JPH06229205A - Turbine nozzle - Google Patents

Turbine nozzle

Info

Publication number
JPH06229205A
JPH06229205A JP1528793A JP1528793A JPH06229205A JP H06229205 A JPH06229205 A JP H06229205A JP 1528793 A JP1528793 A JP 1528793A JP 1528793 A JP1528793 A JP 1528793A JP H06229205 A JPH06229205 A JP H06229205A
Authority
JP
Japan
Prior art keywords
outer peripheral
peripheral wall
nozzle
wall portions
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1528793A
Other languages
Japanese (ja)
Inventor
Naoki Shibukawa
直紀 渋川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1528793A priority Critical patent/JPH06229205A/en
Publication of JPH06229205A publication Critical patent/JPH06229205A/en
Pending legal-status Critical Current

Links

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To reduce the bending stress by forming the inner and outer peripheral wall parts of a nozzle vane so as to have such a shape that they extend toward both front and rear sides of a vane part, and by supporting the inner and outer wall parts to inner and outer peripheral holders. CONSTITUTION:A turbine nozzle is composed of a single vane part 21 located in a fluid passage and having a curved sheet-like shape, and a nozzle vane 21 comprising inner and outer wall parts 21b, 21c which are positioned at the inner and outer peripheries of the fluid passage and which are flange-likely connected to the end part of the blade part 21a. A plurality of nozzle vanes 21 are secured and held around the rotary shaft of a turbine in a press-contact condition by inner and outer holders 24, 25. Further, the inner and outer peripheral wall parts 21b, 21c of the nozzle vane 21 have such a structure that they project toward the rear and flank of the vane part 21a. These inner and outer peripheral wall parts 21b, 21c are supported in a center beam-like condition to the inner and outer peripheral holder 24, 25. With this arrangement, it is possible to reduce a stress which exerted to the connected part between the vane part 21a and the inner and outer wall parts 21b, 21c.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は発電用ガスタービン等に
適用されるタービンノズルに係り、特にノズル翼をセラ
ミックスで構成した場合に好適なタービンノズルに関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a turbine nozzle applied to a gas turbine for power generation and the like, and more particularly to a turbine nozzle suitable when the nozzle blade is made of ceramics.

【0002】[0002]

【従来の技術】近年、ガスタービンの高効率化が推進さ
れ、それに伴うタービン入口温度の高温化の要求に基づ
いて、タービンノズルのノズル翼を耐熱材料であるセラ
ミックスによって構成する研究が行なわれている。
2. Description of the Related Art In recent years, the efficiency of gas turbines has been promoted, and in response to the demand for higher turbine inlet temperatures, studies have been conducted to construct nozzle blades of turbine nozzles from ceramics, which is a heat-resistant material. There is.

【0003】図14〜図18は、このようなタービンノ
ズルの従来構造を示したもので、図14および図15に
示すように、流体通路1に配置される湾曲板状をなす1
枚の翼部2aと、流体通路1の内外周に位置して翼部2
aの端部にフランジ状に連設された内外周壁部2b,2
cとからなるノズル翼2が備えられている。このノズル
翼2が図示しないタービン回転軸の周囲に複数、内外周
ホルダ3,4によってそれぞれ圧接状態で固定保持され
ている。ノズル翼2の内外周壁部2b,2cは、翼部2
aの背側または腹側のいずれか一方の側に向って突出
し、これによりノズル翼2は断面略コ字形をなす構造と
なっている。なお、ノズル翼2は、翼部2aと内外周壁
部2b,2cとを滑らかな曲面で接続した構成とされて
いる。また、ノズル翼2にかかる作動ガスからの円周方
向接線力と軸方向力とは、内周側ホルダ3および外周側
ホルダ4を介して内筒5と外筒6とによって受けられ
る。さらに、ノズル翼2と各ホルダ3,4との間には遮
熱部材7,8が介装され、これにより、ノズル翼2をセ
ラミックスで構成した場合でも翼温度の均一化が図ら
れ、過大な熱応力の発生を防ぐことができるようになっ
ている。なお、9,10は各ホルダ3,4に付設された
ノズル翼圧接用のスプリングであり、11はシールホル
ダである。
FIGS. 14 to 18 show a conventional structure of such a turbine nozzle. As shown in FIGS. 14 and 15, a curved plate-like member 1 arranged in a fluid passage 1 is formed.
The blades 2a of one sheet and the blades 2 located on the inner and outer circumferences of the fluid passage 1
Inner and outer peripheral wall portions 2b, 2 connected to the end portion of a in a flange shape.
A nozzle blade 2 composed of c and c is provided. A plurality of the nozzle blades 2 are fixedly held around the turbine rotation shaft (not shown) in a pressure contact state by the inner and outer circumference holders 3 and 4, respectively. The inner and outer peripheral walls 2b and 2c of the nozzle blade 2 are
The nozzle blade 2 has a structure in which the nozzle vane 2 has a substantially U-shaped cross section by projecting toward either the back side or the ventral side of a. The nozzle blade 2 has a structure in which the blade portion 2a and the inner and outer peripheral wall portions 2b and 2c are connected by a smooth curved surface. Further, the tangential force in the circumferential direction and the axial force from the working gas applied to the nozzle blades 2 are received by the inner cylinder 5 and the outer cylinder 6 via the inner peripheral holder 3 and the outer peripheral holder 4. Further, heat shield members 7 and 8 are interposed between the nozzle blades 2 and the holders 3 and 4, whereby even if the nozzle blades 2 are made of ceramics, the blade temperature is made uniform and excessive. It is possible to prevent the generation of such thermal stress. In addition, 9 and 10 are springs for nozzle blade pressure contact attached to the holders 3 and 4, and 11 is a seal holder.

【0004】[0004]

【発明が解決しようとする課題】ところで、ノズル翼2
をセラミックスで構成した場合、定常・非定常の熱応力
や熱伸び差およびガス力等によってノズル翼2にかかる
応力をいかに小さく抑えるかが問題となる。
By the way, the nozzle blade 2
When the is made of ceramics, how to suppress the stress applied to the nozzle blades 2 due to steady / unsteady thermal stress, thermal expansion difference, gas force, etc. becomes a problem.

【0005】高温ガス通路内に位置するノズル翼2の翼
部2aにかかる熱応力や、ノズル翼2の内外周壁部2
b,2cにかかる半径方向局所応力、また翼接触支持部
にかかる軸方向または周方向の局所応力の低減について
は、ノズル翼2を板状とし、それをバネ付き支持構造物
であるホルダ3,4によって支持することで解決されて
いる。
Thermal stress applied to the blade portion 2a of the nozzle blade 2 located in the hot gas passage, and the inner and outer peripheral wall portion 2 of the nozzle blade 2
In order to reduce the local stress in the radial direction on the blades 2 and 2c and the local stress in the axial direction or the circumferential direction on the blade contact support portion, the nozzle blade 2 is formed into a plate shape, and the nozzle blade 2 is a support structure with a spring. It is solved by supporting by 4.

【0006】しかしながら、従来のノズル翼2では、翼
部2aの内外周端部から内外周壁部2b,2cが一方向
に突出する片持ち梁構造であるため(図16参照)、モ
ーメント腕長さL1 が大きくなり、翼部2aと内周壁部
2b、および翼部2aと外周壁部2cの、各連設部分に
かかる応力の集中が避け難いという点に問題が残ってい
る。
However, the conventional nozzle blade 2 has a cantilever structure in which the inner and outer peripheral wall portions 2b and 2c project in one direction from the inner and outer peripheral end portions of the blade portion 2a (see FIG. 16). The problem remains that L 1 becomes large, and it is difficult to avoid concentration of stress applied to each continuous portion of the blade portion 2a and the inner peripheral wall portion 2b, and between the blade portion 2a and the outer peripheral wall portion 2c.

【0007】また、図16に示すように、上記連設部分
の翼背面に存在する空間部12に、翼部2aと各ホルダ
3,4との間隙を通じて高温ガスが流入するため、各ホ
ルダ3,4の部材温度が上昇するという点にも問題が残
っている。
Further, as shown in FIG. 16, high temperature gas flows into the space 12 existing on the back surface of the blade of the continuous portion through the gap between the blade 2a and the holders 3 and 4, so that each holder 3 The problem remains that the member temperatures of Nos. 4 and 4 rise.

【0008】本発明はこのような点に鑑みてなされたも
ので、第1の目的は翼部と内外周壁部との接続部にかか
る応力を低減できるとともに、各ホルダの流体通路側の
空間内に高温ガスが流入することを防止できるタービン
ノズルを提供することにある。
The present invention has been made in view of the above circumstances. A first object of the present invention is to reduce the stress applied to the connecting portion between the blade portion and the inner and outer peripheral wall portions, and to reduce the space inside the fluid passage side of each holder. It is an object of the present invention to provide a turbine nozzle capable of preventing high temperature gas from flowing into the turbine nozzle.

【0009】また、第2の目的は、各ホルダが主流ガス
に曝されることを防止して各ホルダを熱的に保護でき、
同時にノズル翼内の温度分布を均一化してノズル翼に発
生する定常熱応力を低減することができるタービンノズ
ルを提供することにある。
A second purpose is to prevent each holder from being exposed to the mainstream gas and to protect each holder thermally.
At the same time, it is an object of the present invention to provide a turbine nozzle that can make the temperature distribution in the nozzle blade uniform and reduce the steady thermal stress generated in the nozzle blade.

【0010】[0010]

【課題を解決するための手段】請求項1の発明は、流体
通路に配置される湾曲板状をなす1枚の翼部と、前記流
体通路の内外周に位置して前記翼部の端部にフランジ状
に連設された内外周壁部とからなるノズル翼を備え、こ
のノズル翼をタービン回転軸の周囲に複数、内外周ホル
ダによってそれぞれ圧接状態で固定保持したタービンノ
ズルにおいて、前記ノズル翼の内外周壁部を前記翼部の
背側および腹側の両方の側に向って突出する構造とする
とともに、この内外周壁部を前記内外周ホルダに対して
それぞれ両持梁状に支持させたことを特徴とする。
According to a first aspect of the present invention, there is provided a single blade having a curved plate shape disposed in a fluid passage, and an end portion of the blade located inside and outside the fluid passage. In a turbine nozzle having a nozzle vane consisting of an inner and outer peripheral wall portion continuously connected in a flange shape to each other, and a plurality of the nozzle vanes around the turbine rotating shaft, which are fixedly held in a pressed state by inner and outer peripheral holders, respectively. The inner and outer peripheral wall portions are configured to project toward both the back side and the ventral side of the wing portion, and the inner and outer peripheral wall portions are supported by the inner and outer peripheral holders in a doubly supported beam shape, respectively. Characterize.

【0011】請求項2の発明は、流体通路に配置される
湾曲板状をなす1枚の翼部と、前記流体通路の内外周に
位置して前記翼部の端部にフランジ状に連設された内外
周壁部とからなるノズル翼を備え、このノズル翼をター
ビン回転軸の周囲に複数、内外周ホルダによってそれぞ
れ圧接状態で固定保持したタービンノズルにおいて、前
記ノズル翼の内外周壁部を前記翼部の背側および腹側の
両方の側に向って突出する構造とするとともに、この内
外周壁部を前記内外周ホルダに対してそれぞれ両持梁状
に支持させ、かつ前記内外周壁部はこれを圧接支持する
前記各内外周ホルダの流体通路側面の略全体を覆う構造
としたことを特徴とする。
According to a second aspect of the present invention, a single blade having a curved plate shape is disposed in the fluid passage, and is connected to the end portion of the blade at the inner and outer circumferences of the fluid passage in a flange shape. In a turbine nozzle having a plurality of nozzle vanes formed of inner and outer peripheral wall portions, and a plurality of the nozzle vanes fixedly held in a pressed state by inner and outer peripheral holders around a turbine rotation shaft, the inner and outer peripheral wall portions of the nozzle vanes are fixed to the blades. The inner and outer peripheral wall portions are supported in a doubly supported beam shape with respect to the inner and outer peripheral holders, and the inner and outer peripheral wall portions support the inner and outer peripheral wall portions. It is characterized in that it is configured to cover substantially the entire side surface of the fluid passage of each of the inner and outer peripheral holders that are pressed and supported.

【0012】請求項3の発明は、請求項1または2に記
載のタービンノズルにおいて、ノズル翼を翼部および内
外周壁部の全体に亘ってセラミックスによって一体的に
構成するとともに、前記内外周壁部を圧接支持する内外
周ホルダを金属材料によって構成し、かつ前記内外周ホ
ルダの前記内外周壁部に対する接合面側に、表層側に向
ってセラミックスの組成割合が傾斜状に増大するセラミ
ックスおよび金属の傾斜機能材料層を形成したことを特
徴とする。
According to a third aspect of the present invention, in the turbine nozzle according to the first or second aspect, the nozzle blade is integrally formed of ceramics over the entire blade portion and the inner and outer peripheral wall portions, and the inner and outer peripheral wall portions are formed. The inner and outer circumference holders that are pressed and supported are made of a metal material, and the function of tilting the ceramics and the metal is such that the composition ratio of the ceramics increases in an inclined shape toward the surface layer on the joint surface side of the inner and outer circumference holders with respect to the inner and outer circumference walls It is characterized in that a material layer is formed.

【0013】[0013]

【作用】請求項1の発明によれば、ノズル翼の内外周壁
部を前記翼部の背側および腹側の両方の側に向って突出
する構造とするとともに、この内外周壁部を前記内外周
ホルダに対してそれぞれ両持梁状に支持させたので、ノ
ズル翼の内外周壁部の周方向長さが短くなり、翼の高さ
方向にかかる荷重によって翼部と内外周壁部との連設部
に生じるモーメントが軽減でき、曲げ応力の低減が図れ
るようになる。また、翼部と各ホルダとの間に空間部が
存在しないため、高温ガスの流入による各ホルダの部材
温度の上昇が防止できる。
According to the invention of claim 1, the inner and outer peripheral wall portions of the nozzle blade are configured to project toward both the back side and the abdominal side of the blade portion, and the inner and outer peripheral wall portions are formed into the inner and outer peripheral walls. Since the holders are supported in a double-supported beam shape, the circumferential length of the inner and outer peripheral wall of the nozzle blade is shortened, and the blade and the inner and outer peripheral wall are continuously connected by the load applied in the height direction of the blade. It is possible to reduce the moment generated at the time and to reduce the bending stress. Further, since there is no space between the blade portion and each holder, it is possible to prevent the member temperature of each holder from rising due to the inflow of high-temperature gas.

【0014】請求項2の発明によれば、ノズル翼の内外
周壁部を前記翼部の背側および腹側の両方の側に向って
突出する構造とするとともに、この内外周壁部を前記内
外周ホルダに対してそれぞれ両持梁状に支持させ、かつ
前記内外周壁部はこれを圧接支持する前記各内外周ホル
ダの流体通路側面の略全体を覆う構造としたので、ノズ
ル翼支持用の各ホルダの主流ガス側面のをノズル翼の内
外周壁部によって覆うことができ、同面を熱的に保護で
きるようになる。
According to the second aspect of the present invention, the inner and outer peripheral wall portions of the nozzle blade project toward both the back side and the ventral side of the blade portion, and the inner and outer peripheral wall portions are formed on the inner and outer peripheral wall portions. Since the holders are supported in a cantilevered manner, and the inner and outer peripheral wall portions cover substantially the entire fluid passage side surfaces of the inner and outer peripheral holders that press and support the holders, the holders for supporting the nozzle blades are provided. The side surface of the mainstream gas can be covered with the inner and outer peripheral wall portions of the nozzle blade, and the same surface can be thermally protected.

【0015】請求項3の発明によれば、各ホルダの対ノ
ズル翼接合面側に傾斜機能材料層を形成したので、ノズ
ル翼を通して高温主流ガスより流れ込む熱流束が一層低
減され、各ホルダの温度上昇が抑えられる。同時にノズ
ル翼内外周壁部のガス通路側と反ガス通路側との温度差
を減少でき、ノズル翼をセラミックスで構成した場合で
も内部の温度分布を均一化して定常熱応力の発生を抑制
できる。
According to the third aspect of the invention, since the functionally graded material layer is formed on the joint surface side of each holder with respect to the nozzle blade, the heat flux flowing from the hot mainstream gas through the nozzle blade is further reduced, and the temperature of each holder is increased. The rise is suppressed. At the same time, the temperature difference between the gas passage side and the anti-gas passage side of the inner and outer peripheral wall of the nozzle blade can be reduced, and even when the nozzle blade is made of ceramics, the internal temperature distribution can be made uniform and the occurrence of steady thermal stress can be suppressed.

【0016】[0016]

【実施例】以下、本発明の実施例について添付図面を参
照して説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0017】実施例1(図1〜図6) 図1はノズル翼の本体を示す斜視図である。 Embodiment 1 (FIGS. 1 to 6) FIG. 1 is a perspective view showing a main body of a nozzle blade.

【0018】同図に示すように、本実施例ではノズル翼
21が耐熱性材料、例えばセラミックスによって構成さ
れている。このノズル翼21の翼部21aは、ガス流の
設定および増速に好適な湾曲板状をなしている。翼部2
1aの内周側および外周側両端には、この翼部21aを
含む面に直交して背腹両方向に突出する内周壁部21b
および外周壁部21cが一体に連設され、これにより1
ピッチ分のノズル翼21が構成されている。翼部21a
と内周壁部21bおよび外周壁部21cとは、それぞれ
滑らかな曲面で連接されており、それらの境界部も含め
て肉厚は一様となっている。
As shown in the figure, in this embodiment, the nozzle blade 21 is made of a heat resistant material such as ceramics. The blade portion 21a of the nozzle blade 21 has a curved plate shape suitable for setting and speeding up the gas flow. Wings 2
An inner peripheral wall portion 21b which is orthogonal to a surface including the blade portion 21a and protrudes in both back and ventral directions at both inner and outer peripheral sides of 1a.
And the outer peripheral wall portion 21c are integrally provided in series so that 1
Nozzle blades 21 for the pitch are configured. Wings 21a
The inner peripheral wall portion 21b and the outer peripheral wall portion 21c are connected to each other by smooth curved surfaces, and the wall thickness is uniform including the boundary portion thereof.

【0019】図2はノズル翼21の支持構造を示す斜視
図、図3はタービンノズルの1ピッチ分の部品構成を示
す分解斜視図である。
FIG. 2 is a perspective view showing the structure for supporting the nozzle blades 21, and FIG. 3 is an exploded perspective view showing the component structure for one pitch of the turbine nozzle.

【0020】また、図4は図2のA−A線断面図、図5
は環状の翼列を構成する複数のタービンノズルの隣接す
る2ピッチ分のノズル翼をガス流入方向から見た側面
図、図6は図5に示す支持構造部の詳細図である。
FIG. 4 is a sectional view taken along the line AA of FIG.
FIG. 6 is a side view of nozzle blades for two pitches adjacent to each other of a plurality of turbine nozzles forming an annular blade row as seen from the gas inflow direction, and FIG. 6 is a detailed view of the support structure portion shown in FIG.

【0021】これらの図に示すように、ノズル翼21
は、外筒22および内筒23にそれぞれ装着された金属
製の外周側ホルダ24および内周側ホルダ25の各窪み
部26,27に、外周壁部21cおよび内周壁部21b
を嵌合した状態で外周側および内周側から挾圧保持され
ている。
As shown in these figures, the nozzle blade 21
Is located in the recesses 26 and 27 of the metal outer peripheral side holder 24 and the inner peripheral side holder 25 mounted on the outer cylinder 22 and the inner cylinder 23, respectively, in the outer peripheral wall portion 21c and the inner peripheral wall portion 21b.
In the state of being fitted, the clamping pressure is held from the outer peripheral side and the inner peripheral side.

【0022】なお、ノズル翼21の外周側反ガス通路面
21eと外周側ホルダ24の窪み部26との間、および
内周側反ガス通路面21dと内周側ホルダ25の窪み部
27との間には、それぞれ遮熱部材としての遮熱板2
8,29が介挿されている。
Between the outer peripheral side anti-gas passage surface 21e of the nozzle blade 21 and the recessed portion 26 of the outer peripheral side holder 24, and between the inner peripheral side anti-gas passage surface 21d and the recessed portion 27 of the inner peripheral side holder 25. Between them, a heat shield plate 2 as a heat shield member, respectively.
8, 29 are inserted.

【0023】また、ノズル翼21、遮熱板28,29お
よび各ホルダ24,25は相互に固定されていないが、
外周側ホルダ24に内蔵した板ばね30、および内周側
ホルダ25と内筒23との間に挿着した板ばね31によ
り常時、外周側および内周側から弾性的に押圧支持され
ている。
Although the nozzle blade 21, the heat shield plates 28 and 29, and the holders 24 and 25 are not fixed to each other,
A leaf spring 30 built in the outer peripheral side holder 24 and a leaf spring 31 inserted between the inner peripheral side holder 25 and the inner cylinder 23 are always elastically pressed and supported from the outer peripheral side and the inner peripheral side.

【0024】さらに、ノズル翼21の各周壁部21b,
21cおよび各遮熱板28,29の外形状は各ホルダ2
4,25の窪み部26,27より小さく形成され、これ
によりノズル翼21の各周壁部21b,21cおよび遮
熱板28,29が各ホルダ24,25の窪み部26,2
7で移動可能となっている。
Further, each peripheral wall portion 21b of the nozzle blade 21 is
The outer shapes of 21c and the heat shields 28 and 29 are the holders 2 respectively.
The recesses 26, 27 of the nozzle blades 21 are formed smaller than the recesses 26, 27 of the holder blades 24, 25.
It is possible to move at 7.

【0025】なお、図5に示すように、互いに隣接する
外周側ホルダ24,24間、および内周側ホルダ25,
25間の間隙は、それぞれシールプレート32によって
閉塞されている。
As shown in FIG. 5, between the outer peripheral side holders 24, 24 adjacent to each other and the inner peripheral side holders 25,
The gap between the 25 is closed by a seal plate 32.

【0026】しかして、運転時においては、ノズル翼2
1を通過するガス力によって、図5に示すように、ノズ
ル翼21の外周側円周方向肉厚端面21fおよび内周側
円周方向肉厚端面21gは各ホルダ24,25の窪み内
壁24a,25aにそれぞれ接触し、また図4に示すよ
うに、外周側軸方向肉厚端面21hおよび内周側軸方向
肉厚端面21iは各ホルダ24,25の窪み内壁24
b,25bに接触する。
However, during operation, the nozzle blade 2
As shown in FIG. 5, due to the gas force passing through 1, the outer circumferential side thick end face 21f and the inner circumferential side thick end face 21g of the nozzle vane 21 are recessed inner walls 24a of the holders 24, 25, respectively. 25a, respectively, and as shown in FIG. 4, the outer peripheral side axially thick end face 21h and the inner peripheral side axially thick end face 21i are recessed inner wall 24 of each holder 24, 25.
Contact b, 25b.

【0027】一方、ノズル翼21は板ばね30,31に
よって常に圧縮荷重Fを受けている。この場合、本実施
例では図6に示すようにモーメント腕長さL2 が従来例
におけるモーメント腕長さL1 に比べて約半分の長さと
なるため、圧縮荷重Fおよびモーメント腕長さL2 に基
づいて翼部21aと外周壁部21cとの連設部21lに
生じる曲げモーメントは、従来例に比べて略半分に低減
できる。内側支持構造部においても同様である。
On the other hand, the nozzle blade 21 is constantly subjected to the compressive load F by the leaf springs 30 and 31. In this case, in this embodiment, as shown in FIG. 6, the moment arm length L 2 is about half the moment arm length L 1 in the conventional example, so the compression load F and the moment arm length L 2 Based on the above, the bending moment generated in the connecting portion 21l of the wing portion 21a and the outer peripheral wall portion 21c can be reduced to about half as compared with the conventional example. The same applies to the inner support structure portion.

【0028】また、従来例においては、図16に示した
ように、翼部2aと各ホルダ24,25との間の間隙を
通じて空間部12に高温ガスが流入し、各ホルダ24,
25の温度が上昇していたが、本実施例においてはその
ような空間部が存在しないため、高温ガスの流入という
ことがなく、それだけ温度上昇が防止できるようにな
る。
Further, in the conventional example, as shown in FIG. 16, the high temperature gas flows into the space 12 through the gap between the blade portion 2a and the holders 24, 25, and the holders 24, 25
Although the temperature of 25 has risen, in the present embodiment, since there is no such space portion, there is no inflow of high temperature gas, and the temperature rise can be prevented accordingly.

【0029】実施例2(図7〜図10) 図7はノズル翼の本体を示す斜視図、図8はノズル翼2
1の支持構造を示す斜視図、図9はタービンノズルの1
ピッチ分の部品構成を示す分解斜視図である。また、図
10は図8のB−B線断面図である。
Embodiment 2 (FIGS. 7 to 10) FIG. 7 is a perspective view showing a main body of a nozzle blade, and FIG. 8 is a nozzle blade 2
1 is a perspective view showing a supporting structure of FIG. 1, and FIG.
It is an exploded perspective view showing a component composition for a pitch. 10 is a sectional view taken along line BB of FIG.

【0030】これらの図に示すように、本実施例では、
ノズル翼21の各周壁部21b,21cの反ガス通路側
に窪み部40,41が形成されている。そして、ノズル
翼21の各窪み部40,41内に、キープレート28,
29が挿入されている。
As shown in these figures, in this embodiment,
Recesses 40 and 41 are formed on the side of the peripheral walls 21b and 21c of the nozzle blade 21 opposite to the gas passage. The key plate 28,
29 is inserted.

【0031】また、ノズル翼21の各周壁部21b,2
1cの端面は、各ホルダ24,25のガス通路側面24
c,25cとそれぞれ同一形状、同一寸法とされ、これ
により各ホルダ24,25のガス通路部側面24c,2
5cがノズル翼21で覆われている。なお、各ホルダ2
4,25のガス通路部側面24c,25cはセラミック
コーティング層24d,25dで覆われている。他の構
成は実施例1と略同様であるから、図7〜図10に図1
〜図4と同一符号を付して、説明を省略する。
Further, each peripheral wall portion 21b, 2 of the nozzle blade 21
The end surface of 1c is the gas passage side surface 24 of each holder 24, 25.
c and 25c have the same shape and the same size, so that the gas passage portion side surfaces 24c and 2 of the holders 24 and 25 are formed.
5 c is covered with the nozzle blade 21. In addition, each holder 2
Side surfaces 24c and 25c of the gas passage portions 4 and 25 are covered with ceramic coating layers 24d and 25d. Since other configurations are substantially the same as those of the first embodiment, the configuration shown in FIG.
~ The same reference numerals as in Fig. 4 are given and the description thereof is omitted.

【0032】本実施例によれば、ノズル翼21を通過す
るガス力によって、ノズル翼21の窪み部40,41の
前部内側面40a,41aおよび中間部内側面40b,
41bが各キープレート28,29の上流側端面28
a,29aに接触し、また各キープレート28,29の
下流側端面28b,29bが各ホルダ24,25の窪み
部26,27の下流側内側面26c,27cに接触す
る。また、各ホルダ24,25のガス通路部面24c,
25cが、セラミック製のノズル翼21の各周壁部21
b,21cによって覆われるとともに、各キープレート
28,29の遮熱効果により、各ホルダ24,25に伝
達される熱流束が減少し、金属製の各ホルダ24,25
を許容温度内に保つために必要な冷却空気量が低減され
る。
According to this embodiment, due to the gas force passing through the nozzle blade 21, the inner front surfaces 40a and 41a of the recesses 40 and 41 of the nozzle blade 21 and the inner side surface 40b of the intermediate portion,
41b is the upstream end surface 28 of each key plate 28, 29.
a, 29a, and the downstream end surfaces 28b, 29b of the key plates 28, 29 contact the downstream inner side surfaces 26c, 27c of the recesses 26, 27 of the holders 24, 25, respectively. Also, the gas passage surface 24c of each holder 24, 25,
25c is each peripheral wall portion 21 of the nozzle blade 21 made of ceramics.
The heat flux transmitted to the holders 24, 25 is reduced by the heat shielding effect of the key plates 28, 29 while being covered with the b, 21c.
The amount of cooling air required to keep the temperature within the allowable temperature is reduced.

【0033】また、本実施例においてはセラミックコー
ティング層24d,25dによりノズル翼21と金属部
材との接触面が存在しなくなり、ノズル翼21内の温度
分布が均一化されるため、過大な定常熱応力は発生しな
い。
Further, in this embodiment, the ceramic coating layers 24d and 25d prevent the contact surface between the nozzle blade 21 and the metal member from existing, and the temperature distribution inside the nozzle blade 21 is made uniform, so that an excessive steady-state heat is generated. No stress is generated.

【0034】実施例3(図11〜図13) 図11は本実施例によるノズル翼の支持構造を示す斜視
図、図12はタービンノズルの1ピッチ分の部品構成を
示す分解斜視図、図13は図11のC−C線断面図であ
る。
Embodiment 3 (FIGS. 11 to 13) FIG. 11 is a perspective view showing a support structure of a nozzle blade according to this embodiment, FIG. 12 is an exploded perspective view showing a component structure for one pitch of a turbine nozzle, FIG. FIG. 12 is a sectional view taken along line CC of FIG. 11.

【0035】本実施例では、各ホルダ24,25のガス
通路側面に、奥側が金属組成、表面側がセラミックス組
成で、奥側から表面側に向って金属からセラミックスへ
と成分が次第に変化する傾斜機能材料層50を溶射して
ある。
In this embodiment, the gas passage side surface of each holder 24, 25 has a metal composition on the back side and a ceramic composition on the front side, and an inclined function in which the component gradually changes from metal to ceramic from the back side to the surface side. The material layer 50 is sprayed.

【0036】この傾斜機能材料層50は、中央部にキー
プレートに代る突部50aを有し、この突部50aがノ
ズル翼21の各周壁部21b,21cの窪み部40,4
1に嵌合するようになっている。
The functionally graded material layer 50 has a protrusion 50a in the center thereof which replaces the key plate, and the protrusion 50a forms recesses 40, 4 in the peripheral wall portions 21b, 21c of the nozzle blade 21.
It is designed to fit into 1.

【0037】その他は実施例2と略同様であるから、図
11〜図13に図8〜図10とに同一符号を付して説明
を省略する。
Since the other points are substantially the same as those of the second embodiment, the same symbols are attached to FIGS. 11 to 13 and FIGS.

【0038】本実施例によれば、各ホルダ24,25の
ガス通路部側面とノズル翼21とが常に密着し、何らか
の原因でそれらの間に空隙が生じたときも、ホルダ2
4,25の金属部分は、傾斜機能材料層50の表面側の
セラミックス部分に保護されて高温ガスに直接曝される
ことはないため、冷却空気減少に貢献できる。
According to this embodiment, even if the side surfaces of the gas passages of the holders 24 and 25 are in close contact with the nozzle blades 21 and a gap is generated between them, the holder 2
The metal portions 4 and 25 are protected by the ceramic portion on the surface side of the functionally gradient material layer 50 and are not directly exposed to the high temperature gas, so that they can contribute to the reduction of cooling air.

【0039】また、従来のノズル翼支持構造に比べて組
立て時の部品点数が減少するという利点も生じる。
Further, there is an advantage that the number of parts during assembly is reduced as compared with the conventional nozzle blade supporting structure.

【0040】[0040]

【発明の効果】請求項1の発明によれば、ノズル翼の内
外周壁部の周方向長さが短くなり、翼の高さ方向にかか
る荷重によって翼部と内外周壁部との連設部に生じるモ
ーメントを軽減させ、曲げ応力の低減が図られる。ま
た、翼部と各ホルダとの間に空間部が存在しないため、
高温ガスの流入による各ホルダの部材温度の上昇が防止
できる。
According to the invention of claim 1, the circumferential length of the inner and outer peripheral wall portions of the nozzle blade is shortened, and the load applied in the height direction of the blade imposes a continuous portion between the blade portion and the inner and outer peripheral wall portions. The generated moment is reduced, and the bending stress is reduced. Also, since there is no space between the wing and each holder,
It is possible to prevent the member temperature of each holder from rising due to the inflow of high-temperature gas.

【0041】請求項2の発明によれば、ノズル翼支持用
の各ホルダの主流ガス側面をノズル翼の内外周壁部によ
って覆うことができ、同面を熱的に保護できる。
According to the invention of claim 2, the mainstream gas side surface of each holder for supporting the nozzle blade can be covered with the inner and outer peripheral wall portions of the nozzle blade, and the same surface can be thermally protected.

【0042】請求項3の発明によれば、各ホルダの対ノ
ズル翼接合面側に傾斜機能材料層を形成したので、ノズ
ル翼を通して高温主流ガスより流れ込む熱流束が一層低
減され、各ホルダの温度上昇が抑えられる。同時にノズ
ル翼内外周壁部のガス通路側と反ガス通路側との温度差
を減少でき、ノズル翼をセラミックスとした場合でも内
部の温度分布を均一化して定常熱応力の発生を抑制でき
る。
According to the third aspect of the present invention, since the functionally graded material layer is formed on the joint surface side of each holder with respect to the nozzle blade, the heat flux flowing from the hot mainstream gas through the nozzle blade is further reduced, and the temperature of each holder is increased. The rise is suppressed. At the same time, the temperature difference between the gas passage side and the anti-gas passage side of the inner and outer peripheral wall of the nozzle blade can be reduced, and even when the nozzle blade is made of ceramics, the internal temperature distribution can be made uniform and the occurrence of steady thermal stress can be suppressed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1によるタービンノズルのノズ
ル翼を示す斜視図。
FIG. 1 is a perspective view showing a nozzle blade of a turbine nozzle according to a first embodiment of the present invention.

【図2】同実施例の支持構造を示す斜視図。FIG. 2 is a perspective view showing a support structure of the embodiment.

【図3】同実施例の部品構成を示す分解斜視図。FIG. 3 is an exploded perspective view showing a component structure of the embodiment.

【図4】図2のA−A線断面図。4 is a cross-sectional view taken along the line AA of FIG.

【図5】同実施例の側面図。FIG. 5 is a side view of the embodiment.

【図6】図5の一部を拡大して示す詳細図。FIG. 6 is a detailed view showing a part of FIG. 5 in an enlarged manner.

【図7】本発明の実施例2によるノズル翼を示す斜視
図。
FIG. 7 is a perspective view showing a nozzle blade according to a second embodiment of the present invention.

【図8】同実施例の支持構造を示す斜視図。FIG. 8 is a perspective view showing a support structure of the embodiment.

【図9】同実施例の部品構成を示す分解斜視図。FIG. 9 is an exploded perspective view showing a component structure of the embodiment.

【図10】図8のB−B線断面図。10 is a sectional view taken along line BB of FIG.

【図11】本発明の実施例3によるノズル翼を示す斜視
図。
FIG. 11 is a perspective view showing a nozzle blade according to a third embodiment of the present invention.

【図12】同実施例の部品構成を示す分解斜視図。FIG. 12 is an exploded perspective view showing a component structure of the embodiment.

【図13】図11のC−C線断面図。13 is a cross-sectional view taken along the line CC of FIG.

【図14】従来例におけるノズル翼を示す斜視図。FIG. 14 is a perspective view showing a nozzle blade in a conventional example.

【図15】従来例における支持構造を示す側面図。FIG. 15 is a side view showing a support structure in a conventional example.

【図16】図15の一部を拡大して示す詳細図。FIG. 16 is a detailed view showing a part of FIG. 15 in an enlarged manner.

【図17】図16に対応する斜視図。FIG. 17 is a perspective view corresponding to FIG. 16.

【図18】従来例による部品の分解斜視図。FIG. 18 is an exploded perspective view of a conventional component.

【符号の説明】[Explanation of symbols]

21 ノズル翼 21a 翼部 21b.21c 周壁部 24,25 ホルダ 50 傾斜機能材料層 21 nozzle blade 21a blade portion 21b. 21c Peripheral wall 24, 25 Holder 50 Functionally graded material layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 流体通路に配置される湾曲板状をなす1
枚の翼部と、前記流体通路の内外周に位置して前記翼部
の端部にフランジ状に連設された内外周壁部とからなる
ノズル翼を備え、このノズル翼をタービン回転軸の周囲
に複数、内外周ホルダによってそれぞれ圧接状態で固定
保持したタービンノズルにおいて、前記ノズル翼の内外
周壁部を前記翼部の背側および腹側の両方の側に向って
突出する構造とするとともに、この内外周壁部を前記内
外周ホルダに対してそれぞれ両持梁状に支持させたこと
を特徴とするタービンノズル。
1. A curved plate-shaped member 1 arranged in a fluid passage.
Nozzle blades composed of a single blade portion and inner and outer peripheral wall portions located inside and outside the fluid passage and connected to the end portions of the blade portion in a flange shape are provided. In a turbine nozzle fixedly held in a pressed state by a plurality of inner and outer circumference holders, the inner and outer peripheral wall portions of the nozzle blade are configured to project toward both the back side and the ventral side of the blade portion, and A turbine nozzle characterized in that the inner and outer peripheral wall portions are supported by the inner and outer peripheral holders in the shape of a doubly supported beam.
【請求項2】 流体通路に配置される湾曲板状をなす1
枚の翼部と、前記流体通路の内外周に位置して前記翼部
の端部にフランジ状に連設された内外周壁部とからなる
ノズル翼を備え、このノズル翼をタービン回転軸の周囲
に複数、内外周ホルダによってそれぞれ圧接状態で固定
保持したタービンノズルにおいて、前記ノズル翼の内外
周壁部を前記翼部の背側および腹側の両方の側に向って
突出する構造とするとともに、この内外周壁部を前記内
外周ホルダに対してそれぞれ両持梁状に支持させ、かつ
前記内外周壁部はこれを圧接支持する前記各内外周ホル
ダの流体通路側面の略全体を覆う構造としたことを特徴
とするタービンノズル。
2. A curved plate-shaped member 1 arranged in a fluid passage.
Nozzle blades composed of a single blade portion and inner and outer peripheral wall portions located inside and outside the fluid passage and connected to the end portions of the blade portion in a flange shape are provided. In a plurality of turbine nozzles, each of which is fixedly held in a pressed state by an inner / outer peripheral holder, the inner and outer peripheral wall portions of the nozzle blade are configured to project toward both the back side and the ventral side of the blade portion, and The inner and outer peripheral wall portions are supported by the inner and outer peripheral holders in a doubly supported beam shape, and the inner and outer peripheral wall portions cover substantially the entire fluid passage side surface of each of the inner and outer peripheral holders that press and support the inner and outer peripheral wall portions. Characteristic turbine nozzle.
【請求項3】 請求項1または2に記載のタービンノズ
ルにおいて、ノズル翼を翼部および内外周壁部の全体に
亘ってセラミックスによって一体的に構成するととも
に、前記内外周壁部を圧接支持する内外周ホルダを金属
材料によって構成し、かつ前記内外周ホルダの前記内外
周壁部に対する接合面側に、表層側に向ってセラミック
スの組成割合が傾斜状に増大するセラミックスおよび金
属の傾斜機能材料層を形成したことを特徴とするタービ
ンノズル。
3. The turbine nozzle according to claim 1 or 2, wherein the nozzle blade is integrally formed of ceramics over the entire blade portion and the inner and outer peripheral wall portions, and the inner and outer peripheral portions press-contact and support the inner and outer peripheral wall portions. The holder is made of a metal material, and a functionally graded material layer of ceramics and metal is formed on the joint surface side of the inner and outer peripheral holders with respect to the inner and outer peripheral wall portions so that the composition ratio of the ceramics increases in a gradient shape toward the surface layer side. A turbine nozzle characterized in that.
JP1528793A 1993-02-02 1993-02-02 Turbine nozzle Pending JPH06229205A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1528793A JPH06229205A (en) 1993-02-02 1993-02-02 Turbine nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1528793A JPH06229205A (en) 1993-02-02 1993-02-02 Turbine nozzle

Publications (1)

Publication Number Publication Date
JPH06229205A true JPH06229205A (en) 1994-08-16

Family

ID=11884641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1528793A Pending JPH06229205A (en) 1993-02-02 1993-02-02 Turbine nozzle

Country Status (1)

Country Link
JP (1) JPH06229205A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491493B1 (en) * 1998-06-12 2002-12-10 Ebara Corporation Turbine nozzle vane
JP2005146896A (en) * 2003-11-11 2005-06-09 Toshiba Corp Nozzle diaphragm of steam turbine and steam turbine plant

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491493B1 (en) * 1998-06-12 2002-12-10 Ebara Corporation Turbine nozzle vane
JP2005146896A (en) * 2003-11-11 2005-06-09 Toshiba Corp Nozzle diaphragm of steam turbine and steam turbine plant

Similar Documents

Publication Publication Date Title
JP5033407B2 (en) Ceramic matrix composite nozzle structure
EP1452693B1 (en) Turbine nozzle segment cantilevered mount
EP1452689B1 (en) Gas turbine vane segment having a bifurcated cavity
US7008185B2 (en) Gas turbine engine turbine nozzle bifurcated impingement baffle
JP4731156B2 (en) Asymmetric cooling element for turbine shroud
JP5697366B2 (en) Mechanical coupling for gas turbine engines
JP5435910B2 (en) Gas turbine shroud support device
US10443437B2 (en) Interwoven near surface cooled channels for cooled structures
US3423070A (en) Sealing means for turbomachinery
CA1115640A (en) Turbine seal and vane damper
JPH1037701A (en) Blade for turbomachine thermally loaded
JP2004003477A (en) Ceramic turbine shroud
GB2486964A (en) Turbine shroud mounting
US4378961A (en) Case assembly for supporting stator vanes
WO2009126191A2 (en) Sealing arrangement for turbine engine having ceramic components
EP1132576B1 (en) Turbine shroud comprising an apparatus for minimizing thermal gradients and method for assembling a gas turbine engine including such a shroud
JP2981557B2 (en) Ceramic gas turbine
US10519779B2 (en) Radial CMC wall thickness variation for stress response
JP2004537678A (en) Sealing member for sealing gap and combustion turbine provided with sealing member
JP4202038B2 (en) Method for selectively arranging turbine nozzle and shroud and gas turbine
JPH06229205A (en) Turbine nozzle
JP5770970B2 (en) Turbine nozzle for gas turbine engine
GB2212223A (en) Vane assembly for a gas turbine
CA1183695A (en) Efficiently cooled transition duct for a large plant combustion turbine
JPS5915605A (en) Gas turbine