JPH06231951A - Current lead of superconducting magnet - Google Patents

Current lead of superconducting magnet

Info

Publication number
JPH06231951A
JPH06231951A JP5015023A JP1502393A JPH06231951A JP H06231951 A JPH06231951 A JP H06231951A JP 5015023 A JP5015023 A JP 5015023A JP 1502393 A JP1502393 A JP 1502393A JP H06231951 A JPH06231951 A JP H06231951A
Authority
JP
Japan
Prior art keywords
temperature side
side conductor
conductors
conductor
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5015023A
Other languages
Japanese (ja)
Inventor
Takaaki Bono
敬昭 坊野
Kiyoshi Sakaki
喜善 榊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP5015023A priority Critical patent/JPH06231951A/en
Publication of JPH06231951A publication Critical patent/JPH06231951A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To realize a conductor constitution which makes possible the reduction of the sum of heat penetration by Joule heat and heat penetration by heat conduction. CONSTITUTION:Each of a plurality of conductors 39A constituting a main body part 34A of a current lead 3A is divided into a room temperature side conductor 391 and a low temperature side conductor 392 in a longitudinal direction, and each thereof is connected by a connection part. Thereby, different materials can be used for conductors 391, 392. There is a tendency that heat penetration through the conductors 39A by heat conduction is large at a temperature side, and that by Joule heat is large at a low temperature side. Heat conduction rate and residual resistivity are in a proportional relation: therefore, if a material of a small residual resistivity is used for the room temperature side conductor 391, heat penetration due to heat conduction is reduced because of small heat conduction rate, and if a material of large residual resistivity is used for the low temperature side conductor 392, Joule heat is reduced because of small resistivity at a low temperature. General amount of heat penetration is reduced in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、低温容器内の超電導
磁石へ外部から電力を供給する超電導磁石の電流リード
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a current lead of a superconducting magnet for supplying electric power to the superconducting magnet in a cryogenic container from the outside.

【0002】[0002]

【従来の技術】一般に、超電導磁石は液体ヘリウムなど
の極低温冷媒によって冷却されるため、液体窒素シール
ドや真空などによって断熱された真空容器の内部に収納
される。電流リードは、極低温に保持された超電導コイ
ルに常温部から電力を供給するものなので、一般にリー
ド導体に発生するジュール発熱と常温部から熱伝導で内
部の極低温部へ侵入するいわゆる熱侵入を低減するため
に、液体ヘリウムが蒸発した低温のヘリウムガスを用い
て冷却する方法がとられる。したがって、ジュール発熱
や伝導熱などの熱侵入量が大きいと高価な液体ヘリウム
の消費量が多大になるばかりでなく、超電導磁石の特性
に悪影響を及ぼす恐れもある。
2. Description of the Related Art Generally, since a superconducting magnet is cooled by a cryogenic refrigerant such as liquid helium, it is housed in a vacuum container insulated by a liquid nitrogen shield or vacuum. Since the current lead supplies electric power to the superconducting coil maintained at a cryogenic temperature from the room temperature part, the Joule heat generation that generally occurs in the lead conductor and the so-called heat intrusion that penetrates from the room temperature part to the internal cryogenic part by heat conduction. In order to reduce the amount, a method of cooling by using low temperature helium gas in which liquid helium is evaporated is adopted. Therefore, if the amount of heat intrusion such as Joule heat or conduction heat is large, not only the amount of expensive liquid helium consumed becomes large, but also the characteristics of the superconducting magnet may be adversely affected.

【0003】図4は一般的な超電導磁石の縦断面図であ
る。この図において、真空断熱容器1は外側から真空容
器11、液体窒素シールド12、液体ヘリウム容器13
からなっていて、真空容器11内は真空に保持され、液
体窒素シールド12内には液体窒素が封入されており、
液体ヘリウム容器内13には液体ヘリウム4が封入され
その中に超電導コイル2が浸漬されている。電流リード
3は、液体ヘリウム容器13と真空容器11との間に設
けられるサービスポート14の中を上ふた15を貫通し
て取付けられて、その上端は大気中にあって端子板33
が取付けられ、その下端は液体ヘリウム容器13内にあ
って接続リード21が接続されている。端子板31は図
示しない外部電源に接続され、接続リード21は電流リ
ード3と超電導コイル2とを電気的に接続するものであ
る。
FIG. 4 is a vertical sectional view of a general superconducting magnet. In this figure, the vacuum heat insulating container 1 includes a vacuum container 11, a liquid nitrogen shield 12, and a liquid helium container 13 from the outside.
The inside of the vacuum container 11 is maintained in vacuum, and the liquid nitrogen shield 12 is filled with liquid nitrogen.
Liquid helium 4 is enclosed in the liquid helium container 13, and the superconducting coil 2 is immersed therein. The current lead 3 is attached by penetrating the upper lid 15 in the service port 14 provided between the liquid helium container 13 and the vacuum container 11, and the upper end thereof is in the atmosphere and the terminal plate 33.
Is attached, and the lower end thereof is inside the liquid helium container 13 and is connected with the connection lead 21. The terminal plate 31 is connected to an external power source (not shown), and the connection lead 21 electrically connects the current lead 3 and the superconducting coil 2.

【0004】電流リード3は後述するように、この図に
示されている中空管とその中を通る複数本の導体とから
なっていて、これらの間の隙間に下端から流入したヘリ
ウムガス42が通って上昇し上端部から放出される間に
導体が冷却される。図5は図4における電流リード3の
詳細を示す回転図示断面図を含む立面図である。この図
において、電流リード3は上から、ガス放出管32、端
子板33、本体部34、低温側接続部35及び低温端子
板36からなっている。本体部34は回転図示断面図に
示すように、外径側から絶縁管37、中空管38及び中
空管38の中を通る複数本の導体39からなっていて、
導体39間の隙間381には低温接続部35の図示しな
い穴から中に流入したヘリウムガス42が通って導体3
9を冷却する。絶縁管39は図4の2本の電流リード3
間又はサービスポート14との間で電気的接触を避ける
ために設けられている。中空管38の中の隙間381を
上に向かって流れるヘリウムガス42は放出管32から
大気に放出される。
As will be described later, the current lead 3 is composed of the hollow tube shown in this figure and a plurality of conductors passing through it, and the helium gas 42 flowing from the lower end into the gap between them. The conductor cools as it rises through and discharges from the top. FIG. 5 is an elevational view including a rotation-illustrated sectional view showing details of the current lead 3 in FIG. In this figure, the current lead 3 is composed of a gas discharge pipe 32, a terminal plate 33, a main body portion 34, a low temperature side connection portion 35, and a low temperature terminal plate 36 from the top. As shown in the rotational sectional view, the main body 34 includes an insulating tube 37, a hollow tube 38, and a plurality of conductors 39 passing through the hollow tube 38 from the outer diameter side.
The helium gas 42 that has flowed in through a hole (not shown) of the low temperature connection portion 35 passes through the gap 381 between the conductors 39 and the conductor 3
Cool 9. The insulating tube 39 is the two current leads 3 of FIG.
It is provided to avoid electrical contact between or with the service port 14. The helium gas 42 flowing upward through the gap 381 in the hollow pipe 38 is discharged from the discharge pipe 32 to the atmosphere.

【0005】導体39が複数本の細い導体で構成されて
いるのは、ヘリウムガスとの接触面積を大きくして冷却
効果を高くするためである。導体39の本数は通電電流
値と長さによって決定される。すなわち、本数が多い、
言い換えれば総断面積が大きければ電流リードの抵抗値
が減少してジュール発熱量を小さくなるが、常温部から
の熱伝導による熱侵入量が増大する。逆に、本数が少な
ければ、常温部からの熱侵入量を低減できるが抵抗が増
大してジュール発熱量が増大する。このように導体39
の本数の決定は2つの相反する事項が総合的に考慮され
て最適の本数及び長さが決定される。
The conductor 39 is composed of a plurality of thin conductors in order to increase the contact area with the helium gas and enhance the cooling effect. The number of conductors 39 is determined by the current value and the length. That is, there are many
In other words, if the total cross-sectional area is large, the resistance value of the current lead decreases and the Joule heat generation amount decreases, but the heat penetration amount due to heat conduction from the room temperature portion increases. On the contrary, if the number is small, the amount of heat penetration from the room temperature portion can be reduced, but the resistance increases and the Joule heat generation amount increases. Conductor 39
In determining the number of lines, the optimum number and length are determined by comprehensively considering two contradictory matters.

【0006】[0006]

【発明が解決しようとする課題】導体39の材料として
は、通常良導性金属である銅、得に残留抵抗比の大きい
電気銅が使用される。残留抵抗比とは、常温における電
気抵抗率と極低温(4.2K)における電気抵抗率との
比である。つまり、残留抵抗比が大きい金属ほど極低温
における電気抵抗が小さくなり、ジュール発熱による熱
侵入が小さくなる。銅の残留抵抗比は不純物の量で大き
く変化し、純度が高いほど大きくなる。電気銅の場合、
不純物の量によって30〜30,000の範囲の変化を
する。
As the material of the conductor 39, copper, which is a good conductive metal, and, in particular, electrolytic copper having a large residual resistance ratio is used. The residual resistance ratio is the ratio of the electrical resistivity at room temperature to the electrical resistivity at extremely low temperature (4.2K). That is, the larger the residual resistance ratio of the metal, the smaller the electric resistance at cryogenic temperature, and the smaller the heat penetration due to Joule heat generation. The residual resistance ratio of copper greatly changes depending on the amount of impurities, and increases as the purity increases. In the case of electrolytic copper,
The range of 30 to 30,000 varies depending on the amount of impurities.

【0007】一方、電気銅は電気良導性であるとともに
熱良導性である。そして、熱伝導による熱侵入量を決定
する熱伝導率は、前述した残留抵抗比と相関関係にあ
り、残留抵抗比の大きい金属ほど熱伝導率が大きい。電
流リード3の導体39からの熱侵入量を最小にするため
には、ジュール発熱による熱侵入量と熱伝導による熱侵
入量の双方を小さくするのが理想的である。すなわち、
材料としては残留抵抗比が大きく、熱伝導率の小さい金
属が理想的であるが、前述したとおり残留抵抗比と熱伝
導率との相関関係によりこのような理想的が金属は存在
しないという問題がある。
On the other hand, electrolytic copper has good electrical conductivity as well as good thermal conductivity. The thermal conductivity that determines the amount of heat penetration due to heat conduction has a correlation with the above-described residual resistance ratio, and a metal having a larger residual resistance ratio has a larger thermal conductivity. In order to minimize the amount of heat penetration from the conductor 39 of the current lead 3, it is ideal to reduce both the amount of heat penetration due to Joule heat generation and the amount of heat penetration due to heat conduction. That is,
As a material, a metal having a large residual resistance ratio and a small thermal conductivity is ideal, but as described above, the ideal residual metal does not exist due to the correlation between the residual resistance ratio and the thermal conductivity. is there.

【0008】この発明はこのような問題を解決し、ジュ
ール発熱による熱侵入と熱伝導による熱侵入の和を最小
にすることが可能な導体構成を持った電流リードを提供
することにある。
An object of the present invention is to solve the above problems and provide a current lead having a conductor structure capable of minimizing the sum of heat intrusion due to Joule heat generation and heat intrusion due to heat conduction.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に、この発明によれば、真空断熱容器内に収納され液体
ヘリウムに浸漬された超電導コイルと外部電源とを電気
的に接続する超電導磁石の電流リードにおいて、この超
電導磁石の電流リードの本体部を構成する複数本の導体
のそれぞれを、長手方向に常温側導体と低温側導体とに
分け、これらを接続部で接続して構成し、常温側導体に
残留抵抗比の小さな材料を、低温側導体に残留抵抗比の
大きな材料を使用してなるものしと、また、常温側導体
と低温側導体との導体本数が異なるものとし、また、常
温側導体と低温側導体とを接続片を介して接続してなる
ものとし、また、常温側導体と低温側導体との導体本数
が同じで、接続部がそれぞれを1対1に対応させて圧接
接合されてなるものとする。
In order to solve the above-mentioned problems, according to the present invention, a superconducting magnet for electrically connecting a superconducting coil housed in a vacuum heat insulation container and immersed in liquid helium to an external power source. In the current lead of, each of the plurality of conductors forming the main body of the current lead of this superconducting magnet is divided into a room temperature side conductor and a low temperature side conductor in the longitudinal direction, and these are connected by a connecting portion, It is assumed that a material with a small residual resistance ratio is used for the room temperature side conductor and a material with a large residual resistance ratio is used for the low temperature side conductor, and the number of conductors for the room temperature side conductor and the low temperature side conductor is different. , The normal temperature side conductor and the low temperature side conductor are connected via a connecting piece, and the normal temperature side conductor and the low temperature side conductor have the same number of conductors, and the connecting portions correspond to each other one to one. Made by pressure welding To.

【0010】[0010]

【作用】この発明の構成において、電流リードの本体部
を構成する複数本の導体のそれぞれを長手方向に常温側
導体と低温側導体とに分け、かつこれらを接続部で接続
して構成することによって、それぞれの導体に使用する
材料を異なるものにすることができる。同じ材質の導体
を使用した場合の熱侵入量は、常温側では熱伝導による
ものが大きく、低温側ではジュール発熱によるものが大
きいという傾向があるので、残留抵抗比が大きいと熱伝
導率も大きいという相関関係にあることから、常温側導
体に残留抵抗比の小さな材料を使用すると、熱伝導率が
小さいことから熱伝導による熱侵入量の低減が大きく、
低温側導体に残留抵抗比の大きな材料を使用することに
より、低温時の抵抗率が小さいのでジュール発熱の低減
が大きく、総合的に熱侵入量が低減する。
In the structure of the present invention, each of the plurality of conductors forming the main body of the current lead is divided into a room temperature side conductor and a low temperature side conductor in the longitudinal direction, and these are connected by a connecting portion. Allows different materials to be used for each conductor. When the conductors of the same material are used, the amount of heat penetration tends to be large due to heat conduction at room temperature and large due to Joule heat generation at low temperature, so the thermal conductivity is large when the residual resistance ratio is large. Therefore, if a material with a small residual resistance ratio is used for the room temperature side conductor, the thermal conductivity is small and the amount of heat penetration due to heat conduction is greatly reduced.
By using a material having a large residual resistance ratio for the low temperature side conductor, the resistivity at a low temperature is small, so the Joule heat generation is greatly reduced, and the amount of heat intrusion is comprehensively reduced.

【0011】また、常温側導体と低温側導体との導体本
数を異なるものにすることによって、本数が同じという
制限を設けた場合に比べて熱侵入量が更に小さくなる条
件を設定することができる。また、常温側導体と低温側
導体とを接続片を介して接続する接続部の構成を採用す
ることによって、両方の導体の本数が同じでも異なる場
合でも接続することができる。また、常温側導体と低温
側導体との導体本数が同じにしたときには、接続部でそ
れぞれの導体を1対1に対応させて圧接接合することが
できる。
Further, by setting the number of conductors of the room temperature side conductor and the temperature of the low temperature side conductor to be different from each other, it is possible to set a condition in which the amount of heat penetration is further reduced as compared with the case where the restriction that the number is the same is provided. . Further, by adopting the structure of the connecting portion that connects the room temperature side conductor and the low temperature side conductor via the connecting piece, it is possible to connect even if the number of both conductors is the same or different. Further, when the number of conductors of the room temperature side conductor and the number of conductors of the low temperature side are the same, the respective conductors can be pressure-welded at the connection portion in a one-to-one correspondence.

【0012】[0012]

【実施例】以下この発明を実施例に基づいて説明する。
図1はこの発明の実施例を示す電流リードの立面図であ
り、図5と同じ部材については共通の符号を付して詳し
い説明を省略する。図1の電流リード3Aと図5の電流
リード3との相違はA部に断面図を示すように、本体部
3Aを通る導体39Aが図のA部で導体391と392
とを接続した構成になっている点である。図の上側であ
る常温側の導体391には残留抵抗比の小さなってき電
気銅を、図の下側の低温側の導体392には残留抵抗比
の大きな電気銅を使用してある。
EXAMPLES The present invention will be described below based on examples.
FIG. 1 is an elevational view of a current lead showing an embodiment of the present invention. The same members as those in FIG. 5 are designated by the same reference numerals and their detailed description will be omitted. The difference between the current lead 3A of FIG. 1 and the current lead 3 of FIG. 5 is that the conductor 39A passing through the main body 3A is the conductor 391 and 392 at the portion A of the figure as shown in the sectional view at the portion A.
The point is that it is connected to and. The conductor 391 on the normal temperature side, which is the upper side of the figure, uses electrolytic copper with a small residual resistance ratio, and the conductor 392 on the low temperature side, the lower side of the figure, uses electrolytic copper with a large residual resistance ratio.

【0013】図2は図1のA部の拡大図である。この図
では、A部に導体39Aを6本だけ図示してあるが、実
際には図5のようにその本数ははるかに多いのが実際で
ある。この図において、導体39Aは導体391と39
2とが接続部393で接続されている。接続部393の
接続方法は例えば両方の導体を圧接して接合する圧接法
などが適している。
FIG. 2 is an enlarged view of portion A in FIG. In this figure, only six conductors 39A are shown in the portion A, but in reality, the number is much larger as shown in FIG. In this figure, conductor 39A is conductors 391 and 39.
2 are connected to each other at a connecting portion 393. A suitable method for connecting the connection portion 393 is, for example, a pressure welding method in which both conductors are pressed and joined.

【0014】仮に、導体391の材料の残留抵抗比が3
0、導体392の材料の残留抵抗比が100のものをそ
れぞれ採用し、導体39Aの全長を700mmとすると、
総熱侵入量を最小にする導体391,392の長さ寸法
の振り分けは計算で容易に求めることができ、導体39
1が550mm、導体392が150mmとしたときが熱侵
入量が最小で電流リード3Aの熱侵入量は従来の場合の
約90%に低減される。
Assuming that the residual resistance ratio of the material of the conductor 391 is 3
0, the residual resistance ratio of the material of the conductor 392 is 100, and the total length of the conductor 39A is 700 mm,
The distribution of the lengths of the conductors 391 and 392 that minimizes the total heat intrusion amount can be easily obtained by calculation.
When 1 is 550 mm and the conductor 392 is 150 mm, the amount of heat penetration is minimum, and the amount of heat penetration of the current lead 3A is reduced to about 90% of the conventional case.

【0015】図1及び図2では導体391と392の本
数を同じとしてあるので、それぞれを1本ずつ接続する
ことができる。しかし、本数を双方で同じにしなければ
ならないという必然性はなく、異なる本数を採用して熱
侵入量を更に小さくすることができる。図3は図2とは
別のこの発明の実施例を示すA部拡大図である。この図
において、導体391の本数と導体392の本数とが異
なる点が図2との違いであり、そのために、図2のよう
に1対1の接続ができない。そこで間に接続片394を
設けて導体391を接続板394の上端面に、導体39
2を接続片394の下端面にそれぞれ接続して接続片3
94を介して導体391と392を接続する構成とした
ものである。このような構成にすることによって導体3
91と392との本数を自在に選択することができる。
特に定格電流が10kA以上と大きい場合には、導体3
91と392で本数を同じにすると、たとえ異なる残留
抵抗比の2種類の導体を使用しても熱侵入量を減らすこ
とができない場合があり、このような場合には本数を変
えることによって最適条件を設定することができるので
図3に示す構成が採用されることになる。通常は図3に
示すように、常温側導体391の導体本数を低温側導体
392のそれよりも小さくするのが妥当である。なお、
当然のことながら本数が同じでも図3のように接続片3
94を介して導体391と392とを接続する構成を採
用することも可能であり、その選択は主に製作工数の点
から判断される。接続片394の熱侵入に対する影響は
微小なので通常の電気銅を使用すればよくその残留抵抗
比の値が問題になることはない。
Since the numbers of the conductors 391 and 392 are the same in FIGS. 1 and 2, it is possible to connect each one. However, it is not inevitable that the numbers of the two must be the same, and different numbers can be adopted to further reduce the amount of heat penetration. FIG. 3 is an enlarged view of part A showing an embodiment of the present invention different from that of FIG. 2 is different from FIG. 2 in that the number of conductors 391 and the number of conductors 392 are different from each other, so that one-to-one connection cannot be made as in FIG. Therefore, a connection piece 394 is provided between the conductor 391 and the conductor 391 on the upper end surface of the connection plate 394.
2 is connected to the lower end surface of the connection piece 394, and the connection piece 3 is connected.
The configuration is such that the conductors 391 and 392 are connected via 94. With such a configuration, the conductor 3
The number of 91 and 392 can be freely selected.
Especially when the rated current is as large as 10 kA or more, the conductor 3
If the numbers of 91 and 392 are the same, it may not be possible to reduce the amount of heat penetration even if two types of conductors with different residual resistance ratios are used. Can be set, so that the configuration shown in FIG. 3 is adopted. Normally, as shown in FIG. 3, it is appropriate to make the number of conductors of the room temperature side conductor 391 smaller than that of the low temperature side conductor 392. In addition,
As a matter of course, even if the number is the same, as shown in FIG.
It is also possible to adopt a configuration in which the conductors 391 and 392 are connected via 94, and the selection is mainly determined in terms of manufacturing man-hours. Since the influence of the connection piece 394 on the heat penetration is small, ordinary electrolytic copper may be used, and the value of the residual resistance ratio does not pose a problem.

【0016】導体39の異なる残留抵抗比の数は2に限
るものではない。3あるいはそれ以上の異なる残留抵抗
比の導体材料を使用して熱侵入量をより小さくする構成
を採用することもできる。ただ、異なる材料を多くする
と接続部が増えて製作工数が増大し、ひいては電流リー
ドのコスト増になるので、単に熱侵入量の大小だけでは
なく総合的な配慮が必要である。
The number of different residual resistance ratios of the conductor 39 is not limited to two. It is also possible to adopt a configuration in which the amount of heat penetration is further reduced by using conductor materials having three or more different residual resistance ratios. However, increasing the number of different materials increases the number of connecting parts, increasing the number of manufacturing steps and eventually increasing the cost of the current lead. Therefore, it is necessary to consider not only the amount of heat intrusion but also comprehensive consideration.

【0017】なお、異なる導体本数を採用する場合、少
ない本数の側の導体では中空管38との隙間381が大
きくなってヘリウムガスの流速が小さくなって冷却効果
が無視できない程度に低下するという問題が生ずること
がある。このような場合には隙間の総断面積を縮小する
ために、通電や熱伝導に関係しないステンレス棒などの
ダミーの金属を本数の少ない導体の部分に沿わせて配置
するという構成が採用される。
When a different number of conductors is used, the gap 381 with the hollow tube 38 becomes large and the flow rate of the helium gas decreases at the conductor with the smaller number of conductors, and the cooling effect decreases to a nonnegligible level. Problems can arise. In such a case, in order to reduce the total cross-sectional area of the gap, a configuration is adopted in which a dummy metal such as a stainless steel rod that is not related to electricity conduction or heat conduction is arranged along the portion of the conductor having a small number of conductors. .

【0018】[0018]

【発明の効果】この発明は前述のように、電流リードの
本体部を構成する複数本の導体のそれぞれを長手方向に
常温側導体と低温側導体とに分け、これらを接続部で接
続して構成することによって、それぞれの導体に使用す
る材料を異なるものにすることができる。これら導体を
介した熱侵入は、常温側では熱伝導によるものが大き
く、低温側ではジュール発熱によるものが大きいという
傾向があるので、熱伝導率と残留抵抗比には前述のよう
な相関関係にあることから、常温側導体に残留抵抗比の
小さな材料を使用すると、熱伝導率が小さいので熱伝導
による熱侵入量の低減が大きく、低温側導体に残留抵抗
比の大きな材料を使用すると、低温時の抵抗率が小さい
のでジュール発熱による熱侵入量の低減大きく、結果的
に総合的な熱侵入量が低減するという効果が得られる。
As described above, according to the present invention, each of the plurality of conductors forming the main body of the current lead is divided into a room temperature side conductor and a low temperature side conductor in the longitudinal direction, and these are connected by a connecting portion. By configuring, the materials used for each conductor can be different. The heat invasion through these conductors tends to be largely due to heat conduction at room temperature and due to Joule heat generation at low temperature, so the thermal conductivity and residual resistance ratio have the above-mentioned correlation. Therefore, if a material with a small residual resistance ratio is used for the room temperature side conductor, the thermal conductivity is small, so the amount of heat penetration due to heat conduction is greatly reduced, and if a material with a large residual resistance ratio is used for the low temperature side conductor, Since the resistivity at that time is small, the amount of heat intrusion due to Joule heat generation is greatly reduced, and as a result, the overall amount of heat intrusion is reduced.

【0019】また、常温側導体と低温側導体との導体本
数を異なるものにすることによって、本数が同じという
制限を設けた場合に比べて熱侵入量を更に小さくするこ
とできるという効果が得られる。また、常温側導体と低
温側導体とを接続片を介して接続する接続部の構成を採
用することによって、両方の導体の本数が同じでも異な
る場合でも容易に接続することができ、それぞれの導体
本数が同じの場合には、接続部でそれぞれの導体を1対
1に対応させて圧接接合による接続を採用することがで
きる。
Further, by making the number of conductors of the room temperature side conductor and the number of conductors of the low temperature side different, it is possible to obtain an effect that the amount of heat penetration can be further reduced as compared with the case where the limitation that the number is the same is provided. . Further, by adopting the configuration of the connecting portion that connects the room temperature side conductor and the low temperature side conductor through the connecting piece, it is possible to easily connect both the same number or different number of conductors, and When the numbers are the same, it is possible to adopt a connection by pressure welding by associating the respective conductors in the connecting portion in a one-to-one correspondence.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例を示す電流リードの立面図FIG. 1 is an elevation view of a current lead showing an embodiment of the present invention.

【図2】図1のA部拡大図FIG. 2 is an enlarged view of part A of FIG.

【図3】図2とは別のこの発明の実施例を示すA部拡大
FIG. 3 is an enlarged view of part A showing an embodiment of the present invention different from that of FIG.

【図4】一般的な超電導磁石の縦断面図FIG. 4 is a vertical sectional view of a general superconducting magnet.

【図5】図4における電流リードの詳細を示す回転図示
断面図を含む立面図
FIG. 5 is an elevational view including a rotational sectional view showing details of the current lead in FIG.

【符号の説明】[Explanation of symbols]

1 真空断熱容器 11 真空容器 12 液体窒素シールド 13 液体ヘリウム容器 14 サービスポート 2 超電導コイル 3 電流リード 34 本体部 34A 本体部 34B 本体部 38 中空管 381 隙間 39 導体 39A 導体 391 常温側導体 392 低温側導体 393 接続部 394 接続片 1 Vacuum Insulation Container 11 Vacuum Container 12 Liquid Nitrogen Shield 13 Liquid Helium Container 14 Service Port 2 Superconducting Coil 3 Current Lead 34 Main Body 34A Main Body 34B Main Body 38 Hollow Tube 381 Gap 39 Conductor 39A Conductor 391 Normal Temperature Side Conductor 392 Low Temperature Side Conductor 393 Connection part 394 Connection piece

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】真空断熱容器内に収納され液体ヘリウムに
浸漬された超電導コイルと外部電源とを電気的に接続す
る超電導磁石の電流リードにおいて、この超電導磁石の
電流リードの本体部を構成する複数本の導体のそれぞれ
を、長手方向に常温側導体と低温側導体とに分け、これ
らを接続部で接続して構成し、常温側導体に残留抵抗比
の小さな材料を、低温側導体に残留抵抗比の大きな材料
を使用してなることを特徴とする超電導磁石の電流リー
ド。
1. A current lead of a superconducting magnet for electrically connecting a superconducting coil housed in a vacuum heat insulating container and immersed in liquid helium to an external power source, wherein a plurality of main parts of the current lead of the superconducting magnet are formed. Each of the conductors is divided into a room temperature side conductor and a low temperature side conductor in the longitudinal direction, and these are connected at the connecting part. A material with a small residual resistance ratio is used for the room temperature side conductor, and a low resistance for the low temperature side conductor. A current lead for a superconducting magnet, which is made of a material having a large ratio.
【請求項2】常温側導体と低温側導体との導体本数が異
なることを特徴とする請求項1記載の超電導磁石の電流
リード。
2. The current lead for a superconducting magnet according to claim 1, wherein the number of conductors of the room temperature side conductor is different from that of the low temperature side conductor.
【請求項3】常温側導体と低温側導体とを接続片を介し
て接続してなることを特徴とする請求項1又は2記載の
超電導磁石の電流リード。
3. The current lead for a superconducting magnet according to claim 1, wherein the room temperature side conductor and the low temperature side conductor are connected via a connecting piece.
【請求項4】常温側導体と低温側導体との導体本数が同
じで、接続部がそれぞれを1対1に対応させて圧接接合
されてなることを特徴とする請求項1記載の超電導磁石
の電流リード。
4. The superconducting magnet according to claim 1, wherein the room temperature side conductor and the low temperature side conductor have the same number of conductors, and the connecting portions are pressure-welded so as to correspond to each other one to one. Current lead.
JP5015023A 1993-02-02 1993-02-02 Current lead of superconducting magnet Pending JPH06231951A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5015023A JPH06231951A (en) 1993-02-02 1993-02-02 Current lead of superconducting magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5015023A JPH06231951A (en) 1993-02-02 1993-02-02 Current lead of superconducting magnet

Publications (1)

Publication Number Publication Date
JPH06231951A true JPH06231951A (en) 1994-08-19

Family

ID=11877251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5015023A Pending JPH06231951A (en) 1993-02-02 1993-02-02 Current lead of superconducting magnet

Country Status (1)

Country Link
JP (1) JPH06231951A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156011A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Heat-insulated container
JP2012028041A (en) * 2010-07-20 2012-02-09 Sumitomo Heavy Ind Ltd Superconducting current lead

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156011A (en) * 2004-11-26 2006-06-15 Nissan Motor Co Ltd Heat-insulated container
US7938289B2 (en) 2004-11-26 2011-05-10 Nissan Motor Co., Ltd. Thermal insulating container for a heat generating unit of a fuel cell system
JP2012028041A (en) * 2010-07-20 2012-02-09 Sumitomo Heavy Ind Ltd Superconducting current lead

Similar Documents

Publication Publication Date Title
JP5118815B2 (en) Electric bushings for superconducting members
JP5687548B2 (en) Device with superconducting cable
US3619479A (en) Electrical conductor of electrically normal conducting metal and superconducting material
US4695675A (en) Electric lead device for superconducting electric apparatus
JPH06231951A (en) Current lead of superconducting magnet
JP4703545B2 (en) Superconducting devices and current leads
JP3284406B2 (en) Superconducting wire connecting device for cryogenic equipment
KR20170049891A (en) Terminal device for superconducting cable
JP2883697B2 (en) Current lead for superconducting coil
JP3120482B2 (en) Current lead of superconducting magnet device
JP2013143474A (en) Superconducting magnet device and current lead for the same
KR101011004B1 (en) Current Lead for High Voltage Superconducting Machine
JP2981810B2 (en) Current lead of superconducting coil device
JPH04332105A (en) Superconducting magnet device
JPH11297524A (en) Current lead for superconducting device
JP3127705B2 (en) Current lead using oxide superconductor
JP3284656B2 (en) Current lead using oxide superconductor
JPH11204324A (en) Superconducting apparatus
JP3083764B2 (en) Refrigerator conduction cooling type superconducting magnet device
JPH08107010A (en) Current lead for superconductive device
JPH045244B2 (en)
JPH1079303A (en) Current lead
JPH02256206A (en) Superconducting power lead
JP3339118B2 (en) Superconducting device current leads
JPS63299217A (en) Gas cooling type current lead for superconducting machinery and apparatus