JPH06231780A - Improved solid high polymer electrolytic fuel cell - Google Patents

Improved solid high polymer electrolytic fuel cell

Info

Publication number
JPH06231780A
JPH06231780A JP5039418A JP3941893A JPH06231780A JP H06231780 A JPH06231780 A JP H06231780A JP 5039418 A JP5039418 A JP 5039418A JP 3941893 A JP3941893 A JP 3941893A JP H06231780 A JPH06231780 A JP H06231780A
Authority
JP
Japan
Prior art keywords
warp
fuel cell
weft
sulfonic acid
parfluorocarbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5039418A
Other languages
Japanese (ja)
Inventor
Masayuki Tamura
正之 田村
Kiyoshige Jitsukata
清成 實方
Yoshiaki Higuchi
義明 樋口
Haruhisa Miyake
晴久 三宅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP5039418A priority Critical patent/JPH06231780A/en
Publication of JPH06231780A publication Critical patent/JPH06231780A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

PURPOSE:To provide low electric resistance and high mechanical strength to achieve high performance of a fuel cell by forming a positive ion exchange film forming the cell, of a parfluorocarbon polymer containing sulfonic acid group, which is reinforced with a parfluorocarbon polymer nonwoven fabric having a net structure. CONSTITUTION:The denier number of the warp of a parfluorocarbon polymer woven fabric is 20-100 or preferably 30-75, and the denier number of the weft is 20-200, or preferably 30-100, while the density of the warp and the weft is 10-50 strings/inch or preferably 15-30 strings/inch. The intersection between the warp and the weft is flattened, and the thickness is 40-120mum, or preferably 50-85mum. When the denier number of the warp and the weft is small, reinforcing effect is insufficient, whereas, when the number is large, a pin hole or a crack is formed. For a sulfonic acid type parfluorocarbon complex, a fluorovinyl compound or tetrafluoroethylene is used as usual.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、固体高分子電解質型燃
料電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solid polymer electrolyte fuel cell.

【0002】[0002]

【従来の技術】近年プロトン伝導性の高分子膜を電解質
として用いる燃料電池(固体高分子電解質型燃料電池)
の研究が進んでいる。固体高分子電解質型燃料電池は、
低温で作動し出力密度が高く小型化が可能であるという
特徴を有し、車載用電源等の用途に対し有力視されてい
る。
2. Description of the Related Art Recently, a fuel cell using a proton-conducting polymer membrane as an electrolyte (solid polymer electrolyte fuel cell)
Research is progressing. The solid polymer electrolyte fuel cell is
It operates at low temperature, has a high output density, and can be downsized, and is regarded as a promising candidate for applications such as in-vehicle power supplies.

【0003】[0003]

【発明が解決しようとする課題】本用途に用いられる高
分子膜は、通常厚さ100〜200μmのプロトン伝導
性イオン交換膜が用いられ、特にスルホン酸基を有する
パーフルオロカーボン重合体からなる陽イオン交換膜が
基本特性に優れ広く検討されている。しかし、現在提案
されている陽イオン交換膜の電気抵抗は、より高出力密
度の電池を得る観点から必ずしも十分に低いとは言えな
い。
As the polymer membrane used for this purpose, a proton conductive ion exchange membrane having a thickness of 100 to 200 μm is usually used, and in particular, a cation composed of a perfluorocarbon polymer having a sulfonic acid group. Exchange membranes have been widely studied because of their excellent basic properties. However, the electrical resistance of currently proposed cation exchange membranes is not necessarily sufficiently low from the viewpoint of obtaining batteries with higher power density.

【0004】陽イオン交換膜の電気抵抗を低減する方法
としてはスルホン酸基濃度の増加と膜厚の低減がある
が、スルホン酸基濃度の著しい増加は膜の機械的強度を
低下させたり、長期運転において膜がクリープし易くな
り耐久性を低下させるなどの問題点が生じる。一方膜厚
の低減は膜の機械的強度を低下させたり、更にガス拡散
電極との接合等の加工性・取扱い性を低下させるなどの
問題点が生じる。
As a method for reducing the electric resistance of the cation exchange membrane, there is an increase in the concentration of sulfonic acid groups and a reduction in the film thickness. During operation, the film easily creeps, which causes problems such as deterioration of durability. On the other hand, the reduction of the film thickness causes problems such as deterioration of the mechanical strength of the film and further deterioration of workability and handleability such as bonding with the gas diffusion electrode.

【0005】上記の問題点を解決する方法として、スル
ホン酸基を含有するパーフルオロカーボン重合体のフィ
ルムとポリテトラフルオロエチレン(PTFE)の多孔
体との複合陽イオン交換膜が提案された(マーク.W.
バーブルッジら、AIChE ジャーナル、1992年,38,93)
が、膜厚は薄くできるものの多孔体状のPTFEでは膜
の電気抵抗が十分に低下しないことがわかった。
As a method for solving the above problems, a composite cation exchange membrane of a film of a perfluorocarbon polymer containing a sulfonic acid group and a porous body of polytetrafluoroethylene (PTFE) has been proposed (Mark. W.
Barbudge et al., AIChE Journal, 1992, 38,93)
However, it was found that although the film thickness can be reduced, the electrical resistance of the film is not sufficiently reduced in porous PTFE.

【0006】[0006]

【課題を解決するための手段】本発明は前述の問題点を
解決すべくなされたものであり、所定の網目構造を有す
るパーフルオロカーボン重合体織布で補強されたスルホ
ン酸基を含有するパーフルオロカーボン重合体からなる
陽イオン交換膜を固体高分子電解質とする固体高分子電
解質型燃料電池を提供するものである。
The present invention has been made to solve the above-mentioned problems, and is a perfluorocarbon containing a sulfonic acid group reinforced with a perfluorocarbon polymer woven fabric having a predetermined network structure. It is intended to provide a solid polymer electrolyte fuel cell using a cation exchange membrane made of a polymer as a solid polymer electrolyte.

【0007】本発明において補強材として用いられるパ
ーフルオロカーボン重合体としては、テトラフルオロエ
チレン、ヘキサフルオロプロピレン、クロロトリフルオ
ロエチレン、パーフルオロアルコキシビニルエーテルの
如きパーフルオロオレフィンの単独又は共重合体が例示
される。その具体例としてはポリテトラフルオロエチレ
ン(PTFE)、ポリテトラフルオロエチレン−ヘキサ
フルオロプロピレン(FEP)、ポリテトラフルオロエ
チレン−パーフルオロプロピルビニルエーテル(PF
A)、ポリクロロトリフルオロエチレン、ポリテトラフ
ルオロエチレン−パーフルオロ−2, 2−ジメチル−
1, 3−ジオキソール、ポリパーフルオロブテニルビニ
ルエーテルなどが挙げられるが、特にPTFEが特性上
好ましい。
Examples of the perfluorocarbon polymer used as the reinforcing material in the present invention include homopolymers or copolymers of perfluoroolefins such as tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, and perfluoroalkoxy vinyl ether. . Specific examples thereof include polytetrafluoroethylene (PTFE), polytetrafluoroethylene-hexafluoropropylene (FEP), polytetrafluoroethylene-perfluoropropyl vinyl ether (PF).
A), polychlorotrifluoroethylene, polytetrafluoroethylene-perfluoro-2,2-dimethyl-
Examples thereof include 1,3-dioxole and polyperfluorobutenyl vinyl ether, but PTFE is particularly preferable in terms of characteristics.

【0008】かかる重合体は特定の網目構造を有する織
布状の形態で補強材とされる。これらの織布形態は上記
文献で知られたPTFE多孔体と比較して補強の割合が
網目構造として任意に選定可能であること、織布の開口
率を高めても補強効果が高く電気抵抗の上昇が低いこ
と、更に寸法安定性に優れていること等の利点を有す
る。
Such a polymer is used as a reinforcing material in the form of a woven cloth having a specific network structure. Compared with the PTFE porous body known in the above-mentioned literature, these woven fabric forms can be arbitrarily selected for the reinforcement ratio as a mesh structure, and even if the opening ratio of the woven fabric is increased, the reinforcement effect is high and the electrical resistance is high. It has advantages such as low rise and excellent dimensional stability.

【0009】本発明においては、パーフルオロカーボン
重合体織布は、縦糸のデニール数が20〜100、好ま
しくは30〜75、横糸のデニール数が20〜200、
好ましくは30〜100であり、縦糸及び横糸密度が1
0〜50本/インチ、好ましくは15〜30本/インチ
であり、さらに縦糸及び横糸の交点が偏平化されて、厚
みが40〜120μm、好ましくは50〜85μmにせ
しめられた構造を有する。縦糸、横糸のデニール数が上
記範囲より小さい場合には補強効果が不十分となり、一
方大きい場合にはピンホールやクラックが発生し易いと
いう欠点が生じる。
In the present invention, the perfluorocarbon polymer woven fabric has a warp yarn denier number of 20 to 100, preferably 30 to 75, and a weft yarn denier number of 20 to 200,
It is preferably 30 to 100, and the warp and weft density is 1
It has 0 to 50 yarns / inch, preferably 15 to 30 yarns / inch, and further has a structure in which the intersections of the warp yarns and the weft yarns are flattened to have a thickness of 40 to 120 μm, preferably 50 to 85 μm. When the denier number of the warp yarn and the weft yarn is smaller than the above range, the reinforcing effect is insufficient, while when it is large, there is a drawback that pinholes and cracks are likely to occur.

【0010】各縦糸、横糸は、上記の範囲の細糸であれ
ばモノフィラメント、マルチフィラメントのいずれも適
用可能であるが、マルチフィラメントの場合には、糸断
面の偏平化による布開口率の減少に伴う膜抵抗の上昇を
極小にできるので、好ましく採用可能である。縦糸及び
横糸密度が上記範囲より小さい場合には目ずれが生じ易
くなるなるとともに、補強効果が不十分である。また上
限より大きい場合には膜抵抗が上昇する。
As the warp yarns and the weft yarns, both monofilaments and multifilaments can be applied as long as they are fine yarns in the above range. However, in the case of multifilaments, the cloth opening ratio is reduced by flattening the yarn cross section. Since the increase in the membrane resistance accompanying it can be minimized, it can be preferably adopted. If the warp and weft densities are less than the above range, misalignment is likely to occur and the reinforcing effect is insufficient. If it is larger than the upper limit, the film resistance increases.

【0011】また、織布は、平板プレスやロールプレス
などにより偏平化され、その厚みを40〜120μ、好
ましくは50〜80μmにせしめられる。織布が偏平化
されない場合には、これにより電気抵抗を増大させず
に、ピンホールやクラックの発生が抑制できることが見
い出された。
The woven fabric is flattened by a flat plate press or a roll press and the thickness thereof is set to 40 to 120 μm, preferably 50 to 80 μm. It has been found that if the woven fabric is not flattened, this can suppress the occurrence of pinholes and cracks without increasing the electrical resistance.

【0012】パーフルオロカーボン重合体織布による陽
イオン交換膜の補強する方法は特に限定されず、スルホ
ン酸型パーフルオロカーボン重合体、又は分散液を織布
に含浸させた後乾燥、造膜を行うキャスティング法や、
スルホン酸型パーフルオロカーボン重合体膜状物と織布
とを熱溶融プレスにより積層する方法等も適用される。
熱溶融プレス法としては平板プレス、真空プレス等のバ
ッチ法や連続ロールプレス法等の連続法が挙げられる。
陽イオン交換膜の全厚みは、70〜300μm、好まし
くは80〜120μmが採用される。
The method for reinforcing the cation exchange membrane with the perfluorocarbon polymer woven fabric is not particularly limited, and casting is performed by impregnating the woven fabric with the sulfonic acid type perfluorocarbon polymer or the dispersion liquid, followed by drying and film formation. The law,
A method of laminating a sulfonic acid type perfluorocarbon polymer film and a woven fabric by a hot melt press is also applicable.
Examples of the hot-melt pressing method include batch methods such as flat plate pressing and vacuum pressing, and continuous methods such as continuous roll pressing.
The total thickness of the cation exchange membrane is 70 to 300 μm, preferably 80 to 120 μm.

【0013】本発明で用いられるスルホン酸型パーフル
オロカーボン重合体としては、従来より公知の重合体が
広く採用される。一般式CF2 =CF−(OCF2 CF
X)m −Oq −(CF2n −A(式中m=0〜3、n
=0〜12、q=0又は1、X=F又はCF3 、A=ス
ルホン酸型官能基)で表されるフルオロビニル化合物
と、テトラフルオロエチレン、ヘキサフルオロプロピレ
ン、クロロトリフルオロエチレン、又はパーフルオロア
ルコキシビニルエーテルの如きパーフルオロオレフィン
との共重合体が例示される。
As the sulfonic acid type perfluorocarbon polymer used in the present invention, conventionally known polymers are widely adopted. Formula CF 2 = CF- (OCF 2 CF
X) m -O q - (CF 2) n -A ( wherein m = 0 to 3, n
= 0 to 12, q = 0 or 1, X = F or CF 3 , A = sulfonic acid type functional group) and tetrafluoroethylene, hexafluoropropylene, chlorotrifluoroethylene, or perfluoroethylene. Examples thereof include copolymers with perfluoroolefin such as fluoroalkoxy vinyl ether.

【0014】上記フルオロビニル化合物の好ましい例と
しては、 CF2 =CFO(CF21-8 SO2 F CF2 =CFOCF2 CF(CF3 )O(CF21-8 SO2 F CF2 =CF(CF20-8 SO2 F CF2 =CF(OCF2 CF(CF3 ))1-5 O(CF22 SO2 F などが挙げられる。かかるスルホン酸型パーフルオロカ
ーボン重合体中のスルホン酸基の濃度、即ちイオン交換
容量としては0.5〜2.0ミリ当量/グラム乾燥樹
脂、更には0.7〜1.6ミリ当量の範囲が好ましい。
イオン交換容量がこの範囲より低い場合には膜の電気抵
抗が大きくなり、一方高い場合には膜の機械的強度が十
分でない。
Preferred examples of the fluorovinyl compound include CF 2 ═CFO (CF 2 ) 1-8 SO 2 F CF 2 ═CFOCF 2 CF (CF 3 ) O (CF 2 ) 1-8 SO 2 F CF 2 = CF (CF 2) 0-8 SO 2 F CF 2 = CF (OCF 2 CF (CF 3)) , such as 1-5 O (CF 2) 2 SO 2 F and the like. The concentration of the sulfonic acid group in the sulfonic acid type perfluorocarbon polymer, that is, the ion exchange capacity is 0.5 to 2.0 meq / g dry resin, and further 0.7 to 1.6 meq. preferable.
When the ion exchange capacity is lower than this range, the electric resistance of the membrane becomes large, while when it is high, the mechanical strength of the membrane is not sufficient.

【0015】補強されたスルホン酸型パーフルオロカー
ボン重合体からなる陽イオン交換膜は通常の、既知の手
法に従ってその表面にガス拡散電極を密着させ、次いで
集電体をとりつけ、燃料電池として組み立てられる。
The cation exchange membrane made of the reinforced sulfonic acid type perfluorocarbon polymer is assembled into a fuel cell by adhering a gas diffusion electrode to the surface of the cation exchange membrane according to a known method and then attaching a current collector.

【0016】ガス拡散電極は通常白金触媒微粒子を担持
させた導電性のカーボンブラック粉末をポリテトラフル
オロエチレンなどの疎水性樹脂結着材で保持させた多孔
質体のシートよりなるが、該多孔質体はスルホン酸型パ
ーフルオロカーボン重合体や該重合体で被覆された微粒
子を含んでいてもよい。
The gas diffusion electrode usually comprises a sheet of a porous body in which conductive carbon black powder carrying fine platinum catalyst particles is held by a hydrophobic resin binder such as polytetrafluoroethylene. The body may contain a sulfonic acid type perfluorocarbon polymer or fine particles coated with the polymer.

【0017】ガス拡散電極はスルホン酸型パーフルオロ
カーボン重合体からなる陽イオン交換膜に対して加熱プ
レス法等により密着される。集電体には燃料ガス又は酸
化剤ガスの通路となる溝が形成された、導電性カーボン
板等が用いられる。
The gas diffusion electrode is brought into close contact with a cation exchange membrane composed of a sulfonic acid type perfluorocarbon polymer by a heating press method or the like. For the current collector, a conductive carbon plate or the like in which a groove serving as a passage for the fuel gas or the oxidant gas is formed is used.

【0018】水素ガス燃料電池では、陽極側に水素ガス
が供給され陰極側には酸素或いは空気が供給され、次の
反応により化学エネルギーが電気エネルギーに変換され
る。 陰極:H2 → 2H+ +2e- 陽極:1/2O2 +2H+ +2e- → H2
In the hydrogen gas fuel cell, hydrogen gas is supplied to the anode side and oxygen or air is supplied to the cathode side, and chemical energy is converted into electric energy by the following reaction. Cathode: H 2 → 2H + + 2e Anode: 1 / 2O 2 + 2H + + 2e → H 2 O

【0019】[0019]

【実施例】【Example】

実施例1 特開平2−88645号公報に記載されている方法に準
拠し、イオン交換容量1.0ミリ当量/g乾燥樹脂であ
る、CF2 =CFO(CF2 CFCF3 )O(CF2
2 SO2 Fとテトラフルオロエチレンとの共重合体を得
た。この共重合体を220℃で押し出し製膜し、厚さ5
0μmのフィルムを得た。
According to the method disclosed in Japanese Patent Example 1 JP-A 2-88645, an ion exchange capacity 1.0 meq / g dry resin, CF 2 = CFO (CF 2 CFCF 3) O (CF 2)
A copolymer of 2 SO 2 F and tetrafluoroethylene was obtained. This copolymer was extruded at 220 ° C to form a film, and the thickness was 5
A 0 μm film was obtained.

【0020】次に縦糸、横糸ともに太さが50デニー
ル、偏平化後の厚みが60μm、密度が27本/インチ
のポリテトラフルオロエチレン製織布を用意した。22
0℃でロールを用いて、上記2枚のフィルムとの間にポ
リテトラフルオロエチレンにより構成される上記織布を
挿入し積層することにより補強陽イオン交換膜を得た。
この膜を、ジメチルスルホキシド30重量%と、苛性カ
リ15重量%との混合水溶液中で加水分解を行い、水洗
した後1Nの塩酸中に浸漬した。得られた膜を水洗し、
膜の四辺を専用治具で拘束した後60℃、1時間乾燥し
サンプル陽イオン交換膜を得た。
Next, a woven polytetrafluoroethylene cloth having a thickness of 50 denier for both warp and weft, a thickness after flattening of 60 μm and a density of 27 filaments / inch was prepared. 22
A reinforced cation exchange membrane was obtained by inserting the woven fabric composed of polytetrafluoroethylene between the two films using a roll at 0 ° C. and laminating the woven fabric.
This membrane was hydrolyzed in a mixed aqueous solution of 30% by weight of dimethyl sulfoxide and 15% by weight of caustic potash, washed with water, and then immersed in 1N hydrochloric acid. Wash the resulting membrane with water,
After restraining the four sides of the membrane with dedicated jigs, the membrane was dried at 60 ° C. for 1 hour to obtain a sample cation exchange membrane.

【0021】(強度測定)この陽イオン交換膜を90℃
の純水中に浸漬した後、引っ張り強度を測定したところ
3.9kg/cm幅であった。
(Measurement of Strength) This cation exchange membrane was heated at 90 ° C.
After being dipped in pure water, the tensile strength was measured and found to be 3.9 kg / cm width.

【0022】(膜抵抗測定)陽イオン交換膜を1Mの硫
酸に25℃、24時間浸漬した後、交流比抵抗を測定し
た。電解液は1Mの硫酸であり、白金製の電極を用い
た。有効膜面積は1.87cm2 であり、測定温度25
℃に設定した。横河ヒューレッドパッカー社のLCRメ
ータを用い、交流比抵抗を測定した結果は12.6Ωc
mであった。
(Measurement of Membrane Resistance) The cation exchange membrane was immersed in 1 M sulfuric acid at 25 ° C. for 24 hours, and then the AC specific resistance was measured. The electrolytic solution was 1 M sulfuric acid, and a platinum electrode was used. The effective membrane area is 1.87 cm 2 and the measurement temperature is 25
It was set to ° C. Using an LCR meter manufactured by Yokogawa Hured Packer, the result of measuring the AC specific resistance was 12.6 Ωc.
It was m.

【0023】比較例1 実施例1で得られた、同一のイオン交換容量1.0ミリ
当量/g乾燥樹脂である、CF2 =CFO(CF2 CF
CF3 )O(CF22 SO2 Fとテトラフルオロエチ
レンとの共重合体からなる厚さ50μmの押し出しフィ
ルムを2枚を用い、220℃でロールを用いて、フィル
ム同志を貼合わせて得られる無補強の陽イオン交換膜を
実施例1と同様な処理を施し、強度測定及び抵抗測定を
実施したところ、引っ張り強度(幅方向)は1.9kg
/cm、交流比抵抗は12.6Ωcmであった。
Comparative Example 1 CF 2 ═CFO (CF 2 CF), which is the same ion exchange capacity of 1.0 meq / g dry resin obtained in Example 1.
CF 3 ) O (CF 2 ) 2 SO 2 F and a tetrafluoroethylene copolymer having a thickness of 50 μm are used as two extruded films, and the films are stuck together using a roll at 220 ° C. The obtained non-reinforced cation exchange membrane was subjected to the same treatment as in Example 1 and subjected to strength measurement and resistance measurement. The tensile strength (width direction) was 1.9 kg.
/ Cm, the AC specific resistance was 12.6 Ωcm.

【0024】実施例2 実施例1で得られた織布で補強された陽イオン交換膜の
燃料電池特性を評価した。白金触媒微粒子を担持させた
カーボンブラック粉末にポリテトラフルオロエチレンを
混入し、ロールプレスを用いて厚さ250μmのシート
状のガス拡散電極を作製した。上記2枚のガス拡散電極
との間に上記陽イオン交換膜を挿入し平板熱プレス機を
用いて積層することにより膜電極接合体を作製した。膜
電極接合体の白金触媒量は膜面積cm2 あたり1mgで
あった。次に膜電極接合体をチタン製の集電体、PTF
E製のガス供給室、ヒーターの順番ではさみ、有効膜面
積9cm2 の燃料電池を組み上げた。セルの温度を80
℃に保ち、正極に酸素、負極に水素をそれぞれ5気圧で
供給した時の電流密度に対する端子電圧を測定したとこ
ろ電流密度1A/cm2 、セル電圧0.60Vであっ
た。
Example 2 Fuel cell characteristics of the cation exchange membrane reinforced with the woven fabric obtained in Example 1 were evaluated. Polytetrafluoroethylene was mixed in carbon black powder supporting platinum catalyst fine particles, and a 250 μm thick sheet-shaped gas diffusion electrode was produced by using a roll press. A membrane electrode assembly was produced by inserting the cation exchange membrane between the two gas diffusion electrodes and stacking them using a flat plate heat press. The amount of platinum catalyst in the membrane electrode assembly was 1 mg per cm 2 of membrane area. Next, the membrane electrode assembly was replaced with a titanium current collector, PTF.
A gas supply chamber made of E and a heater were sandwiched in this order to assemble a fuel cell having an effective membrane area of 9 cm 2 . Set the cell temperature to 80
When the terminal voltage was measured with respect to the current density when oxygen was supplied to the positive electrode and hydrogen was supplied to the negative electrode at 5 atm at 5 ° C., the current density was 1 A / cm 2 , and the cell voltage was 0.60 V.

【0025】比較例2 比較例1で製造した補強されていない陽イオン交換膜に
対し、実施例2と同様な方法により燃料電池を組み上げ
た後、同様な条件下で電流密度に対する端子電圧を測定
したところ電流密度1A/cm2 、セル電圧が0.60
Vであった。
Comparative Example 2 After assembling a fuel cell to the unreinforced cation exchange membrane produced in Comparative Example 1 by the same method as in Example 2, the terminal voltage with respect to the current density was measured under the same conditions. As a result, the current density was 1 A / cm 2 and the cell voltage was 0.60.
It was V.

【0026】上記の結果からわかるように、実施例1の
陽イオン交換膜は比較例1の膜に比べ、大きな引張り強
度を有するにもかかわらず、ほぼ同一の燃料電池を保持
できることがわかった。
As can be seen from the above results, the cation exchange membrane of Example 1 can hold almost the same fuel cell as the membrane of Comparative Example 1, although it has a higher tensile strength than the membrane of Comparative Example 1.

【0027】[0027]

【発明の効果】従来にない低い電気抵抗と高い機械的強
度を有する補強陽イオン交換膜を固体高分子電解質とす
ることにより高性能の固体高分子電解質型燃料電池が得
られる。
EFFECTS OF THE INVENTION By using a reinforcing cation exchange membrane having unprecedented low electric resistance and high mechanical strength as a solid polymer electrolyte, a high performance solid polymer electrolyte fuel cell can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 三宅 晴久 神奈川県横浜市神奈川区羽沢町1150番地 旭硝子株式会社中央研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Haruhisa Miyake 1150, Hazawa-machi, Kanagawa-ku, Yokohama-shi, Kanagawa Asahi Glass Co., Ltd. Central Research Laboratory

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】縦糸のデニール数が20〜100、横糸の
デニール数が20〜200、縦糸及び横糸密度が10〜
50本/インチであり、縦糸及び横糸の交点が偏平化さ
れて、厚み40〜120μmにせしめたパーフルオロカ
ーボン重合体織布で補強されたスルホン酸基を含有する
パーフルオロカーボン重合体からなる陽イオン交換膜
を、固体高分子電解質とすることを特徴とする固体高分
子電解質型燃料電池。
1. The warp yarn has a denier number of 20 to 100, the weft yarn has a denier number of 20 to 200, and the warp and weft yarn densities are 10 to 10.
Cation exchange consisting of perfluorocarbon polymer containing sulfonic acid groups of 50 threads / inch, flattened at intersections of warp and weft, and reinforced with perfluorocarbon polymer woven fabric having a thickness of 40 to 120 μm A solid polymer electrolyte fuel cell, wherein the membrane is a solid polymer electrolyte.
【請求項2】パーフルオロカーボン重合体織布が、ポリ
テトラフルオロエチレン、ポリテトラフルオロエチレン
−パーフルオロアルコキシビニルエーテル、又はポリテ
トラフルオロエチレン−ヘキサフルオロプロピレンから
なる請求項1の固体高分子電解質型燃料電池。
2. A solid polymer electrolyte fuel cell according to claim 1, wherein the woven cloth of perfluorocarbon polymer is made of polytetrafluoroethylene, polytetrafluoroethylene-perfluoroalkoxyvinyl ether, or polytetrafluoroethylene-hexafluoropropylene. .
【請求項3】スルホン酸基を含有するパーフルオロカー
ボン重合体がCF2 =CF2 とCF2 =CF−(OCF
2 CFX)m −Oq −(CF2n −A(式中m=0〜
3、n=0〜12、q=0又は1、X=F又はCF3
A=スルホン酸型官能基)との共重合体である請求項1
又は2の固体高分子電解質型燃料電池。
3. A perfluorocarbon polymer containing a sulfonic acid group is CF 2 ═CF 2 and CF 2 ═CF— (OCF.
2 CFX) m —O q — (CF 2 ) n —A (where m = 0 to
3, n = 0 to 12, q = 0 or 1, X = F or CF 3 ,
A is a copolymer with a sulfonic acid type functional group).
Or the solid polymer electrolyte fuel cell of item 2.
JP5039418A 1993-02-03 1993-02-03 Improved solid high polymer electrolytic fuel cell Pending JPH06231780A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5039418A JPH06231780A (en) 1993-02-03 1993-02-03 Improved solid high polymer electrolytic fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5039418A JPH06231780A (en) 1993-02-03 1993-02-03 Improved solid high polymer electrolytic fuel cell

Publications (1)

Publication Number Publication Date
JPH06231780A true JPH06231780A (en) 1994-08-19

Family

ID=12552442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5039418A Pending JPH06231780A (en) 1993-02-03 1993-02-03 Improved solid high polymer electrolytic fuel cell

Country Status (1)

Country Link
JP (1) JPH06231780A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224994B1 (en) 1998-01-19 2001-05-01 Aisin Seiki Kabushiki Kaisha Solid polyelectrolyte-type fuel cell
US6713207B2 (en) 2000-05-18 2004-03-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Membrane electrode assembly, and solid polymer fuel cell using the assembly
EP1674508A1 (en) * 2004-12-22 2006-06-28 Asahi Glass Company, Limited Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
CN113396245A (en) * 2019-02-08 2021-09-14 Agc株式会社 Membrane electrode assembly and water electrolysis device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6224994B1 (en) 1998-01-19 2001-05-01 Aisin Seiki Kabushiki Kaisha Solid polyelectrolyte-type fuel cell
US6713207B2 (en) 2000-05-18 2004-03-30 Kabushiki Kaisha Toyota Chuo Kenkyusho Membrane electrode assembly, and solid polymer fuel cell using the assembly
EP1674508A1 (en) * 2004-12-22 2006-06-28 Asahi Glass Company, Limited Electrolyte membrane, process for its production and membrane-electrode assembly for polymer electrolyte fuel cells
WO2019088299A1 (en) * 2017-11-06 2019-05-09 Agc株式会社 Solid polymer electrolyte film, membrane electrode assembly and electrolyzer
CN111316380A (en) * 2017-11-06 2020-06-19 Agc株式会社 Solid polymer electrolyte membrane, membrane electrode assembly, and water electrolysis device
CN111316380B (en) * 2017-11-06 2022-05-24 Agc株式会社 Solid polymer electrolyte membrane, membrane electrode assembly, and water electrolysis device
US11742507B2 (en) 2017-11-06 2023-08-29 AGC Inc. Polymer electrolyte membrane, membrane electrode assembly and water electrolyzer
CN113396245A (en) * 2019-02-08 2021-09-14 Agc株式会社 Membrane electrode assembly and water electrolysis device

Similar Documents

Publication Publication Date Title
JPH06231779A (en) Solid high polymer electrolytic type fuel cell
US7749630B2 (en) Polymer electrolyte membrane and polymer electrolyte fuel cell comprising same
US8043763B2 (en) Solid polymer electrolyte material, liquid composition, solid polymer fuel cell and fluoropolymer
US6869714B2 (en) Electrode-membrane assembly and process for the preparation thereof
WO2001006587A1 (en) Solid polymer electrolyte type fuel cell and method for manufacturing the same
KR20010095213A (en) Electrolyte membrane for solid polymer type fuel cell and producing method thereof
JP2002260705A (en) Solid polymer electrolyte material, liquid composite, solid polymer fuel cell, fluorine-containing polymer and solid polymer electrolyte film consisting of fluorine-containing polymer
JP3382654B2 (en) Solid polymer electrolyte fuel cell
JP2003203648A (en) Solid polymer electrolyte compound membrane, membrane /electrode joint body, solid polymer fuel cell using the sam
US20040097603A1 (en) Ion-exchange fluororesin membrane
JP2000260443A (en) Solid high polymer electrolyte fuel cell
JPH06231780A (en) Improved solid high polymer electrolytic fuel cell
FI80482C (en) FOERFARANDE FOER FRAMSTAELLNING AV EN FAST POLYMER ELEKTROLYTSTRUKTUR GENOM ANVAENDNING AV EN VAETSKA ELLER ETT LOESNINGSMEDEL.
JP3541466B2 (en) Improved solid polymer electrolyte fuel cell
JP3442741B2 (en) Composite polymer electrolyte membrane and method for producing the same
WO2001006586A1 (en) Solid polymer electrolyte type fuel cell and method for manufacturing the same
EP1298744A1 (en) Fuel cell
JP4867081B2 (en) Electrolyte membrane for polymer electrolyte fuel cell and method for producing the same
JPH06231778A (en) Solid high polymer electrolytic fuel cell
JP2001345111A (en) Electrolyte membrane for solid polymer fuel cell and method of manufacturing it
US20120202135A1 (en) Improved catalyst coated membranes having composite, thin membranes and thin cathodes for use in direct methanol fuel cells
JPH06231783A (en) Improved solid high polymer electrolytic type fuel cell
EP3868814A1 (en) Ion-exchange membrane and redox flow cell
JPH06231782A (en) Improved solid high polymer electrolytic type fuel cell
JP2005078895A (en) Cation exchange membrane, its manufacturing method, and membrane-electrode junction for solid polymer fuel cell