JPH062323A - Prediction of gelogical property ahead of facing during tunnel excavation - Google Patents

Prediction of gelogical property ahead of facing during tunnel excavation

Info

Publication number
JPH062323A
JPH062323A JP16274392A JP16274392A JPH062323A JP H062323 A JPH062323 A JP H062323A JP 16274392 A JP16274392 A JP 16274392A JP 16274392 A JP16274392 A JP 16274392A JP H062323 A JPH062323 A JP H062323A
Authority
JP
Japan
Prior art keywords
face
hole
oscillation
borehole
elastic wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16274392A
Other languages
Japanese (ja)
Other versions
JP2817076B2 (en
Inventor
Haruhiko Nishino
治彦 西野
Matsuo Yamamoto
松生 山本
Toshio Shinokawa
俊夫 篠川
Yoshiaki Ishida
義昭 石田
Yasuo Meji
康男 目時
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sato Kogyo Co Ltd
Original Assignee
Sato Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sato Kogyo Co Ltd filed Critical Sato Kogyo Co Ltd
Priority to JP16274392A priority Critical patent/JP2817076B2/en
Publication of JPH062323A publication Critical patent/JPH062323A/en
Application granted granted Critical
Publication of JP2817076B2 publication Critical patent/JP2817076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE:To utilize geological features ahead of facing for selection of the next process timbering by a method in which the geological condition ahead of facing during tunnel excavation is simply and quickly grasped. CONSTITUTION:During the excvation of tunnel, a bore hole 1 for oscillation and a bore hole 2 for receiving are preliminary formed in left-and right-handed both sides of a facing A, and a receiving point 3 is set in the hole 2. An impact is given to the hole 1 to cause oscillation at an oscillating point 7, and the oscillation is received at the point 3 in order to measure the speeds of elastic waves in the front ground of the facing. The prediction of the geological feature for the front ground of the facing A can thus be attained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はトンネル掘削中における
切羽前方の地質予測、及び同予測結果から次工程におけ
る支保選定を行なうトンネル掘削中における切羽前方の
地質予知に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a geological prediction in front of a cutting face during excavation of a tunnel, and a geological prediction in front of a cutting face during excavation of a tunnel in which support is selected in the next process based on the prediction result.

【0002】[0002]

【従来の技術】従来この種の方法として下記の各方法が
行なわれている。 (イ) 地表から行う各種の物理探査による方法 (ロ) 切羽から行う各種の物理探査による方法 (ハ) 先進ボーリングを利用した各種の調査・試験に
よる方法 (ニ) 油圧ドリルの削孔情報による方法
2. Description of the Related Art Conventionally, the following methods have been performed as this type of method. (A) Various geophysical survey methods performed from the ground surface (b) Various geophysical survey methods performed from the face (c) Various survey and test methods using advanced boring (d) Hydraulic drilling information method

【0003】[0003]

【発明が解決しようとする課題】しかしながら前記各方
法は次のような問題点を包蔵している。 (イ) 地表から行う各種の物理探査による方法 地表から行う各種の物理探査(弾性波探査,電磁波探
査,電気探査等)による方法は、トンネル全長に亘る概
略的な地質状況の把握には適しているが、切羽前方のよ
うな局所的でかつ詳細な地質状況の把握には精度の面で
問題がある。 (ロ) 切羽から行う各種の物理探査による方法 切羽から行う各種の物理探査(弾性波探査,電磁波探
査,電気探査,表面波探査等)による方法は、地表から
行う物理探査にくらべれば、局所的な地質状況を概略的
に把握するのに適している。しかし、切羽の表面付近の
局限されたわずかな領域の地質状況しか把握できず、精
度の面で問題がある。また、切羽での作業が多くなるた
め安全面においても問題がある。 (ハ) 先進ボーリングを利用した各種の調査・試験に
よる方法 先進ボーリングを利用すれば切羽前方の地質状況を精度
よく把握できるが、先進ボーリングにかなりの費用を要
するうえに、切羽からの先進ボーリングは施工サイクル
の大きな妨げとなる。そのため、特殊な場合を除いて、
日常の施工管理には利用しにくい。 (ニ) 油圧ドリルの削孔情報(のみ下がり、打撃エネ
ルギー、孔壁状況等)による方法 油圧ドリルの削孔情報(のみ下がり、打撃エネルギー、
孔壁状況等)による方法は、施工サイクルを妨げずに比
較的精度よく切羽前方の地山状況を把握できるため、上
記の3種類の方法に比べてコストおよび実用性の面で優
れていると考えられる。しかし、現在のところ削孔情報
として得られる物理量が支保パターンの選定等の具体的
な設計に直接結びついていない。
However, each of the above methods has the following problems. (B) Method by various geophysical surveys carried out from the surface The method by various geophysical surveys carried out from the surface (elastic wave exploration, electromagnetic wave exploration, electrical exploration, etc.) is suitable for grasping the rough geological condition over the entire length of the tunnel. However, there is a problem in terms of accuracy in grasping the local and detailed geological conditions such as the front of the face. (B) Various methods of geophysical exploration performed from the cutting face Various methods of geophysical exploration (elastic wave exploration, electromagnetic wave exploration, electrical exploration, surface wave exploration, etc.) performed from the cutting face are more localized than physical exploration performed from the ground surface. It is suitable for rough understanding of various geological conditions. However, there is a problem in terms of accuracy because it is possible to understand only the geological condition of a small localized area near the surface of the face. In addition, there is a problem in terms of safety since the work of working with the face is increased. (C) Methods by various surveys and tests using advanced boring Although advanced boring can be used to accurately understand the geological condition in front of the cutting face, advanced boring requires considerable expense and It will greatly hinder the construction cycle. Therefore, except in special cases,
It is difficult to use for daily construction management. (D) Method based on drilling information of hydraulic drill (only falling, impact energy, hole wall condition, etc.) Drilling information of hydraulic drill (only falling, impact energy,
The method based on the condition of hole wall, etc. is superior in terms of cost and practicality compared to the above three methods because the ground condition in front of the face can be grasped relatively accurately without hindering the construction cycle. Conceivable. However, at present, the physical quantity obtained as drilling information is not directly linked to a specific design such as selection of a support pattern.

【0004】本発明は前記従来技術の有する問題点に鑑
みて提案されたもので、その目的とする処は、トンネル
掘削中に施工サイクルを妨げずに切羽前方地質の精度の
よい予測を行なうとともに、同予測結果から次工程にお
ける適正な支保工の選定が行なわれるトンネル掘削中に
おける切羽前方の地質予知工法を提供する点にある。
The present invention has been proposed in view of the above-mentioned problems of the prior art. The object of the present invention is to accurately predict the geology in front of a face without hindering the construction cycle during tunnel excavation. The point is to provide a geological prediction method in front of the cutting face during tunnel excavation, in which an appropriate support work is selected in the next process based on the prediction results.

【0005】[0005]

【課題を解決するための手段】前記の目的を達成するた
め、本発明に係るトンネル掘削中における切羽前方の地
質予知方法によれば、トンネル掘削時において発破用装
薬孔を穿孔する前に、切羽の左右両側に2本のボアホー
ルを削孔し、同両ボアホールのうち1方のボアホールを
発振孔とし、他方のボアホールを受振孔として孔間弾性
波試験を行い、切羽前方地山の弾性波速度を測定し、切
羽前方の地質の予測を行うものである。
In order to achieve the above object, according to the method for predicting the geology of the face in front of a face during tunnel excavation according to the present invention, before the blasting charge hole is drilled during tunnel excavation, Two boreholes were drilled on both the left and right sides of the face, one borehole of the two boreholes was used as an oscillation hole, and the other borehole was used as a receiving hole to conduct inter-hole elastic wave tests. The velocity is measured and the geology in front of the face is predicted.

【0006】請求項2の発明によれば、前記切羽前方地
山の弾性波速度と、予めコンピュータに記憶されている
弾性波速度と地山等級及び標準支保パターンとの関係を
対比して、前記地山に最適の支保パターンを演算選定す
るものである。請求項3の発明によれば、前記ボアホー
ルの深度を1発破進行長に合わせるものである。
According to the second aspect of the present invention, the elastic wave velocity of the ground in front of the cutting face is compared with the elastic wave velocity preliminarily stored in the computer, and the relationship between the natural rock grade and the standard support pattern is compared. The optimum support pattern for the ground is calculated and selected. According to the invention of claim 3, the depth of the borehole is adjusted to one blast progress length.

【0007】[0007]

【作用】本発明によれば、トンネル掘削作業中に発破用
装薬孔を穿孔する前に、切羽の左右両側に2本のボアホ
ールを削孔し、1方のボアホールを受振孔として測定し
ようとする深度まで削孔し、他方のボアホールを発振孔
とし、発振孔に衝撃を与えて発振源とし、前記受振孔内
に設けた受振点によって発振孔からの発振信号を受振
し、前記発振点からの発振時刻と、受振点での受振波形
とを測定することによって弾性波速度を測定する。
According to the present invention, before drilling a blasting charge hole during tunnel excavation work, two boreholes are drilled on the left and right sides of the face, and one borehole is measured as a receiving hole. Drilled to the depth to be used, and the other borehole as an oscillation hole, giving an impact to the oscillation hole as an oscillation source, and receiving the oscillation signal from the oscillation hole by the receiving point provided in the receiving hole. The elastic wave velocity is measured by measuring the oscillation time and the received waveform at the receiving point.

【0008】前記測定結果から切羽前方における地山弾
性波速度の分布状況を把握し、切羽前方の地質を予知し
うるものである。請求項2の発明は前記切羽前方地山の
弾性波速度を測定収録し、予めコンピュータに記憶され
ている弾性波速度及び地山等級並に標準支保パターンと
対比して、切羽前方における地山に最適の支保パターン
を演算、出力する。
It is possible to predict the geology in front of the cutting face by grasping the distribution state of the natural elastic wave velocity in front of the cutting face from the above measurement results. The invention of claim 2 measures and records the elastic wave velocity of the ground in front of the cutting face, and compares the elastic wave velocity and the ground level that are pre-stored in the computer with the standard support pattern to determine the ground in front of the cutting face. Calculates and outputs the optimum support pattern.

【0009】請求項3の発明は、前記各ボアホールの深
度を1発破進行長に合わせることによって、同各ボアホ
ールをそのまま装薬孔として用いることを可能ならしめ
たものである。
According to the third aspect of the present invention, by adjusting the depth of each of the boreholes to one blasting progress length, each of the boreholes can be directly used as a charging hole.

【0010】[0010]

【実施例】以下本発明を図示の実施例について説明す
る。発破用装薬孔の穿孔前に、切羽Aの左右両側に油圧
ドリルの如き油圧削孔機Bによって2本のボアホールを
削孔し、一方のボアホールを発振用ボアホール1とし、
他方のボアホールを受振用ボアホール2とする。図中C
は坑内を示す。(図1参照) なお受振用ボアホール2は測定しようとする深度まで削
孔する。発振用ボアホール1は測定しようとする深度ま
で一気に削孔してもよいが、任意の発振点からの測定デ
ータを得るために、段階的に掘削深度を深めていきなが
ら、各深度毎に下記の如き地山弾性波速度の測定を行っ
てもよい。
The present invention will be described below with reference to the illustrated embodiments. Before drilling the blasting charge hole, two boreholes are drilled on the left and right sides of the face A by a hydraulic drilling machine B such as a hydraulic drill, and one borehole is used as the oscillation borehole 1.
The other borehole is referred to as a vibration receiving borehole 2. C in the figure
Indicates the inside of the mine. (Refer to FIG. 1) The bore hole 2 for vibration reception is drilled to the depth to be measured. The borehole 1 for oscillation may be drilled all at once to the depth to be measured, but in order to obtain measurement data from any oscillation point, the drilling depth is gradually increased while Such measurement of natural elastic wave velocity may be performed.

【0011】次いで受振点3を所要の測定位置毎にロッ
ド4に付着させて一体化させて受振用ボアホール2に挿
入する。なお前記受振点3は受振用ボアホール2内に直
かに置くだけでもよいが、地山との密着度を高めるため
に、パッカー等を利用して地山と密着させてもよい。更
に前記各受振点3をケーブル5によってデータ収録及び
演算装置6に接続する。
Next, the vibration receiving point 3 is attached to the rod 4 at each required measurement position so as to be integrated, and is inserted into the vibration receiving borehole 2. The vibration-receiving point 3 may be placed directly in the vibration-receiving borehole 2, but it may be brought into close contact with the ground by using a packer or the like in order to increase the degree of close contact with the ground. Further, each of the receiving points 3 is connected to a data recording / calculating device 6 by a cable 5.

【0012】次いで油圧削孔機Bによって発振用ボアホ
ール1の先端部(孔底)に衝撃を与えて発振源とし、デ
ータ収録及び演算装置6を使用して発振点7から各受振
点3までの弾性波速度を測定する。(図3参照) 発振用ボアホール1の深度を更に深めたのち前記同様の
操作を行い、切羽前方における地山弾性波速度を把握す
る。(図4参照) 前記測定結果から切羽A前方における地山弾性波速度の
分布状況を把握する。
Next, the hydraulic boring machine B impacts the tip (hole bottom) of the oscillation borehole 1 to serve as an oscillation source, and the data recording and arithmetic unit 6 is used to move from the oscillation point 7 to each receiving point 3. Elastic wave velocity is measured. (See FIG. 3) After the depth of the oscillation borehole 1 is further increased, the same operation as described above is performed to grasp the natural elastic wave velocity in front of the face. (See FIG. 4) From the measurement result, the distribution state of the natural elastic wave velocity in front of the face A is grasped.

【0013】なお発振用ボアホール1と受振用ボアホー
ル2の深度を1発破進行長に合わせれば、両孔1,2と
もそのまま装薬孔として用いることが可能となる。而し
て前記切羽A前方地山の弾性波速度VD と、予めコンピ
ュータに記憶されている弾性波速度、地山等級、及び標
準支保パターンとを対比して、各施工発注機関の地山分
類に応じた最適の支保パターンを自動的に演算選定す
る。
If the depths of the oscillation borehole 1 and the vibration receiving borehole 2 are adjusted to the length of one blast, both holes 1 and 2 can be used as the charging holes as they are. Then, the elastic wave velocity V D of the ground in front of the face A is compared with the elastic wave velocity, the natural rock class, and the standard support pattern stored in advance in the computer to classify the natural rocks of each construction ordering organization. The optimum support pattern is automatically calculated and selected according to.

【0014】なお図5は本発明における測定用ボアホー
ルの削孔より支保パターン選定までのフロー図を示すも
のである。
FIG. 5 is a flow chart from the drilling of the measuring borehole to the selection of the supporting pattern in the present invention.

【0015】[0015]

【発明の効果】本発明によれば前記したように、切羽前
方の地山弾性波速度が、地山の掘削前に簡便、且つ迅速
にしかも精確に直接確認することができ、切羽前方の地
質状況を日常の施工サイクルを妨げずに把握でき、掘削
に伴う地山の挙動や発生する事態が事前に予測できるの
で、工事の安全性が向上される。
As described above, according to the present invention, the ground elastic wave velocity in front of the face can be directly confirmed easily, quickly and accurately before excavation of the ground, and the geology in front of the face is effective. Since the situation can be grasped without hindering the daily construction cycle, and the behavior of the ground and the situation that occur due to excavation can be predicted in advance, the construction safety is improved.

【0016】またこのように切羽前方の地山弾性波速度
が掘削前に直接確認できるため、次工程における支保パ
ターンが事前に選定できるので、工事中の段取りや準備
が迅速且つ円滑に行なわれ、工期の短縮が図られる。請
求項2の発明によれば各工事発注機関における標準支保
パターンの選定基準である地山弾性波速度を直接確認す
ることができるので、発注者と施工者が共通の客観的な
尺度を以って支保選定を行なうことができる。
Since the natural elastic wave velocity in front of the cutting face can be directly confirmed before excavation as described above, the support pattern in the next process can be selected in advance, so that setup and preparation during construction can be performed quickly and smoothly. The construction period can be shortened. According to the invention of claim 2, since the natural elastic wave velocity, which is the standard for selecting the standard support pattern in each construction ordering organization, can be directly confirmed, the orderer and the contractor use a common objective measure. Support can be selected.

【0017】請求項3の発明によれば、前記ボアホール
の深度を1発破長に合わせることによって、同ボアホー
ルをそのまま装薬孔として利用して、施工性を向上しう
るものである。
According to the third aspect of the present invention, by adjusting the depth of the borehole to one blasting length, the borehole can be used as it is as a charging hole to improve workability.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るトンネル掘削における切羽前方の
地盤の地質予知方法の一実施例におけるボアホール削孔
工程を示す断面図である。
FIG. 1 is a cross-sectional view showing a borehole drilling step in an embodiment of a method for predicting the geology of the ground in front of a cutting face in tunnel excavation according to the present invention.

【図2】受振点の設置工程を示す断面図である。FIG. 2 is a cross-sectional view showing a process of installing a vibration receiving point.

【図3】切羽前方の地盤における弾性波速度の測定工程
を示す断面図である。
FIG. 3 is a cross-sectional view showing a step of measuring an elastic wave velocity in the ground in front of a face.

【図4】発振点の深度の変更に伴う前記弾性波速度の測
定工程を示す断面図である。
FIG. 4 is a cross-sectional view showing a step of measuring the elastic wave velocity according to a change in the depth of an oscillation point.

【図5】支保パターン選定のフロー図である。FIG. 5 is a flowchart for selecting a support pattern.

【符号の説明】[Explanation of symbols]

A 切羽 B 油圧削孔機 C 坑内 1 発振用ボアホール 2 受振用ボアホール 3 受振点 4 ロッド 5 ケーブル 6 データ収録及び演算装置 7 発振点 A cutting face B hydraulic drilling machine C underground 1 borehole for oscillation 2 borehole for receiving vibration 3 receiving point 4 rod 5 cable 6 data recording and computing device 7 oscillation point

フロントページの続き (72)発明者 石田 義昭 東京都中央区日本橋本町4−12−20 佐藤 工業株式会社内 (72)発明者 目時 康男 東京都中央区日本橋本町4−12−20 佐藤 工業株式会社内Front page continuation (72) Inventor Yoshiaki Ishida 4-12-20 Nihonbashihonmachi, Chuo-ku, Tokyo Sato Industry Co., Ltd. (72) Inventor Yasuo Mitoki 4-12-20 Nihonbashihonmachi, Chuo-ku, Tokyo Sato Industry Co., Ltd. Within

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 トンネル掘削時において発破用装薬孔を
穿孔する前に、切羽の左右両側に2本のボアホールを削
孔し、同両ボアホールのうち1方のボアホールを発振孔
とし、他方のボアホールを受振孔として孔間弾性波試験
を行い、切羽前方地山の弾性波速度を測定し、切羽前方
の地質の予測を行うことを特徴とするトンネル掘削中に
おける切羽前方の地質予知方法。
1. Before drilling a blasting charge hole during tunnel excavation, two boreholes are drilled on both left and right sides of a face, and one of the boreholes is used as an oscillation hole and the other borehole is used as an oscillation hole. A geological prediction method in front of a cutting face during tunnel excavation, characterized by performing an inter-hole elastic wave test using a borehole as a receiving hole, measuring the elastic wave velocity of the ground in front of the cutting face, and predicting the geology in front of the cutting face.
【請求項2】 前記切羽前方地山の弾性波速度と、予め
コンピュータに記憶されている弾性波速度と地山等級及
び標準支保パターンとの関係を対比して、前記地山に最
適の支保パターンを演算選定する請求項1記載のトンネ
ル掘削中における切羽の地質予知方法。
2. The optimum support pattern for the natural ground by comparing the relationship between the elastic wave velocity of the rock face in front of the face and the elastic wave velocity previously stored in the computer with the natural rock grade and the standard support pattern. The method for predicting the geology of a face during tunnel excavation according to claim 1, wherein the method is selected by calculation.
【請求項3】 前記ボアホールの深度を1発破進行長に
合わせる請求項1記載のトンネル掘削中における切羽の
地質予知方法。
3. A method for predicting the geology of a face during tunnel excavation according to claim 1, wherein the depth of the borehole is adjusted to the length of one blast.
JP16274392A 1992-06-22 1992-06-22 Geological prediction method ahead of face during tunnel excavation Expired - Lifetime JP2817076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16274392A JP2817076B2 (en) 1992-06-22 1992-06-22 Geological prediction method ahead of face during tunnel excavation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16274392A JP2817076B2 (en) 1992-06-22 1992-06-22 Geological prediction method ahead of face during tunnel excavation

Publications (2)

Publication Number Publication Date
JPH062323A true JPH062323A (en) 1994-01-11
JP2817076B2 JP2817076B2 (en) 1998-10-27

Family

ID=15760419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16274392A Expired - Lifetime JP2817076B2 (en) 1992-06-22 1992-06-22 Geological prediction method ahead of face during tunnel excavation

Country Status (1)

Country Link
JP (1) JP2817076B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255321A (en) * 2011-06-10 2012-12-27 Kajima Corp Optimum tunnel support selecting device and optimum tunnel support selecting program
JP2017015436A (en) * 2015-06-29 2017-01-19 株式会社福田組 Electric survey method
JP2017049198A (en) * 2015-09-04 2017-03-09 前田建設工業株式会社 Working face front survey device and working face front survey method
JP2022052963A (en) * 2020-09-24 2022-04-05 大成建設株式会社 Ground condition learning device, ground condition determination device, ground condition learning method, and ground condition determination method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012255321A (en) * 2011-06-10 2012-12-27 Kajima Corp Optimum tunnel support selecting device and optimum tunnel support selecting program
JP2017015436A (en) * 2015-06-29 2017-01-19 株式会社福田組 Electric survey method
JP2017049198A (en) * 2015-09-04 2017-03-09 前田建設工業株式会社 Working face front survey device and working face front survey method
JP2022052963A (en) * 2020-09-24 2022-04-05 大成建設株式会社 Ground condition learning device, ground condition determination device, ground condition learning method, and ground condition determination method

Also Published As

Publication number Publication date
JP2817076B2 (en) 1998-10-27

Similar Documents

Publication Publication Date Title
US10697294B2 (en) Vibration while drilling data processing methods
CA3091474C (en) Vibration while drilling data processing methods
Chen et al. Ground characterization using breaking-action-based zoning analysis of rotary-percussive instrumented drilling
US20070285274A1 (en) Multi-Physics Inversion Processing to Predict Pore Pressure ahead of the Drill Bit
JP5839271B2 (en) Tunnel face forward exploration method
CN106703795A (en) Roof rock in the lane grade while drilling detection device and method based on laser distance meter
CN103174413A (en) Drilling tool and method for detecting reservoir stratum boundary and thickness while drilling
JP3238840B2 (en) Tunnel ground search system
JP2002013381A (en) Bedrock probing method
JP4157635B2 (en) Tunnel face forward exploration method
JP2878255B1 (en) Geological survey method
JP2017049198A (en) Working face front survey device and working face front survey method
US7295926B2 (en) Method for correlating well logs
JPH062323A (en) Prediction of gelogical property ahead of facing during tunnel excavation
JP5258734B2 (en) Tunnel front face exploration method and exploration system
JP2000337070A (en) Determination method for geology and stratum change in drilling or boring
JP3439334B2 (en) Speed logging method
JPH11174046A (en) Tunnel facing front surveying method
Hearst et al. Fractures induced by a contained explosion in Kemmerer coal
JP6748918B2 (en) Tunnel face exploration method
Palmström Application of seismic refraction stjrvey in assessment of jointing
JP2001342619A (en) Determination method for geological and stratum change in excavating and boring
JPH04120395A (en) Surveying system for natural ground conduction
Zhou et al. Automated geotechnical characterisation from geophysical logs: Examples from Southern Colliery, Central Queensland
Yamagami et al. Further verification of seismic survey results ahead of the tunnel face using drilling vibration data of ultra-long controlled boring

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080821

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090821

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100821

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110821

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 14

EXPY Cancellation because of completion of term