JPH06231925A - Manufacture of anisotropic magnet - Google Patents

Manufacture of anisotropic magnet

Info

Publication number
JPH06231925A
JPH06231925A JP5014095A JP1409593A JPH06231925A JP H06231925 A JPH06231925 A JP H06231925A JP 5014095 A JP5014095 A JP 5014095A JP 1409593 A JP1409593 A JP 1409593A JP H06231925 A JPH06231925 A JP H06231925A
Authority
JP
Japan
Prior art keywords
fluoride
anisotropic magnet
rare earth
magnetic powder
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5014095A
Other languages
Japanese (ja)
Inventor
Eiji Okumura
英二 奥村
Toshikazu Takeda
敏和 竹田
Yutaka Matsumi
裕 松見
Shigeo Takita
茂生 瀧田
Masayuki Kato
雅之 加藤
Yuichiro Hara
裕一郎 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP5014095A priority Critical patent/JPH06231925A/en
Publication of JPH06231925A publication Critical patent/JPH06231925A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/0533Alloys characterised by their composition containing rare earth metals in a bonding agent

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide the manufacture of an anisotropic magnet, which can reduce the manufacturing cost by simplifying the manufacturing process and can make it have high orientation easily and make it have favorable corrosion resistance. CONSTITUTION:This is one where a capsule particle 5 having, as mother particles 3, rare earth metallic magnetic powder, which includes amorphous, and, as child particles, fluorides favorable in crystal cleavage and fluid at a temperature where the mother particles 3 harden is sintered and solidified within a mold.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は異方性磁石の製造方法に
係り、特に母粒子と該母粒子の周囲を覆う子粒子とから
なるカプセル粒子を使用した異方性磁石の製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an anisotropic magnet, and more particularly to a method for manufacturing an anisotropic magnet using capsule particles composed of mother particles and child particles covering the mother particles.

【0002】[0002]

【従来の技術】従来、配向性を持たせた異方性磁石は、
周知のホットプレス法により希土類金属磁性粉の圧粉成
形と焼結との工程を同時に行って予備成形を行った後、
周知のホットフォームにて圧延することにより製造して
いる。この圧延工程では、原料粉の粘性が低い程流動性
が良く、少ない変位量で配向を持たせることができる。
また、このようにして製造された異方性磁石は、その表
面にニッケルメッキや樹脂塗装を施すことにより防錆処
理されている。
2. Description of the Related Art Conventionally, anisotropic magnets having orientation are
After preforming by simultaneously performing the steps of powder compaction and sintering of rare earth metal magnetic powder by the well-known hot pressing method,
It is manufactured by rolling with a known hot form. In this rolling step, the lower the viscosity of the raw material powder, the better the fluidity, and the orientation can be provided with a small amount of displacement.
Further, the anisotropic magnet manufactured in this manner is rust-proofed by applying nickel plating or resin coating on the surface thereof.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来の異方
性磁石の製造方法にあっては、ホットプレス法により予
備成形を行った後、圧延を行わなければ、配向を持たせ
ることができず、製造工程が複雑で製造コストが増大す
るという問題があった。
By the way, in the conventional method for producing an anisotropic magnet, orientation cannot be provided unless it is preformed by hot pressing and then rolled. However, there is a problem that the manufacturing process is complicated and the manufacturing cost increases.

【0004】また、異方性磁石に高い配向性を持たせる
ためには、圧延工程で高い圧力を負荷しなければならな
いという問題があった。
Further, there is a problem that a high pressure must be applied in the rolling process in order to give the anisotropic magnet a high orientation.

【0005】さらに、異方性磁石を製造後、その表面に
防錆処理を施さなければならないという問題があった。
Further, there is a problem in that after the anisotropic magnet is manufactured, its surface must be subjected to rust prevention treatment.

【0006】本発明の目的は、上記課題に鑑み、製造工
程を簡単にして製造コストの低減を図ることができると
共に、容易に高い配向性を持たせることができ、且つ良
好な耐蝕性を有する異方性磁石の製造方法を提供するこ
とにある。
In view of the above problems, an object of the present invention is to simplify the manufacturing process to reduce the manufacturing cost, to easily provide high orientation, and to have good corrosion resistance. It is to provide a method for manufacturing an anisotropic magnet.

【0007】[0007]

【課題を解決するための手段】上記目的を達成すべく本
発明に係る異方性磁石の製造方法は、アモルファスを含
む希土類金属磁性粉を母粒子とし、結晶ヘキ開性が良く
かつ母粒子の固化温度において流動性を有する弗化物を
子粒子とするカプセル粒子を、成形型内で焼結固化する
ようにしたものである。
In order to achieve the above object, the method for producing an anisotropic magnet according to the present invention uses a rare earth metal magnetic powder containing amorphous as a mother particle, which has a good crystal cleaving property and a mother particle Capsule particles containing fluoride as a child particle having fluidity at the solidification temperature are sintered and solidified in a molding die.

【0008】また、上記焼結固化後に、圧延を行うよう
にしたものである。
Further, rolling is performed after the sintering and solidification.

【0009】[0009]

【作用】上記構成によれば、アモルファスを含む希土類
金属磁性粉を母粒子とし、この母粒子の周囲を弗化物か
らなる子粒子で覆って、カプセル粒子を形成している。
上記子粒子に採用する弗化物は、結晶ヘキ開性が良く、
かつ母粒子の固化温度において流動性を有している。従
って、母粒子同士間に子粒子としての弗化物が介在する
ことにより、弗化物が母粒子同士の滑材的な働きをし、
結晶の一軸方向性(結晶方向が特定な一方向に揃うこと
で磁気特性が向上すること)を容易にするものである。
According to the above structure, the rare earth metal magnetic powder containing amorphous is used as the mother particle, and the surrounding of the mother particle is covered with the child particle made of fluoride to form the capsule particle.
The fluoride used for the above-mentioned child particles has good crystal cleavage property,
Moreover, it has fluidity at the solidification temperature of the mother particles. Therefore, the fluoride acts as a child particle between the mother particles, so that the fluoride acts as a lubricant between the mother particles,
It is intended to facilitate the uniaxial directional property of the crystal (the magnetic properties are improved by aligning the crystal directions in a specific unidirectional direction).

【0010】このように弗化物が滑材として機能するた
めには、その物性として所望の融点や結晶構造が必要で
あり、焼結固化する希土類金属磁性粉の固化温度で弗化
物の粘度が下がることや、その結晶構造がヘキ開性を示
すことが要求される。即ち、上記子粒子としての弗化物
が流動性を有するとは、該弗化物の融点が希土類金属磁
性粉の固化温度に近いことを意味する。また、結晶ヘキ
開性は、結晶の内部構造において、相対的に結合の弱い
方向があると、これと直角な面に平行に割れ易く、この
面をヘキ開面という。この結晶ヘキ開性の無いものに比
べて、ヘキ開があると、この面で滑り易く、結果として
結晶の移動が促進されるものである。よって、異方性磁
石の配向に関して、弗化物が滑材になり、弗化物を添加
しないものに比して、この段階でも焼結固化の圧力方向
に配向した異方性磁石が得られることになる。
As described above, in order for the fluoride to function as a lubricant, the physical properties thereof should be a desired melting point and crystal structure, and the viscosity of the fluoride decreases at the solidification temperature of the rare earth metal magnetic powder that is sintered and solidified. In addition, its crystal structure is required to exhibit cleaving properties. That is, the fact that the fluoride as the child particles has fluidity means that the melting point of the fluoride is close to the solidification temperature of the rare earth metal magnetic powder. In addition, the crystal cleaving property is such that if there is a direction in which the bond is relatively weak in the internal structure of the crystal, it is easily cracked parallel to a plane perpendicular to this direction, and this plane is called a cleave plane. Cleavage is more slippery on this surface, as compared with the case where there is no crystal cleaving property, and as a result, movement of crystals is promoted. Therefore, regarding the orientation of the anisotropic magnet, the fluoride becomes a lubricant, and an anisotropic magnet oriented in the pressure direction of sinter-solidification can be obtained even at this stage as compared with the case where no fluoride is added. Become.

【0011】この焼結固化後に、さらに圧延を行うよう
にすれば、上記弗化物の結晶ヘキ開性及び流動性によっ
て、高い配向性が得られる。この圧延工程での負荷圧力
は、低い圧力で足りるものである。
If further rolling is carried out after the sintering and solidification, a high orientation can be obtained due to the crystal cleavage and fluidity of the fluoride. A low load pressure is sufficient for this rolling process.

【0012】また、上記焼結固化時に、母粒子としての
希土類金属磁性粉の周囲が子粒子としての弗化物で覆わ
れるので、防錆処理が不要で、耐蝕性を有する異方性磁
石が得られるものである。
In addition, since the rare earth metal magnetic powder as the mother particles is covered with the fluoride as the child particles at the time of the above-mentioned sintering and solidification, an anti-corrosion-resistant anisotropic magnet is obtained without the need for anticorrosion treatment. It is what is done.

【0013】[0013]

【実施例】以下、本発明に係る異方性磁石の製造方法の
好適一実施例を添付図面に基づいて詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A preferred embodiment of the method for producing an anisotropic magnet according to the present invention will be described in detail below with reference to the accompanying drawings.

【0014】図1乃至図5は、本実施例の異方性磁石の
製造方法を示す概略図である。まず図1に示すように、
原料粉1の計量を行う。原料粉1には、希土類金属磁性
粉と弗化物粉とを使用する。希土類金属磁性粉には、例
えば、非晶質磁性材料に単ロール急冷法を用いて製造さ
れた急冷凝固系Fe−Nd−B−Co磁性粉を用いる。
この急冷凝固系磁性粉には、アモルファス磁性粉も含む
ものである。このアモルファスも含むとは、急冷凝固系
合金の微結晶はその列的規則性が急冷によって準安定に
なっているので、材料組成によって非晶質になっている
ものも含む趣旨である。具体的には、ネオケムNdメタ
ルに、ネオジウム(Nd),鉄(Fe),ボロン(B)
及びコバルト(Co)の合金を混合し、この混合物をジ
ェットキャストしたものを粉砕して粉末化した後、これ
に所定の熱処理を施して製造されるものである。
1 to 5 are schematic views showing a method of manufacturing the anisotropic magnet of this embodiment. First, as shown in FIG.
Raw material powder 1 is weighed. As the raw material powder 1, rare earth metal magnetic powder and fluoride powder are used. As the rare earth metal magnetic powder, for example, a rapidly solidified Fe-Nd-B-Co magnetic powder produced by using a single roll rapid cooling method for an amorphous magnetic material is used.
The rapidly solidified magnetic powder also includes amorphous magnetic powder. The term “including amorphous” is meant to include that which is amorphous depending on the material composition because the columnar regularity of the microcrystals of the rapidly solidified alloy is metastable. Specifically, neochem Nd metal, neodymium (Nd), iron (Fe), boron (B)
It is manufactured by mixing an alloy of cobalt and cobalt (Co), crushing a mixture obtained by jet-casting this mixture into powder, and then subjecting the mixture to a predetermined heat treatment.

【0015】一方、弗化物粉には、結晶ヘキ開性が良
く、かつ希土類金属磁性粉の固化温度において流動性を
有するアルカリ金属やアルカリ土類金属、例えば、Ca
2 ,PbF2 ,NaF,CuF2 ,LiF等を使用す
る。
On the other hand, the fluoride powder has a good crystal cleavability and has fluidity at the solidification temperature of the rare earth metal magnetic powder, such as an alkali metal or an alkaline earth metal such as Ca.
F 2 , PbF 2 , NaF, CuF 2 , LiF or the like is used.

【0016】次に、図2に示すように、計量した希土類
金属磁性粉と弗化物粉との混合を行う。この混合工程
は、例えば、図示されているような乳鉢2,ボールミ
ル,又は他の機械的混合機を用いて行う。原料粉1の混
合を行うと、図3に示すように、上記希土類金属磁性粉
を母粒子3とし、上記弗化物粉を子粒子4とするカプセ
ル粒子5が形成される。このカプセル状態とは、周知の
ファンデル・ワールス力による付着作用を利用して、母
粒子3の周囲を子粒子4で覆うものである。このように
カプセル状態にするには、母粒子3の直径に対して子粒
子4の直径を、例えば、十分の一から二十分の一程度に
小さく設定することが望ましい。
Next, as shown in FIG. 2, the measured rare earth metal magnetic powder and fluoride powder are mixed. This mixing step is performed using, for example, a mortar 2, a ball mill as shown, or other mechanical mixer. When the raw material powder 1 is mixed, as shown in FIG. 3, capsule particles 5 having the rare earth metal magnetic powder as the mother particle 3 and the fluoride powder as the child particle 4 are formed. In this capsule state, the periphery of the mother particle 3 is covered with the child particle 4 by utilizing the well-known attachment action by Van der Waals force. In order to make the capsule state in this way, it is desirable to set the diameter of the child particles 4 smaller than the diameter of the mother particles 3 to, for example, one tenth to twenty one tenth.

【0017】そして、図4に示すように、混合により形
成されたカプセル粒子5を成形型6内に充填する。この
成形型6の材質には、例えば、WC−Co合金等の金
属,カーボン及びサーメット等を使用する。
Then, as shown in FIG. 4, the molding particles 6 are filled with the capsule particles 5 formed by mixing. As the material of the molding die 6, for example, a metal such as a WC-Co alloy, carbon, cermet, or the like is used.

【0018】その後、図5に示すように、電源7から上
記成形型6に通電し、例えば、約700℃の温度で約1
〜3分間程プラズマ焼結法により成形固化する。そし
て、離型すれば異方性磁石としての焼結体8を得ること
ができる。
Then, as shown in FIG. 5, the mold 6 is energized from a power source 7 and, for example, at a temperature of about 700.degree.
It is molded and solidified by the plasma sintering method for about 3 minutes. Then, by releasing the mold, the sintered body 8 as an anisotropic magnet can be obtained.

【0019】さらに、必要に応じて上記プラズマ焼結後
に圧延を施す。この圧延は、通常のホットフォーム等に
よるもので良く、その負荷圧力は低い圧力で構わない。
Further, if necessary, rolling is performed after the above-mentioned plasma sintering. This rolling may be performed by ordinary hot foam or the like, and the load pressure may be low.

【0020】次に、上記実施例における作用を述べる。Next, the operation of the above embodiment will be described.

【0021】上述したように、本実施例の異方性磁石の
製造方法は、アモルファスを含む希土類金属磁性粉を母
粒子3とし、CaF2 等の弗化物粉を子粒子4とするカ
プセル粒子5を使用している。上記子粒子4としての弗
化物は、結晶ヘキ開性が良く、かつ母粒子3の固化温度
において流動性を有している。従って、母粒子3同士間
に子粒子4としての弗化物が介在し、弗化物が母粒子3
同士の滑材的な働きをし、結晶の一軸方向性を容易にす
ることができるものである。
As described above, according to the method of manufacturing the anisotropic magnet of this embodiment, the capsule particles 5 in which the rare earth metal magnetic powder containing amorphous is used as the mother particle 3 and the fluoride powder such as CaF 2 is used as the child particle 4 are used. Are using. The fluoride as the child particle 4 has good crystal cleavage property and has fluidity at the solidification temperature of the mother particle 3. Therefore, the fluoride as the child particle 4 is interposed between the mother particles 3, and the fluoride is contained in the mother particle 3.
They act as lubricants for each other and can facilitate the uniaxial directional property of crystals.

【0022】このように弗化物が滑材として機能するた
めには、その物性として所望の融点や結晶構造が必要で
あり、焼結固化する希土類金属磁性粉の固化温度で弗化
物の粘度が下がることや、その結晶構造がヘキ開性を示
すことが要求される。即ち、上記子粒子としての弗化物
が流動性を有するとは、該弗化物の融点が希土類金属磁
性粉の固化温度に近いことを意味する。具体的には、希
土類金属磁性粉の固化温度で弗化物の粘度が下がるもの
として、融点が500〜1000℃の弗化物、特に融点
が700〜1000℃の弗化物が有効であり、例えば、
下記表1の弗化合物等がある。
As described above, in order for the fluoride to function as the lubricant, the physical properties thereof should have a desired melting point and crystal structure, and the viscosity of the fluoride decreases at the solidification temperature of the rare earth metal magnetic powder to be sintered and solidified. In addition, its crystal structure is required to exhibit cleaving properties. That is, the fact that the fluoride as the child particles has fluidity means that the melting point of the fluoride is close to the solidification temperature of the rare earth metal magnetic powder. Specifically, as the viscosity of the fluoride decreases at the solidifying temperature of the rare earth metal magnetic powder, a fluoride having a melting point of 500 to 1000 ° C., particularly a fluoride having a melting point of 700 to 1000 ° C. is effective.
There are fluorine compounds shown in Table 1 below.

【0023】[0023]

【表1】 [Table 1]

【0024】また、結晶ヘキ開性は、結晶の内部構造に
おいて、相対的に結合の弱い方向があると、これと直角
なヘキ開面に平行に割れ易く、このヘキ開面で結晶が滑
り易く、結果として結晶の移動が促進される。この結晶
ヘキ開性は鉱物に多く見られ、アルカリ金属やアルカリ
土類金属の弗化物は結晶構造がガンエン型やホタル石型
構造を取るので結晶ヘキ開性を示す。この結晶ヘキ開性
を示す弗化物には、例えば、Na,Li,K,Ca,M
g,Sr等の弗化物がある。特に、有効な弗化物は、上
述のように母粒子3の固化温度において流動性を有し、
かつ結晶ヘキ開性が良い弗化物である。即ち、アルカリ
金属のNa,Li,Kの弗化物が最も効果的である。
In addition, the crystal cleaving property is such that if there is a direction in which the bond is relatively weak in the internal structure of the crystal, the crystal cleaving is likely to occur parallel to the cleaving surface perpendicular to this direction, and the crystal is easily slipped on this cleaving surface. As a result, the movement of crystals is promoted. This crystalline cleaving property is often found in minerals, and alkali metal or alkaline earth metal fluorides exhibit a crystalline cleaving property because their crystal structures are gann-ene type or fluorite type structures. Fluoride exhibiting this crystal cleavage property includes, for example, Na, Li, K, Ca, M
There are fluorides such as g and Sr. Particularly, effective fluoride has fluidity at the solidifying temperature of the base particles 3, as described above,
In addition, it is a fluoride with good crystal cleavage. That is, the fluorides of alkali metals Na, Li, and K are most effective.

【0025】以上のような弗化物の機能によって、弗化
物を添加しないものに比べて、焼結固化の圧力方向に配
向した異方性磁石を得ることができるものである。
Due to the function of fluoride as described above, an anisotropic magnet oriented in the pressure direction of sintering and solidification can be obtained, as compared with the case where no fluoride is added.

【0026】この焼結固化後に、さらに通常のホットフ
ォーム等による圧延を行えば、上記弗化物の結晶ヘキ開
性及び流動性によって、低い圧力で高い配向性が得られ
るものである。
After this sinter-solidification, further rolling by a normal hot form or the like makes it possible to obtain a high orientation at a low pressure due to the crystal cleavage and fluidity of the above-mentioned fluoride.

【0027】また、上記焼結固化時に、母粒子3として
の希土類金属磁性粉の周囲が子粒子4としての弗化物で
覆われる。従って、結晶粒子のカプセル化により配向と
同時に防錆処理が行われ、耐蝕性を有する異方性磁石が
得られるものである。
At the time of the above-mentioned sintering and solidification, the circumference of the rare earth metal magnetic powder as the mother particle 3 is covered with the fluoride as the child particle 4. Therefore, by encapsulating the crystal grains, the anti-corrosion treatment is performed simultaneously with the orientation, and an anisotropic magnet having corrosion resistance can be obtained.

【0028】尚、本発明に係る異方性磁石の製造方法に
関連する技術が特開昭63−255902号公報や特開
平1−175705号公報に開示されている。これらに
開示されている弗化物は希土類弗化物であり、かつ融点
が高い弗化物(NdF3 :1374℃,DyF3 :11
54℃)である。この希土類弗化物は希土類金属磁性粉
と反応し易く、少なからず該希土類金属磁性粉の組成に
影響を与えることになる。しかし、本発明に採用してい
る弗化物はアルカリ金属やアルカリ土類金属であり希土
類ではないので、希土類金属磁性粉の組成に影響を与え
ることはない。また、これらの先行例での配向方法は磁
場プレスによる方法であり、本発明に係る異方性磁石の
製造方法のように焼結固化するだけで高い配向が行える
技術とは明らかに相違するものである。
A technique relating to the method for producing an anisotropic magnet according to the present invention is disclosed in Japanese Patent Laid-Open No. 63-255902 and Japanese Patent Laid-Open No. 175705. The fluorides disclosed therein are rare earth fluorides and have a high melting point (NdF 3 : 1374 ° C., DyF 3 : 11
54 ° C). This rare earth metal fluoride easily reacts with the rare earth metal magnetic powder and affects the composition of the rare earth metal magnetic powder to a large extent. However, since the fluoride used in the present invention is an alkali metal or an alkaline earth metal and not a rare earth, it does not affect the composition of the rare earth metal magnetic powder. Further, the orientation method in these prior examples is a method by magnetic field pressing, which is clearly different from the technique capable of achieving high orientation only by sintering and solidifying like the method for producing an anisotropic magnet according to the present invention. Is.

【0029】[0029]

【発明の効果】以上述べたように、本発明に係る異方性
磁石の製造方法によれば、弗化物の流動性や結晶ヘキ開
性により、焼結固化するだけで配向性を持たせることが
できるので、製造工程が簡単になり、製造コストの低減
を図ることができる。また圧延を行うと、低い圧力で容
易に高い配向性を持たせることができる。さらに、焼結
固化時に弗化物が希土類金属磁性粉の周囲を覆うので、
良好な耐蝕性を有し、防錆処理が不要であるという優れ
た効果を発揮する。
As described above, according to the method for producing an anisotropic magnet according to the present invention, it is possible to impart orientation only by sintering and solidification due to the fluidity of the fluoride and the crystal cleavage. Therefore, the manufacturing process can be simplified and the manufacturing cost can be reduced. Further, when rolling is performed, it is possible to easily give a high orientation at a low pressure. Furthermore, since the fluoride covers the circumference of the rare earth metal magnetic powder during sintering and solidification,
It has excellent corrosion resistance and exhibits the excellent effect of not requiring rust prevention treatment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る異方性磁石の製造方法の一実施例
における原料粉計量工程を示す概略図である。
FIG. 1 is a schematic view showing a raw material powder measuring step in an example of a method for manufacturing an anisotropic magnet according to the present invention.

【図2】本発明に係る異方性磁石の製造方法の一実施例
における原料粉混合工程を示す概略図である。
FIG. 2 is a schematic view showing a raw material powder mixing step in an example of the method for producing an anisotropic magnet according to the present invention.

【図3】本発明に係る異方性磁石の製造方法の一実施例
における母粒子と子粒子とのカプセル状態を示す概略図
である。
FIG. 3 is a schematic view showing a capsule state of mother particles and child particles in an example of the method for producing an anisotropic magnet according to the present invention.

【図4】本発明に係る異方性磁石の製造方法の一実施例
における混合粉充填工程を示す概略図である。
FIG. 4 is a schematic view showing a mixed powder filling step in an example of the method for producing an anisotropic magnet according to the present invention.

【図5】本発明に係る異方性磁石の製造方法の一実施例
における焼結固化工程を示す概略図である。
FIG. 5 is a schematic view showing a sintering and solidifying step in one example of the method for producing an anisotropic magnet according to the present invention.

【符号の説明】[Explanation of symbols]

3 母粒子 4 子粒子 5 カプセル粒子 6 成形型 3 Mother particle 4 Child particle 5 Capsule particle 6 Mold

───────────────────────────────────────────────────── フロントページの続き (72)発明者 瀧田 茂生 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 加藤 雅之 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 (72)発明者 原 裕一郎 神奈川県藤沢市土棚8番地 株式会社い すゞ中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigeo Takita, No. 8 Tsutana, Fujisawa, Kanagawa Prefecture Isuzu Central Research Institute Co., Ltd. In-house (72) Inventor Yuichiro Hara 8 Tsutana, Fujisawa-shi, Kanagawa Inside Isuzu Central Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 アモルファスを含む希土類金属磁性粉を
母粒子とし、結晶ヘキ開性が良くかつ母粒子の固化温度
において流動性を有する弗化物を子粒子とするカプセル
粒子を、成形型内で焼結固化するようにしたことを特徴
とする異方性磁石の製造方法。
1. Capsule particles comprising a rare earth metal magnetic powder containing amorphous as a mother particle and a fluoride having a good crystal cleavability and having fluidity at the solidification temperature of the mother particle as a child particle are baked in a molding die. A method for producing an anisotropic magnet, characterized in that it is solidified.
【請求項2】 前記焼結固化後に、圧延を行うようにし
た請求項1に記載の異方性磁石の製造方法。
2. The method for producing an anisotropic magnet according to claim 1, wherein rolling is performed after the sintering and solidification.
JP5014095A 1993-01-29 1993-01-29 Manufacture of anisotropic magnet Pending JPH06231925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5014095A JPH06231925A (en) 1993-01-29 1993-01-29 Manufacture of anisotropic magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5014095A JPH06231925A (en) 1993-01-29 1993-01-29 Manufacture of anisotropic magnet

Publications (1)

Publication Number Publication Date
JPH06231925A true JPH06231925A (en) 1994-08-19

Family

ID=11851560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5014095A Pending JPH06231925A (en) 1993-01-29 1993-01-29 Manufacture of anisotropic magnet

Country Status (1)

Country Link
JP (1) JPH06231925A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006066870A (en) * 2004-07-28 2006-03-09 Hitachi Ltd Rare-earth magnet
JP2006066853A (en) * 2004-06-25 2006-03-09 Hitachi Ltd Rare-earth magnet and its manufacturing method, and magnet motor
US7163591B2 (en) * 2003-10-15 2007-01-16 Jahwa Electronics Co., Ltd. Method of preparing micro-structured powder for bonded magnets having high coercivity and magnet powder prepared by the same
JP2007088108A (en) * 2005-09-21 2007-04-05 Hitachi Ltd Magnet, magnetic material for magnet, coat film formation process liquid, and rotating machine
JP2007116142A (en) * 2005-09-26 2007-05-10 Hitachi Ltd Magnetic material, magnet and rotating machine
JP2007194599A (en) * 2005-12-22 2007-08-02 Hitachi Ltd Low-loss magnet, and magnetic circuit using same
JP2010056572A (en) * 2004-06-25 2010-03-11 Hitachi Ltd Rare-earth magnet

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7163591B2 (en) * 2003-10-15 2007-01-16 Jahwa Electronics Co., Ltd. Method of preparing micro-structured powder for bonded magnets having high coercivity and magnet powder prepared by the same
JP2010056572A (en) * 2004-06-25 2010-03-11 Hitachi Ltd Rare-earth magnet
JP2006066853A (en) * 2004-06-25 2006-03-09 Hitachi Ltd Rare-earth magnet and its manufacturing method, and magnet motor
US8084128B2 (en) 2004-06-25 2011-12-27 Hitachi, Ltd. Rare-earth magnet and manufacturing method thereof and magnet motor
US7871475B2 (en) 2004-06-25 2011-01-18 Hitachi, Ltd. Rare-earth magnet and manufacturing method thereof and magnet motor
JP2010062585A (en) * 2004-06-25 2010-03-18 Hitachi Ltd Rare-earth magnet and magnet motor
JP4654709B2 (en) * 2004-07-28 2011-03-23 株式会社日立製作所 Rare earth magnets
JP2006066870A (en) * 2004-07-28 2006-03-09 Hitachi Ltd Rare-earth magnet
US8119260B2 (en) 2004-07-28 2012-02-21 Hitachi, Ltd. Rare-earth magnet
JP4710507B2 (en) * 2005-09-21 2011-06-29 株式会社日立製作所 Magnets, magnetic materials for magnets, coating film forming solution and rotating machine
JP2007088108A (en) * 2005-09-21 2007-04-05 Hitachi Ltd Magnet, magnetic material for magnet, coat film formation process liquid, and rotating machine
JP2007116142A (en) * 2005-09-26 2007-05-10 Hitachi Ltd Magnetic material, magnet and rotating machine
JP2007194599A (en) * 2005-12-22 2007-08-02 Hitachi Ltd Low-loss magnet, and magnetic circuit using same

Similar Documents

Publication Publication Date Title
US4780226A (en) Lubrication for hot working rare earth-transition metal alloys
US4971755A (en) Method for preparing powder metallurgical sintered product
EP1036854B1 (en) Amorphous alloy having excellent bending strength and impact strength, and method for producing the same
JPH0366105A (en) Rare earth anisotropic powder and magnet, and manufacture thereof
JPH06231925A (en) Manufacture of anisotropic magnet
JPH03153006A (en) Permanent magnet and raw material therefor
EP2207186A1 (en) Material for anisotropic magnet and method of manufacturing the same
JPH03241705A (en) Magnetically anisotropic magnet and manufacture thereof
JPH07272914A (en) Sintered magnet, and its manufacture
JP3135120B2 (en) Manufacturing method of warm-worked magnet
JP3047239B2 (en) Warm-worked magnet and manufacturing method thereof
JP4089212B2 (en) Method for producing granulated powder of rare earth alloy and method for producing sintered rare earth alloy
JPH02250922A (en) Production of rare earth element-transition element -b magnet
JPH06112028A (en) Sintered magnet
EP3660871B1 (en) Method for producing magnetic powder
JP3147521B2 (en) Manufacturing method of anisotropic magnet
US4029475A (en) Blank for rolling and forging and method of producing same
JP2632886B2 (en) Manufacturing method of multi-phase structure sintered body
CN110871269A (en) Alloy powder composition
JPS6329908A (en) Manufacture of r-fe-b rare earth magnet
JPH0317203A (en) Manufacture of powder metallurgical product
JP2003041303A (en) Metal member and manufacturing method therefor
JPH04285141A (en) Manufacture of ferrous sintered body
JPH0610282B2 (en) Amorphous metal forming method
CA1055732A (en) Sintered blanks for rolling and forging and method of producing same