x film having a film thickness of 50 nm or more formed by the RF magnetron sputtering method under the conditions of Pa and a sputtering input power of 30 W as an impurity shielding film.

【0010】[0010]

【発明の効果】プラスチックフィルムを基板として透明
電極、a−Si光電変換層、裏面電極を順次積層して形成
した薄膜光電変換素子のプラスチックフィルムの光入射
側に、屈折率1.7〜1.9のフィルムのプラスチックより
屈折率の低いSiN膜あるいはSiOx 膜のようなけい素化
合物からなる反射防止膜を形成することにより、フィル
ム表面での反射率を低減し、かつ紫外光のフィルムへの
入射を抑えてプラスチックフィルムの変質を防止し、さ
らに耐湿性を高めるので素子の性能の向上に効果があ
る。また、プラスチックフィルムと透明電極の間にけい
素化合物からなる不純物遮蔽膜を介在させることによ
り、フィルム内の不純物の透明電極への拡散が防止さ
れ、素子特性の向上が図れた。そして、両者の併用によ
り一層高い素子特性と高耐久性の可撓性薄膜光電変換素
子が得られた。
EFFECT OF THE INVENTION A thin film photoelectric conversion element formed by sequentially laminating a transparent electrode, an a-Si photoelectric conversion layer, and a back electrode using a plastic film as a substrate has a refractive index of 1.7 to 1. By forming an antireflection film made of a silicon compound such as a SiN film or a SiO x film having a lower refractive index than the plastic of the film of No. 9, the reflectance on the film surface is reduced and the ultraviolet light to the film is reduced. It suppresses the incidence of light and prevents the plastic film from deteriorating, and further improves the moisture resistance, which is effective in improving the device performance. Further, by interposing an impurity shielding film made of a silicon compound between the plastic film and the transparent electrode, diffusion of impurities in the film to the transparent electrode was prevented, and device characteristics were improved. Then, by using both of them together, a flexible thin film photoelectric conversion device having higher device characteristics and higher durability was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の薄膜光電変換素子の断面構
造図
FIG. 1 is a cross-sectional structural diagram of a thin film photoelectric conversion element according to an embodiment of the present invention.

【図2】本発明の別の実施例の薄膜光電変換素子の断面
構造図
FIG. 2 is a sectional structural view of a thin film photoelectric conversion element of another embodiment of the present invention.

【図3】本発明のさらに別の実施例の薄膜光電変換素子
の断面構造図
FIG. 3 is a cross-sectional structural view of a thin film photoelectric conversion element according to still another embodiment of the present invention.

【図4】SiOx の屈折率とxとの関係線図FIG. 4 is a relational diagram of the refractive index of SiO x and x.

【符号の説明】[Explanation of symbols]

1 プラスチックフィルム 2 透明電極 3 a−Si光電変換層 4 裏面電極 5 SiN膜 1 plastic film 2 transparent electrode 3 a-Si photoelectric conversion layer 4 back electrode 5 SiN film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】透光性で絶縁性のプラスチックフィルム上
に透明電極、アモルファスシリコン光電変換層、裏面電
極を順次積層してなるものにおいて、プラスチックフィ
ルムの反透明電極側の面がプラスチックフィルムの屈折
率より低い屈折率を有するけい素化合物膜によって覆わ
れたことを特徴とする可撓性薄膜光電変換素子。
1. A transparent electrode, an amorphous silicon photoelectric conversion layer, and a back electrode are laminated in this order on a transparent and insulating plastic film, and the surface of the plastic film on the side opposite to the transparent electrode is the refraction of the plastic film. A flexible thin film photoelectric conversion element, characterized in that it is covered with a silicon compound film having a refractive index lower than the refractive index.
【請求項2】透光性で絶縁性のプラスチックフィルム上
に透明電極、アモルファスシリコン光電変換層、裏面電
極を順次積層してなるものにおいて、プラスチックフィ
ルムと透明電極の間にけい素化合物膜が介在することを
特徴とする可撓性薄膜光電変換素子。
2. A transparent compound film comprising a transparent electrode, an amorphous silicon photoelectric conversion layer, and a back electrode, which are sequentially laminated on a transparent and insulative plastic film, wherein a silicon compound film is interposed between the plastic film and the transparent electrode. A flexible thin-film photoelectric conversion element, comprising:
【請求項3】けい素化合物が窒化けい素である請求項1
あるいは2記載の可撓性薄膜光電変換素子。
3. The silicon compound is silicon nitride.
Alternatively, the flexible thin film photoelectric conversion element according to the item 2.
【請求項4】窒素のけい素に対する比を調整することに
より、窒化けい素の屈折率が制御された請求項3記載の
可撓性薄膜光電変換素子。
4. The flexible thin film photoelectric conversion element according to claim 3, wherein the refractive index of silicon nitride is controlled by adjusting the ratio of nitrogen to silicon.
【請求項5】けい素化合物が酸化けい素である請求項1
あるいは2記載の可撓性薄膜光電変換素子。
5. The silicon compound is silicon oxide.
Alternatively, the flexible thin film photoelectric conversion element according to the item 2.
【請求項6】酸素のけい素に対する比を調整することに
より酸化けい素の屈折率が制御された請求項5記載の可
撓性薄膜光電変換素子。
6. The flexible thin film photoelectric conversion element according to claim 5, wherein the refractive index of silicon oxide is controlled by adjusting the ratio of oxygen to silicon.
JP5108617A 1992-12-07 1993-05-11 Flexible thin film photoelectric conversion element Pending JPH06232437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5108617A JPH06232437A (en) 1992-12-07 1993-05-11 Flexible thin film photoelectric conversion element

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32586692 1992-12-07
JP4-325866 1992-12-07
JP5108617A JPH06232437A (en) 1992-12-07 1993-05-11 Flexible thin film photoelectric conversion element

Publications (1)

Publication Number Publication Date
JPH06232437A true JPH06232437A (en) 1994-08-19

Family

ID=26448451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5108617A Pending JPH06232437A (en) 1992-12-07 1993-05-11 Flexible thin film photoelectric conversion element

Country Status (1)

Country Link
JP (1) JPH06232437A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156313A (en) * 1999-11-24 2001-06-08 Toppan Printing Co Ltd Solar battery and base therefor
JP2008529305A (en) * 2005-01-26 2008-07-31 ユナイテッド ソーラー オヴォニック コーポレイション Method of eliminating device curl on thin flexible substrate and device made by such method
JP2011009287A (en) * 2009-06-23 2011-01-13 Showa Shell Sekiyu Kk Cis-based thin film solar cell
US8025929B2 (en) 2004-11-19 2011-09-27 Helianthos B.V. Method for preparing flexible mechanically compensated transparent layered material
JP2013524549A (en) * 2010-04-13 2013-06-17 アプライド マテリアルズ インコーポレイテッド Multilayer SiN for functional and optical graded ARC layers on crystalline solar cells
WO2015060013A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001156313A (en) * 1999-11-24 2001-06-08 Toppan Printing Co Ltd Solar battery and base therefor
US8025929B2 (en) 2004-11-19 2011-09-27 Helianthos B.V. Method for preparing flexible mechanically compensated transparent layered material
JP2008529305A (en) * 2005-01-26 2008-07-31 ユナイテッド ソーラー オヴォニック コーポレイション Method of eliminating device curl on thin flexible substrate and device made by such method
JP2011009287A (en) * 2009-06-23 2011-01-13 Showa Shell Sekiyu Kk Cis-based thin film solar cell
JP2013524549A (en) * 2010-04-13 2013-06-17 アプライド マテリアルズ インコーポレイテッド Multilayer SiN for functional and optical graded ARC layers on crystalline solar cells
WO2015060013A1 (en) * 2013-10-25 2015-04-30 シャープ株式会社 Photoelectric conversion element
JPWO2015060013A1 (en) * 2013-10-25 2017-03-09 シャープ株式会社 Photoelectric conversion element

Similar Documents

Publication Publication Date Title
US7846750B2 (en) Textured rear electrode structure for use in photovoltaic device such as CIGS/CIS solar cell
RU2423755C2 (en) Front contact with adjacent intermediate layer(s) for use in photoelectric devices and method of making said contact
US4940495A (en) Photovoltaic device having light transmitting electrically conductive stacked films
US8012317B2 (en) Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
US4663495A (en) Transparent photovoltaic module
KR101000057B1 (en) Solar Cell Having Multiple Transparent Conducting Layers And Manufacturing Method Thereof
US4663188A (en) Method for making a photodetector with enhanced light absorption
US5230746A (en) Photovoltaic device having enhanced rear reflecting contact
US20080223436A1 (en) Back reflector for use in photovoltaic device
US20080178932A1 (en) Front electrode including transparent conductive coating on patterned glass substrate for use in photovoltaic device and method of making same
CN101356455A (en) Transparent substrate provided with an antireflective coating
US20080105293A1 (en) Front electrode for use in photovoltaic device and method of making same
US20080105298A1 (en) Front electrode for use in photovoltaic device and method of making same
US20070193624A1 (en) Indium zinc oxide based front contact for photovoltaic device and method of making same
WO2005011002A1 (en) Silicon based thin film solar cell
US8354586B2 (en) Transparent conductor film stack with cadmium stannate, corresponding photovoltaic device, and method of making same
JP2002222972A (en) Laminated solar battery
JP4789131B2 (en) Solar cell and method for manufacturing solar cell
JPH06232437A (en) Flexible thin film photoelectric conversion element
RU2455730C2 (en) Solar cell
US20110180130A1 (en) Highly-conductive and textured front transparent electrode for a-si thin-film solar cells, and/or method of making the same
JPH07321362A (en) Photovoltaic device
JP3025392B2 (en) Thin film solar cell and manufacturing method
JPH10190028A (en) High refractive index transparent conductive film and solar cell
JP3196155B2 (en) Photovoltaic device