JPH06228837A - Thermoplastic yarn for composite - Google Patents

Thermoplastic yarn for composite

Info

Publication number
JPH06228837A
JPH06228837A JP5013952A JP1395293A JPH06228837A JP H06228837 A JPH06228837 A JP H06228837A JP 5013952 A JP5013952 A JP 5013952A JP 1395293 A JP1395293 A JP 1395293A JP H06228837 A JPH06228837 A JP H06228837A
Authority
JP
Japan
Prior art keywords
fiber
thermoplastic
yarn
fibers
thermoplastic matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5013952A
Other languages
Japanese (ja)
Other versions
JP3178562B2 (en
Inventor
Osamu Ono
修 小野
Toshiaki Kitahora
俊明 北洞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP01395293A priority Critical patent/JP3178562B2/en
Publication of JPH06228837A publication Critical patent/JPH06228837A/en
Application granted granted Critical
Publication of JP3178562B2 publication Critical patent/JP3178562B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs

Abstract

PURPOSE:To obtain lightweight, tough and thermoplastic yarn for composites excellent in surface smoothness and further weaving and braiding properties. CONSTITUTION:This thermoplastic yarn (4) for composites is composed of discontinuous thermoplastic matrix fiber (1) of substantially no twist, discontinuous reinforcing fiber (2) of substantially no twist and thermoplastic matrix fiber (3) for the composites having a lower melting point than that of the fiber (1) and characterized by winding and covering combined filament yarn prepared from the fibers (1) and (2) at >=20% combined filament degree with the fiber (3) in an amount of >=1 to <=10wt.% based on the yarn (4) and further characterized by a lower melt viscosity of the thermoplastic yarn (4) for the composites and the fiber (3) than that of the fiber (1).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱可塑性樹脂を繊維化
し、補強用繊維と混繊した繊維強化コンポジット用ヤー
ンに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fiber for a fiber reinforced composite in which a thermoplastic resin is made into a fiber and mixed with a reinforcing fiber.

【0002】[0002]

【従来の技術】連続補強用繊維と熱可塑性マトリックス
繊維とを混繊した熱可塑性コンポジット用ヤーンは特開
昭60−209034号公報および特開昭61−130
345号公報などに開示されている。
2. Description of the Related Art A yarn for a thermoplastic composite obtained by mixing continuous reinforcing fibers and a thermoplastic matrix fiber is disclosed in JP-A-60-209034 and JP-A-61-130.
It is disclosed in Japanese Patent No. 345 and the like.

【0003】しかし、これらの従来のコンポジット用ヤ
ーンをブレードにする際は、連続補強用繊維と熱可塑性
マトリックス繊維の伸度差及びそれらの集束性の欠如が
起因して、連続補強用繊維が損傷を受け操業性が著しく
劣るのみならず、そのブレードを成形した場合、含浸斑
が発生したり、得られた成形体が強靭性に欠けたり、ま
た表面状態の優れた成形体を得ることができないという
問題があった。操業性を改良しようとして、上記繊維に
多量の紡糸オイルなどの表面処理剤を付与すればある程
度操業性は改善されるが、表面処理剤が起因して成形体
の補強用繊維とマトリックス間の界面強力が低くなるな
どの問題があった。
However, when these conventional composite yarns are used as a blade, the continuous reinforcing fibers are damaged due to the difference in elongation between the continuous reinforcing fibers and the thermoplastic matrix fibers and the lack of their sizing property. Not only the operability is significantly deteriorated, but when the blade is molded, impregnation unevenness occurs, the obtained molded body lacks toughness, and a molded body with an excellent surface condition cannot be obtained. There was a problem. If a large amount of a surface treatment agent such as spinning oil is added to the above fiber in an attempt to improve the operability, the operability is improved to some extent, but the surface treatment agent causes an interface between the reinforcing fiber of the molded product and the matrix. There was a problem such as lower strength.

【0004】一方、非連続補強用繊維と熱可塑性マトリ
ックス繊維を用いて、いわゆる紡績工程に於いてそれら
の繊維に撚を付与して集束性を持たせたコンポジット用
ヤーンも存在する。これを用いてブレードを作成した場
合、かなりの程度の操業性を確保することは可能であ
る。しかし、得られる成形体の物性は撚に起因して満足
なものを得ることができない。さらに表面状態において
も、やはり撚に起因して補強用繊維の分布が不均一とな
るためにいわゆるレジンリッチ部が存在するという問題
があった。
On the other hand, there is also a composite yarn in which a discontinuous reinforcing fiber and a thermoplastic matrix fiber are used to impart a twisting property to these fibers in a so-called spinning process so as to have a focusing property. When a blade is produced using this, it is possible to secure a considerable degree of operability. However, the physical properties of the obtained molded product cannot be obtained due to the twist. Further, even in the surface state, there is a problem that the so-called resin-rich portion exists because the distribution of the reinforcing fiber is non-uniform due to the twist.

【0005】以上のように、補強用繊維と熱可塑性マト
リックス繊維とが混繊された熱可塑性コンポジット用ヤ
ーンは、その熱可塑性樹脂の高い粘度に起因する含浸の
難かしさを解決するための有効な手段と考えられている
が、製織性、ブレーディング性などのテキスタイル加工
性及び成形して得られたコンポジット物性の両方を満足
できる熱可塑性コンポジット用ヤーンは得られていない
現状にある。
As described above, the yarn for thermoplastic composite in which the reinforcing fiber and the thermoplastic matrix fiber are mixed is effective for solving the difficulty of impregnation due to the high viscosity of the thermoplastic resin. However, the yarn for thermoplastic composites which satisfies both the textile processability such as weaving property and braiding property and the physical properties of the composite obtained by molding has not yet been obtained.

【0006】[0006]

【発明が解決しようとする課題】本発明者らは、これら
の熱可塑性コンポジット用ヤーンを成形して得られたコ
ンポジットの表面状態を改良するための方策を種々検討
した結果、非連続熱可塑性マトリックス繊維と非連続補
強用繊維を混繊した混繊糸を捲回被覆する熱可塑性マト
リックス繊維の融点が上記非連続熱可塑性マトリックス
繊維の融点より低いものを用いて、且つ該熱可塑性マト
リックス繊維の重量をこれらの繊維で構成される熱可塑
性コンポジット用ヤーンの全重量に対して1重量%以上
10重量%以下とすることにより、成形時に非連続補強
用繊維の移動性が向上して、表面状態が良好となること
を見い出した。また、上記熱可塑性マトリックス繊維の
溶融粘度が上記非連続熱可塑性マトリックス繊維の溶融
粘度よりも低ければ、コンポジットの表面状態がより良
好となることを見い出した。
DISCLOSURE OF INVENTION Problems to be Solved by the Invention As a result of various investigations by the present inventors on various measures for improving the surface condition of composites obtained by molding these thermoplastic composite yarns, a discontinuous thermoplastic matrix was obtained. A thermoplastic matrix fiber having a melting point lower than the melting point of the discontinuous thermoplastic matrix fiber, which is used for winding and coating the mixed fiber in which the fiber and the discontinuous reinforcing fiber are mixed, is used, and the weight of the thermoplastic matrix fiber is used. Is 1% by weight or more and 10% by weight or less with respect to the total weight of the thermoplastic composite yarn composed of these fibers, the mobility of the discontinuous reinforcing fibers during molding is improved, and the surface condition is improved. We have found that it is good. It was also found that if the melt viscosity of the thermoplastic matrix fiber is lower than the melt viscosity of the discontinuous thermoplastic matrix fiber, the surface condition of the composite will be better.

【0007】本発明者らは、かかる知見に基づき更に重
ねて検討した結果、本発明を完成するに至ったものであ
る。
The present inventors have completed the present invention as a result of further studies based on such findings.

【0008】[0008]

【課題を解決するための手段】すなわち、本発明は、実
質的に無撚の非連続熱可塑性マトリックス繊維(1)、
実質的に無撚の非連続補強用繊維(2)及び(1)より
も融点の低い熱可塑性マトリックス繊維(3)からなる
熱可塑性コンポジット用ヤーン(4)であって、(1)
と(2)を混繊度20%以上で混繊した混繊糸に、
(4)に対して1重量%以上10重量%以下の(3)を
捲回被覆していることを特徴とする熱可塑性コンポジッ
ト用ヤーン(4)、並びに(3)の溶融粘度が(1)の
溶融粘度よりも低いことを特徴とする上記の熱可塑性コ
ンポジット用ヤーン(4)を提供するものである。
That is, the present invention provides a substantially non-twisted discontinuous thermoplastic matrix fiber (1),
A yarn (4) for a thermoplastic composite, which comprises substantially non-twisted discontinuous reinforcing fibers (2) and a thermoplastic matrix fiber (3) having a lower melting point than that of (1),
And (2) in a mixed fiber with a mixing degree of 20% or more,
The melt viscosity of the thermoplastic composite yarn (4), which is obtained by winding-coating (3) of 1% by weight or more and 10% by weight or less with respect to (4), and (3). The above-mentioned yarn (4) for thermoplastic composites is provided which is characterized by having a melt viscosity lower than that of

【0009】なお、ここで混繊度は次式により定義す
る。
The degree of mixed fiber is defined by the following equation.

【数1】 N:混繊糸を構成する各種類のフィラメント中、1種類
のフィラメントの総本数 NcX:上記1種類のフィラメントが、いくつかの群に
分割されているとき、その群の個数 X:上記の各群中、ある特定な1個の群内のフィラメン
ト数 また、上記の式に於いて100(N−X)/(N−1)
は混繊状態を意味し、Xが小さい程、混繊状態が高度で
あることを意味する。NcX/(N/X)はフィラメン
トが混繊糸全体の中で、視覚効果上、どの程度の重要性
をもつかを意味する。
[Equation 1] N: The total number of filaments of one kind among the filaments of each kind constituting the mixed fiber NcX: When the filament of one kind is divided into several groups, the number of the groups X: Each of the above The number of filaments in a specific one group in the group Also, in the above formula, 100 (N−X) / (N−1)
Means a mixed fiber state, and a smaller X means a higher mixed fiber state. NcX / (N / X) means how important the filament is in terms of visual effects in the entire mixed yarn.

【0010】以下、本発明を図面に基づいて具体的に説
明するが、本発明はこれらにより何ら限定されるもので
はない。図1に本発明に於ける熱可塑性コンポジット用
ヤーンの代表例を模式的に示した。Aは熱可塑性コンポ
ジット用ヤーンの断面図を拡大して模式的に示したもの
であり、Bは熱可塑性コンポジット用ヤーンの斜視図を
模式的に示したものである。本発明の熱可塑性コンポジ
ット用ヤーン(4)は、実質的に無撚の非連続熱可塑性
マトリックス繊維(1)と実質的に無撚の非連続補強用
繊維(2)との混繊糸に、熱可塑性マトリックス繊維
(3)が、捲回被覆したものである。
Hereinafter, the present invention will be specifically described with reference to the drawings, but the present invention is not limited thereto. FIG. 1 schematically shows a typical example of the thermoplastic composite yarn in the present invention. A is an enlarged schematic view of a cross-sectional view of a thermoplastic composite yarn, and B is a schematic perspective view of a thermoplastic composite yarn. The thermoplastic composite yarn (4) of the present invention is a mixed filament yarn of a substantially untwisted discontinuous thermoplastic matrix fiber (1) and a substantially untwisted discontinuous reinforcing fiber (2), The thermoplastic matrix fiber (3) is wound and coated.

【0011】本発明の熱可塑性コンポジット用ヤーン
(4)を構成する熱可塑性マトリックス繊維(1または
3)としては、ナイロン6やナイロン66などのポリア
ミド繊維、ポリエチレンテレフタレートやポリブチレン
テレフタレートなどのポリエステル繊維、ポリエチレン
やポリプロピレンなどのポリオレフィン系繊維、ポリエ
ーテルエーテルケトン繊維、ポリフェニレンサルファイ
ド繊維、ポリエーテルイミド繊維、ポリカーボネート繊
維などが挙げられる。但し、本発明に用いられる熱可塑
性マトリックス繊維(1または3)は上記の繊維に限定
されるわけではない。
As the thermoplastic matrix fibers (1 or 3) constituting the thermoplastic composite yarn (4) of the present invention, polyamide fibers such as nylon 6 and nylon 66, polyester fibers such as polyethylene terephthalate and polybutylene terephthalate, Examples thereof include polyolefin fibers such as polyethylene and polypropylene, polyether ether ketone fibers, polyphenylene sulfide fibers, polyether imide fibers, and polycarbonate fibers. However, the thermoplastic matrix fiber (1 or 3) used in the present invention is not limited to the above fibers.

【0012】本発明の熱可塑性コンポジット用ヤーン
(4)を構成する補強用繊維(2)としては炭素繊維、
アラミド繊維、ガラス繊維などが挙げられる。但し、本
発明に用いられる補強用繊維(2)は上記の繊維に限定
されるわけではない。
The reinforcing fiber (2) constituting the thermoplastic composite yarn (4) of the present invention is carbon fiber,
Examples include aramid fiber and glass fiber. However, the reinforcing fiber (2) used in the present invention is not limited to the above fibers.

【0013】本発明の熱可塑性コンポジット用ヤーン
(4)を構成する熱可塑性マトリックス繊維(1)と補
強用繊維(2)はともに実質的に無撚の非連続繊維であ
ることが必要である。これはブレードあるいは織物など
のテキスタイル品とした後、成形しコンポジットを作成
する場合、成形時に補強用繊維がずれることによりコン
ポジット物性および表面状態の欠点が生じないようにす
るためである。つまり、無撚の非連続繊維を用いること
により、複雑な形状の製品も無理なく成形することを可
能とするためである。
Both the thermoplastic matrix fiber (1) and the reinforcing fiber (2) constituting the thermoplastic composite yarn (4) of the present invention must be substantially non-twisted discontinuous fibers. This is to prevent defects in the physical properties and surface state of the composite due to the displacement of the reinforcing fibers during molding when the composite is prepared by molding after making it into a textile product such as a blade or a woven fabric. That is, the use of non-twisted discontinuous fibers makes it possible to easily form a product having a complicated shape.

【0014】本発明の熱可塑性コンポジット用ヤーン
(4)を構成する熱可塑性マトリックス繊維(1)と補
強用繊維(2)の平均繊維長は特に限定されないが、と
もに50mm以上であることが好ましい。
The average fiber length of the thermoplastic matrix fiber (1) and the reinforcing fiber (2) constituting the thermoplastic composite yarn (4) of the present invention is not particularly limited, but both are preferably 50 mm or more.

【0015】本発明の熱可塑性コンポジット用ヤーン
(4)を構成する熱可塑性マトリックス繊維(1)と補
強用繊維(2)は混繊されており、その混繊度は20%
以上であることが必要である。これは20%以上であれ
ば溶融時に補強用繊維(2)中への含浸が短時間に行わ
れるが、混繊度が20%未満になると、含浸に時間がか
かり不経済であり、また含浸が不十分になるため成形品
における機械的物性が低下するためである。なお、混繊
する手段としては、各々の連続繊維を別々に牽切しスラ
イバーを得た後、それらのスライバーを混合、牽切し、
混合スライバーを得る方法、あるいは連続補強用繊維を
牽切し、スライバーを得た後、カード行程などにより得
たマトリックス非連続のスライバーと練条行程あるいは
粗紡行程で混合し、混合スライバーあるいは混合粗糸を
得る方法などいずれの手段でもよい。
The thermoplastic matrix fiber (1) and the reinforcing fiber (2) constituting the thermoplastic composite yarn (4) of the present invention are mixed, and the mixing degree is 20%.
It is necessary to be above. When the content is 20% or more, the reinforcing fiber (2) is impregnated in a short time during melting, but when the degree of fineness is less than 20%, the impregnation is time-consuming and uneconomical. This is because the mechanical properties of the molded product deteriorate because they become insufficient. As a means for mixing fibers, each continuous fiber is separately drafted to obtain a sliver, and then the sliver is mixed and drafted,
A method of obtaining a mixed sliver, or a method of obtaining a sliver by drafting a continuous reinforcing fiber, and then mixing it with a matrix discontinuous sliver obtained by a card process or the like in a drawing process or a roving process to obtain a mixed sliver or mixed roving Any means such as a method of obtaining

【0016】本発明の熱可塑性コンポジット用ヤーン
(4)を構成する熱可塑性マトリックス繊維(3)は連
続繊維でも、不連続繊維でも良い。連続繊維の場合は電
気開繊装置で開繊したり、捲縮加工などによる加工糸を
用いることも可能である。一方非連続繊維の場合にはテ
キスタイル加工性を満足できる拘束力が有れば良く、繊
維長の長いステープルから成る撚数の少ない紡績糸等が
好適である。
The thermoplastic matrix fibers (3) constituting the thermoplastic composite yarn (4) of the present invention may be continuous fibers or discontinuous fibers. In the case of continuous fibers, it is also possible to open the fibers with an electric fiber opening device or use a processed yarn obtained by crimping. On the other hand, in the case of non-continuous fibers, it is sufficient that the fibers have a binding force that can satisfy the textile processability, and spun yarn having a small number of twists made of staples having a long fiber length is suitable.

【0017】本発明の熱可塑性コンポジット用ヤーン
(4)に対する熱可塑性マトリックス繊維(3)の重量
比は、1重量%以上10重量%以下であることが必要で
あり、また、熱可塑性マトリックス繊維(3)で混線糸
を捲回被覆することが必要である。これはこうすること
によって初めて、テキスタイル加工性と得られるコンポ
ジットの物性を両立させることが出来るためである。
The weight ratio of the thermoplastic matrix fiber (3) to the thermoplastic composite yarn (4) of the present invention must be 1% by weight or more and 10% by weight or less, and the thermoplastic matrix fiber ( In 3), it is necessary to coat the mixed yarn with winding. This is because, for the first time, it is possible to make the textile processability compatible with the physical properties of the obtained composite.

【0018】なお、ここで言う、重量比は次式により定
義する。 重量比={C/(A+B+C)}×100(%) A;非連続熱可塑性マトリックス繊維(1)の量(g/
m) B;補強用繊維(2)の量(g/m) C;熱可塑性マトリックス繊維(3)の量(g/m)
The weight ratio referred to here is defined by the following equation. Weight ratio = {C / (A + B + C)} × 100 (%) A; Amount of discontinuous thermoplastic matrix fiber (1) (g /
m) B: amount of reinforcing fiber (2) (g / m) C: amount of thermoplastic matrix fiber (3) (g / m)

【0019】実際の工程に於いては、熱可塑性コンポジ
ット用ヤーン(4)は熱と圧力が加えられることによ
り、上記の非連続熱可塑性マトリックス繊維(1)と熱
可塑性マトリックス繊維(3)が溶融し、補強用繊維
(2)に含浸され、冷却過程を経てコンポジットとな
る。従って、コンポジットの物性及び外観を支配する要
因として、上記の2種の熱可塑性マトリックス繊維(1
及び3)の溶融状態が挙げられる。上記で熱可塑性マト
リックス繊維(3)の主たる役割りはテキスタイル加工
性にある。すなわち、ブレードあるいは織物を、補強用
繊維(2)を損傷させることなく、かつ飛散あるいは配
向状態を乱すことなく得ること、さらに成形に供するた
めの材料として所定の形状に裁断し、予備賦形(たとえ
ば金型などへのセットを意味する)が満足になされるこ
とにある。いったん予備賦形がなされたならばその後の
いわゆる成形工程においては極力スムースに溶融し捲回
被覆の根跡を残さないことが重要となる。捲回被覆の根
跡が残っているならば主として2つの欠点を発生させる
原因となる。1つはレジンリッチ部の存在である。言う
までもなく、これが存在すれば得られる成形品の表面外
観を損なうのみならず、成形品の機械的物性も低下す
る。他の1つは熱可塑性マトリックス繊維(3)による
拘束力が成形中働いていたこととなり補強用繊維(2)
間のバラケが不十分となるが故の繊維束間の物性の不足
である。これらの欠点を発生させないために熱可塑性マ
トリックス繊維(3)の重量比が10重量%以下である
ことが必要となり、一方前記のテキスタイル加工性を満
足させるためにその重量比が1重量%以上であることが
必要となる。
In the actual process, the thermoplastic composite yarn (4) is heated and pressured to melt the discontinuous thermoplastic matrix fiber (1) and the thermoplastic matrix fiber (3). Then, it is impregnated with the reinforcing fiber (2) and becomes a composite through a cooling process. Therefore, as a factor controlling the physical properties and appearance of the composite, the above-mentioned two types of thermoplastic matrix fibers (1
And the molten state of 3). In the above, the main role of the thermoplastic matrix fiber (3) is textile processability. That is, a blade or a woven fabric can be obtained without damaging the reinforcing fiber (2) and without scattering or disturbing the orientation state, and further cut into a predetermined shape as a material for use in molding, and pre-shaped ( For example, it means to set in a mold) is to be satisfied. Once pre-shaped, it is important to melt as smoothly as possible and leave no trace of wound coating in the subsequent so-called molding process. If there are traces of the wound coating remaining, they are the main causes of two defects. One is the presence of a resin rich part. Needless to say, the presence of this not only impairs the surface appearance of the obtained molded product, but also deteriorates the mechanical properties of the molded product. The other one is that the restraining force by the thermoplastic matrix fiber (3) worked during molding, and the reinforcing fiber (2)
This is a lack of physical properties between fiber bundles due to insufficient spacing. In order not to generate these defects, the weight ratio of the thermoplastic matrix fiber (3) needs to be 10% by weight or less, while in order to satisfy the above-mentioned textile processability, the weight ratio is 1% by weight or more. It is necessary to have it.

【0020】本発明の熱可塑性コンポジット用ヤーン
(4)を構成する熱可塑性マトリックス繊維(3)の融
点は非連続熱可塑性マトリックス繊維(1)の融点より
も低いことが必要である。これは、重量比が上記の範囲
において、(3)の融点が(1)の融点よりも低けれ
ば、成形時捲回被覆繊維である(3)がより早く溶融し
主繊維束の移動を妨げないために、含浸がより一層向上
し、成形品の物性および表面性が改善されるためであ
る。
The melting point of the thermoplastic matrix fiber (3) constituting the thermoplastic composite yarn (4) of the present invention must be lower than the melting point of the discontinuous thermoplastic matrix fiber (1). This is because if the melting point of (3) is lower than the melting point of (1) in the above weight ratio range, the wound coated fiber (3) will melt faster during molding and hinder the movement of the main fiber bundle. This is because the impregnation is further improved and the physical properties and surface properties of the molded product are improved.

【0021】また、本発明の熱可塑性コンポジット用ヤ
ーン(4)を構成する熱可塑性マトリックス繊維(3)
の溶融粘度が非連続熱可塑性マトリックス繊維(1)の
溶融粘度よりも低ければより好ましい。これは、(3)
の溶融粘度が(1)の溶融粘度よりも低ければ、成形時
の流動性が優れて、得られるコンポジットの表面状態が
より一層向上するためである。つまり、(3)の融点及
び溶融粘度がともに(1)の融点及び溶融粘度よりも低
ければ、成形時補強用繊維(2)への拘束力が低減され
ると同時に樹脂流動も容易となり、得られるコンポジッ
トの物性および表面特性がより改善されるためである。
The thermoplastic matrix fiber (3) constituting the yarn (4) for thermoplastic composite of the present invention.
It is more preferable that the melt viscosity of is lower than the melt viscosity of the discontinuous thermoplastic matrix fiber (1). This is (3)
If the melt viscosity of (1) is lower than the melt viscosity of (1), the fluidity at the time of molding is excellent, and the surface condition of the obtained composite is further improved. That is, when both the melting point and the melt viscosity of (3) are lower than the melting point and the melt viscosity of (1), the binding force to the reinforcing fiber (2) at the time of molding is reduced, and at the same time, the resin flow becomes easy. This is because the physical properties and surface characteristics of the composite used are further improved.

【0022】熱可塑性マトリックス繊維の表面処理剤と
しては、繊維製造工程および後工程通過性を維持するた
め、いわゆる紡糸オイルが一般的に使用されている。し
かし、この種の処理剤はコンポジットの補強用繊維とマ
トリックス界面の接着力を阻害するので極力用いない方
が好ましい。
A so-called spinning oil is generally used as the surface treatment agent for the thermoplastic matrix fiber in order to maintain the passability in the fiber manufacturing process and the subsequent process. However, it is preferable not to use this type of treating agent as much as possible because it inhibits the adhesive force between the reinforcing fiber of the composite and the matrix interface.

【0023】本発明の熱可塑性コンポジット用ヤーン
(4)に対する補強用繊維(2)の重量比は特に限定さ
れないが、30〜80重量%の範囲が好ましい。
The weight ratio of the reinforcing fiber (2) to the thermoplastic composite yarn (4) of the present invention is not particularly limited, but is preferably in the range of 30 to 80% by weight.

【0024】[0024]

【実施例】以下実施例を挙げて、本発明を具体的に説明
するが、本発明はこれらに何ら限定されるものではな
い。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

【0025】実施例1 非連続熱可塑性マトリックス繊維として融点215℃、
溶融時の相対粘度2.2のナイロン6繊維、非連続補強
用繊維として炭素繊維、熱可塑性マトリックス繊維とし
て融点180℃、溶融時の相対粘度2.2、40デニー
ル/12フィラメントのナイロン12繊維を用いた。前
2者の繊維はともに無撚で平均繊維長は100mmであ
った。ナイロン6繊維と炭素繊維を各々牽切し、スライ
バーを得て、その後それらのスライバーを練条機にて混
合しドラフトをかけることにより混合スライバーとし
た。該混合スライバーの重量は536ゲレン/6ヤード
であった。該混合スライバーに所定のドラフトをかけカ
バリング機に供給し、ナイロン12繊維でS方向とZ方
向に捲回被覆し、Nm1.7の熱可塑性コンポジット用
ヤーンを得た。該熱可塑性コンポジット用ヤーンに対す
る炭素繊維の重量比は59重量%、ナイロン12繊維の
重量比は1.5重量%、無撚の混繊糸の混繊度は65%
であった。該熱可塑性コンポジット用ヤーンを用い32
打の丸打組機にて角度30°、内径20mmの3層から
なるブレードを作成した。ブレーディング時にマンドレ
ルの外周にシリコン・チューブをかぶせ、ブレーディン
グ後ブレードとともマンドレルから取り外した。該熱可
塑性コンポジット用ヤーンのブレーディング性は良好で
あった。該ブレードを圧力15Kg/cm2 、温度25
5℃、保持時間20分の条件で内圧成形し、厚み0.8
mmの中空パイプを得た。該中空パイプは表面性に優
れ、レジンリッチ部もなく良好なパイプであった。結果
を表1に示す。
EXAMPLE 1 Melting point 215 ° C. as discontinuous thermoplastic matrix fiber,
Nylon 6 fiber having a relative viscosity of 2.2 when melted, carbon fiber as a discontinuous reinforcing fiber, melting point of 180 ° C. as a thermoplastic matrix fiber, nylon 12 fiber having a relative viscosity of 2.2 at the time of melting and 40 denier / 12 filaments Using. The former two fibers were both untwisted and had an average fiber length of 100 mm. Nylon 6 fiber and carbon fiber were respectively drafted to obtain a sliver, and then the sliver was mixed with a kneading machine and drafted to obtain a mixed sliver. The weight of the mixed sliver was 536 gelen / 6 yards. A predetermined draft was applied to the mixed sliver, the mixture was supplied to a covering machine, and nylon 12 fibers were wound and coated in the S direction and the Z direction to obtain a yarn for thermoplastic composite of Nm1.7. The weight ratio of the carbon fibers to the thermoplastic composite yarn is 59% by weight, the weight ratio of the nylon 12 fibers is 1.5% by weight, and the blending degree of the untwisted mixed yarn is 65%.
Met. Using the thermoplastic composite yarn 32
A three-layer blade having an angle of 30 ° and an inner diameter of 20 mm was prepared using a round-striking machine. A silicon tube was put on the outer circumference of the mandrel during braiding, and after braiding, it was removed from the mandrel together with the blade. The braiding property of the thermoplastic composite yarn was good. The blade is set to a pressure of 15 Kg / cm 2 and a temperature of 25
Internal pressure molding under conditions of 5 ° C and holding time of 20 minutes, thickness 0.8
A mm hollow pipe was obtained. The hollow pipe had excellent surface properties and was a good pipe without a resin rich portion. The results are shown in Table 1.

【0026】実施例2 実施例1と同じ方法で熱可塑性コンポジット用ヤーンを
作成した。但し、熱可塑性マトリックス繊維として融点
180℃、溶融時の相対粘度2.2、140デニール/
48フィラメントのナイロン12繊維を用いた。従って
捲回被覆用のナイロン12繊維の重量比は7.2重量%
であった。得られた熱可塑性コンポジット用ヤーンを用
い実施例1と同様の方法にて中空パイプを作成した。該
中空パイプは表面性に優れ、レジンリッチ部もなく良好
なパイプであった。結果をを表1に併せて示す。
Example 2 A thermoplastic composite yarn was prepared in the same manner as in Example 1. However, as the thermoplastic matrix fiber, the melting point is 180 ° C., the relative viscosity upon melting is 2.2, 140 denier /
48 filaments of nylon 12 fiber were used. Therefore, the weight ratio of nylon 12 fiber for winding coating is 7.2% by weight.
Met. Using the obtained thermoplastic composite yarn, a hollow pipe was produced in the same manner as in Example 1. The hollow pipe had excellent surface properties and was a good pipe without a resin rich portion. The results are also shown in Table 1.

【0027】実施例3 実施例1で作成した熱可塑性コンポジット用ヤーンを用
い、目付が経・緯とも15本/インチの織物を作成し
た。この織物を金型の中で温度250℃、圧力10Kg
/cm2 、保持時間15分の条件で加圧を行い、その後
冷却し金型から取り出し平板を作成した。該平板は表面
性に優れ、レジンリッチ部もなく良好なパイプであっ
た。また、用いた熱可塑性コンポジット用ヤーンの製織
性は良好であった。結果を表1に併せて示す。
Example 3 Using the thermoplastic composite yarn prepared in Example 1, a woven fabric having a basis weight of 15 warps / inch was prepared. This fabric is placed in a mold at a temperature of 250 ° C and a pressure of 10 kg.
/ Cm 2 and a holding time of 15 minutes, pressurization was performed, then cooling was performed and the plate was taken out from the mold to form a flat plate. The flat plate was a good pipe having excellent surface properties and no resin rich portion. The weavability of the used thermoplastic composite yarn was good. The results are also shown in Table 1.

【0028】実施例4 実施例1と同じ方法で熱可塑性コンポジット用ヤーンを
作成した。但し、熱可塑性マトリックス繊維として融点
180℃、溶融時の相対粘度2.0、40デニール/1
2フィラメントのナイロン12繊維を用いた。従って、
捲回被覆用のナイロン12繊維の重量比は1.5重量%
であった。得られた熱可塑性コンポジット用ヤーンを用
い実施例1と同様の方法にて中空パイプを作成した。該
中空パイプは表面性に非常に優れ、レジンリッチ部も全
くなく非常に良好なパイプであった。また、用いた熱可
塑性コンポジット用ヤーンのブレーディング性は良好で
あった。結果を表1に併せて示す。
Example 4 A thermoplastic composite yarn was prepared in the same manner as in Example 1. However, the thermoplastic matrix fiber has a melting point of 180 ° C., a relative viscosity of 2.0 when melted, and 40 denier / 1.
Two filaments of nylon 12 fiber were used. Therefore,
The weight ratio of nylon 12 fiber for winding coating is 1.5% by weight.
Met. Using the obtained thermoplastic composite yarn, a hollow pipe was produced in the same manner as in Example 1. The hollow pipe had a very excellent surface property and had no resin rich portion, and was a very good pipe. Further, the braiding property of the used thermoplastic composite yarn was good. The results are also shown in Table 1.

【0029】比較例1 実施例1と同じ方法で熱可塑性コンポジット用ヤーンを
作成した。但し、混繊糸の混繊度は12%であった。得
られた熱可塑性コンポジット用ヤーンは、ブレーディン
グ時、炭素繊維の損傷・切断が見られたが、一応ブレー
ドとすることは可能であった。該ブレードを用い、実施
例1と同様の方法にて中空パイプを作成した。得られた
パイプは、含浸不足の個所が存在し、表面性も不良であ
った。結果を表1に併せて示す。
Comparative Example 1 A thermoplastic composite yarn was prepared in the same manner as in Example 1. However, the degree of mixing of the mixed fiber was 12%. In the obtained thermoplastic composite yarn, damage and cutting of carbon fiber were observed during braiding, but it was possible to use it as a blade for the time being. A hollow pipe was produced in the same manner as in Example 1 using the blade. The obtained pipe had a portion with insufficient impregnation and had poor surface properties. The results are also shown in Table 1.

【0030】比較例2 実施例1と同じ方法で熱可塑性コンポジット用ヤーンを
作成した。但し、熱可塑性マトリックス繊維として融点
180℃、溶融時の相対粘度2.2、40デニール/1
2フィラメントのナイロン6繊維1本を用いてS方向の
み捲回被覆した。従って、捲回被覆用のナイロン6繊維
の重量比は0.7重量%であった。この混繊糸は、ブレ
ーディング性が悪く、ブレーディング時に炭素繊維が損
傷・切断し、著しく作業環境を悪化させるとともに、得
られたブレードは表面状態も毛羽が非常に多く、繊維配
列の乱れたものであった。したがって中空パイプを作成
することは断念した。
Comparative Example 2 A thermoplastic composite yarn was prepared in the same manner as in Example 1. However, as the thermoplastic matrix fiber, the melting point is 180 ° C., the relative viscosity upon melting is 2.2, 40 denier / 1
A single 2-filament nylon 6 fiber was wound and coated only in the S direction. Therefore, the weight ratio of the nylon 6 fiber for winding coating was 0.7% by weight. This mixed fiber has poor braiding properties, the carbon fibers are damaged or cut during the braiding, and the working environment is significantly deteriorated, and the obtained blade has a lot of fluff on the surface condition and the fiber arrangement is disturbed. It was a thing. Therefore, making a hollow pipe was abandoned.

【0031】比較例3 実施例1と同じ方法で熱可塑性コンポジット用ヤーンを
作成した。但し、熱可塑性マトリックス繊維として融点
180℃、溶融時の相対粘度2.2、300デニール/
60フィラメントのナイロン6繊維2本を用いて、1本
はS方向に、他の1本はZ方向に捲回被覆した混繊糸と
した。又、捲回数も180T/Mとした。従って、捲回
被覆用のナイロン6繊維の重量比は16重量%であっ
た。得られた熱可塑性コンポジット用ヤーンのブレーデ
ィング性は良好であったが、全般的に糸が硬く、フレキ
シビリティに欠けるものであった。該ブレードを用い成
形を実施したが、捲回被覆用のナイロン6繊維の拘束力
が強すぎるため、中空パイプ表面に多数のレジンリッチ
部を生じ、実用に耐えないものであった。
Comparative Example 3 A thermoplastic composite yarn was prepared in the same manner as in Example 1. However, the thermoplastic matrix fiber has a melting point of 180 ° C., a relative viscosity of 2.2 when melted, and 300 denier /
Two 60-filament nylon 6 fibers were used, one was wound in the S direction and the other was wound in the Z direction to form a mixed yarn. The number of windings was 180 T / M. Therefore, the weight ratio of the nylon 6 fiber for winding coating was 16% by weight. The braidability of the obtained thermoplastic composite yarn was good, but the yarn was generally hard and lacked in flexibility. Molding was carried out using this blade, but because the binding force of the nylon 6 fiber for winding coating was too strong, a large number of resin rich parts were formed on the surface of the hollow pipe, and it was not practical.

【0032】比較例4 実施例1と同じ方法で熱可塑性コンポジット用ヤーンを
作成した。但し、捲回被覆用の熱可塑性マトリックス繊
維として、非連続熱可塑性マトリックス繊維と同じ融点
215℃、溶融時の相対粘度2.2、40デニール/1
2フィラメントのナイロン6繊維を用いた。得られた熱
可塑性コンポジット用ヤーンを用い実施例1と同様の方
法にて中空パイプを作成した。該中空パイプはその表面
に微小なピンホールや捲回被覆繊維と認められるレジン
リッチ部が散在した。なお、用いた熱可塑性コンポジッ
ト用ヤーンのブレーディング性は良好であった。結果を
表1に併せて示す。
Comparative Example 4 A thermoplastic composite yarn was prepared in the same manner as in Example 1. However, as the thermoplastic matrix fiber for winding coating, the same melting point as that of the discontinuous thermoplastic matrix fiber, 215 ° C., and the relative viscosity upon melting, 2.2, 40 denier / 1
Two filaments of nylon 6 fiber were used. Using the obtained thermoplastic composite yarn, a hollow pipe was produced in the same manner as in Example 1. On the surface of the hollow pipe, minute pinholes and resin-rich portions recognized as wound coated fibers were scattered. The braidability of the used thermoplastic composite yarn was good. The results are also shown in Table 1.

【0033】[0033]

【表1】 [Table 1]

【0034】[0034]

【発明の効果】本発明は軽量かつ強靭で表面平滑性に優
れた熱可塑性コンポジットの成形に有用な熱可塑性コン
ポジット用ヤーンを提供するものである。すなわち、本
発明の熱可塑性コンポジット用ヤーンはブレード、織物
および編物など、例えば丸打組機にて丸打ブレードを製
作し、その中にシリコンチューブなどのいわゆるバグ材
を挿入し、内圧成形法などによりテニスラケット、バン
ミントンラケット用のフレームあるいはバットなどの成
形、また円型織機などを用いて所定の形状に織ることに
より上記と同じような用途の成形品の成形、さらに通常
の2軸の織機などを用いて得た織物をレイアップ成形し
たり、プレス成形機などを用いて成形した平板を得た後
深絞り成形することによりヘルメットなどに用いること
が可能である。このように本発明の熱可塑性コンポジッ
ト用ヤーンは広範囲の成形方法に適用可能であり、その
効果は極めて大である。
INDUSTRIAL APPLICABILITY The present invention provides a thermoplastic composite yarn useful for molding a thermoplastic composite which is lightweight, tough and has excellent surface smoothness. That is, the thermoplastic composite yarn of the present invention is a blade, a woven fabric, a knitted fabric, etc., for example, a round punching blade is manufactured by a round punching machine, a so-called bag material such as a silicon tube is inserted therein, and an internal pressure molding method, etc. To form a frame or bat for a tennis racket or a bamington racket, or to form a molded product for the same purpose as described above by weaving it into a predetermined shape using a circular loom or the like, and an ordinary biaxial loom It is possible to lay-up the woven fabric obtained by using the above, or to obtain a flat plate formed by using a press molding machine and then perform deep drawing to use it for a helmet or the like. As described above, the yarn for thermoplastic composite of the present invention can be applied to a wide range of molding methods, and its effect is extremely large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の熱可塑性コンポジット用ヤーンの模式
図の一例である。
FIG. 1 is an example of a schematic view of a thermoplastic composite yarn of the present invention.

【符号の説明】[Explanation of symbols]

A:本発明の熱可塑性コンポジット用ヤーンの断面 B:本発明の熱可塑性コンポジット用ヤーンの一部 1:混繊糸用の非連続熱可塑性マトリックス繊維 2:混繊糸用の非連続補強用繊維 3:捲回被覆用の熱可塑性マトリックス繊維 4:本発明の熱可塑性コンポジット用ヤーン A: Section of yarn for thermoplastic composite of the present invention B: Part of yarn for thermoplastic composite of the present invention 1: Discontinuous thermoplastic matrix fiber for mixed fiber 2: Fiber for discontinuous reinforcement for mixed fiber 3: thermoplastic matrix fiber for winding coating 4: thermoplastic composite yarn of the present invention

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 実質的に無撚の非連続熱可塑性マトリッ
クス繊維、実質的に無撚の非連続補強用繊維及び上記非
連続熱可塑性マトリックス繊維よりも融点の低い熱可塑
性マトリックス繊維からなる熱可塑性コンポジット用ヤ
ーンであって、上記非連続熱可塑性マトリックス繊維と
上記非連続補強用繊維を混繊度20%以上で混繊した混
繊糸に、上記熱可塑性コンポジット用ヤーンに対して1
重量%以上10重量%以下の上記熱可塑性マトリックス
繊維を捲回被覆していることを特徴とする熱可塑性コン
ポジット用ヤーン。
1. A thermoplastic comprising substantially untwisted discontinuous thermoplastic matrix fibers, substantially untwisted discontinuous reinforcing fibers, and thermoplastic matrix fibers having a lower melting point than said discontinuous thermoplastic matrix fibers. A yarn for a composite, wherein the discontinuous thermoplastic matrix fiber and the discontinuous reinforcing fiber are mixed and mixed at a mixing degree of 20% or more, and 1 for the thermoplastic composite yarn.
A yarn for a thermoplastic composite, which is obtained by winding-wrapping the thermoplastic matrix fiber in an amount of 10% by weight or more and 10% by weight or less.
【請求項2】 熱可塑性マトリックス繊維の溶融粘度が
非連続熱可塑性マトリックス繊維の溶融粘度よりも低い
ことを特徴とする請求項1記載の熱可塑性コンポジット
用ヤーン。
2. The yarn for a thermoplastic composite according to claim 1, wherein the melt viscosity of the thermoplastic matrix fiber is lower than the melt viscosity of the discontinuous thermoplastic matrix fiber.
JP01395293A 1993-01-29 1993-01-29 Yarn for thermoplastic composites Expired - Lifetime JP3178562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01395293A JP3178562B2 (en) 1993-01-29 1993-01-29 Yarn for thermoplastic composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01395293A JP3178562B2 (en) 1993-01-29 1993-01-29 Yarn for thermoplastic composites

Publications (2)

Publication Number Publication Date
JPH06228837A true JPH06228837A (en) 1994-08-16
JP3178562B2 JP3178562B2 (en) 2001-06-18

Family

ID=11847551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01395293A Expired - Lifetime JP3178562B2 (en) 1993-01-29 1993-01-29 Yarn for thermoplastic composites

Country Status (1)

Country Link
JP (1) JP3178562B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760681A1 (en) * 1997-03-12 1998-09-18 Alternatives En PROCESS FOR THE MANUFACTURE OF A LARGE-DIMENSIONAL PART OF COMPOSITE MATERIAL AND PROPELLER BLADE, PARTICULARLY A WIND TURBINE, MANUFACTURED ACCORDING TO THIS PROCESS
JP2008530384A (en) * 2005-02-10 2008-08-07 スプリーム・エラスティック・コーポレーション High performance fiber blends and products made from them
JP2011521112A (en) * 2008-04-21 2011-07-21 ヘルスコート・ファブリックス・リミテッド Yarn production
WO2016159340A1 (en) * 2015-04-03 2016-10-06 三菱瓦斯化学株式会社 Composite material, process for producing composite material, and process for producing molded article
JP2016196624A (en) * 2015-04-03 2016-11-24 国立大学法人岐阜大学 Composite material, method for producing composite material and method for producing molding
CN108914304A (en) * 2018-07-17 2018-11-30 张家港市隆利氨纶纱线厂 A kind of preparation process of low twist cotton brocade wrap yarn

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885223B1 (en) 2014-09-10 2016-03-15 国立大学法人岐阜大学 Manufacturing method of mixed yarn, mixed yarn, wound body, and woven fabric

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2760681A1 (en) * 1997-03-12 1998-09-18 Alternatives En PROCESS FOR THE MANUFACTURE OF A LARGE-DIMENSIONAL PART OF COMPOSITE MATERIAL AND PROPELLER BLADE, PARTICULARLY A WIND TURBINE, MANUFACTURED ACCORDING TO THIS PROCESS
EP0865900A1 (en) * 1997-03-12 1998-09-23 Alternatives Energies Process for manufacturing large size articles from composite material and propeller blade, namely for windmills, produced using such a method
JP2008530384A (en) * 2005-02-10 2008-08-07 スプリーム・エラスティック・コーポレーション High performance fiber blends and products made from them
JP2011521112A (en) * 2008-04-21 2011-07-21 ヘルスコート・ファブリックス・リミテッド Yarn production
WO2016159340A1 (en) * 2015-04-03 2016-10-06 三菱瓦斯化学株式会社 Composite material, process for producing composite material, and process for producing molded article
JP2016196624A (en) * 2015-04-03 2016-11-24 国立大学法人岐阜大学 Composite material, method for producing composite material and method for producing molding
US10926488B2 (en) 2015-04-03 2021-02-23 Mitsubishi Gas Chemical Company, Inc. Composite material, method for manufacturing composite material, and method for manufacturing molded article
CN108914304A (en) * 2018-07-17 2018-11-30 张家港市隆利氨纶纱线厂 A kind of preparation process of low twist cotton brocade wrap yarn

Also Published As

Publication number Publication date
JP3178562B2 (en) 2001-06-18

Similar Documents

Publication Publication Date Title
JPS62135537A (en) Flexible composite material and production thereof
JPH01266231A (en) Fiber-reinforced thermoplastic resin wiry material and production thereof
JP3029800B2 (en) Manufacturing method of mixed yarn for composite material
KR101439150B1 (en) Continuous carbon fiber/thermoplastic resin fiber composite yarn and method for manufacturing the same
JPH08174689A (en) Fiber-reinforced resin composite material
CN110281550A (en) A kind of preparation method that weaving continuous fiber reinforced thermoplastic prepreg tape and product
JP3178562B2 (en) Yarn for thermoplastic composites
KR100870194B1 (en) High-strength spun yarn produced from continuous high-modulus filaments, and process for making same
JP2015059274A (en) Composite fiber and method for producing the same
JPH07122190B2 (en) Preform yarn for thermoplastic composite material and method for producing the same
JP3345661B2 (en) Yarn for thermoplastic composites
KR101966549B1 (en) Fabric and commingled yarn for fiber reinforced plastic and manufacturing method thereof
JPH06294033A (en) Hybrid molding material for thermoplastic composite
JPH02210036A (en) Conjugated yarn for reinforcement
DE19932842B4 (en) Carbon fiber sewing thread for fiber-plastic composite components
JPH06107808A (en) Molding material for thermoplastic composite
JP3018413B2 (en) Method for producing mixed fiber yarn for composite
JPH04183729A (en) Molding material for thermoplastic composite
JP3672043B2 (en) Thermoplastic composite continuous molding and continuous molding method
JPH07243140A (en) Composite spun yarn and method for producing the same
JP3314826B2 (en) Thermoplastic composite sheet
JPH06143273A (en) Molding material and filament winding molded product
Lehmann et al. Yarn Constructions and Yarn Formation Techniques
JPH0359038A (en) Precursor of thermoplastic composite material and its production
JPH06170872A (en) Thermosetting composite racket and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 12

EXPY Cancellation because of completion of term