JPH06228754A - Formation of carbon coating film on metal substrate - Google Patents

Formation of carbon coating film on metal substrate

Info

Publication number
JPH06228754A
JPH06228754A JP3425093A JP3425093A JPH06228754A JP H06228754 A JPH06228754 A JP H06228754A JP 3425093 A JP3425093 A JP 3425093A JP 3425093 A JP3425093 A JP 3425093A JP H06228754 A JPH06228754 A JP H06228754A
Authority
JP
Japan
Prior art keywords
carbon coating
metal substrate
carbon
nickel
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3425093A
Other languages
Japanese (ja)
Inventor
Akira Kondo
明 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP3425093A priority Critical patent/JPH06228754A/en
Publication of JPH06228754A publication Critical patent/JPH06228754A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a forming method of a carbon film on a metal substrate by which a carbon coating film excellent in adhesion property can be efficiently formed on a metal substrate by low temp. CVD method. CONSTITUTION:After the surface of a metal substrate is plated with nickel, the surface is irradiated with radiation in a range to increase the temp. of the plating film to 200-600 deg.C. Then, a carbon coating film is deposited in a vapor phase by CVD method which thermally decomposes hydrocarbon gas on the irradiated surface. As for the radiation, Ir, visible or UV rays are preferably used.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属基材の表面に比較
的低温度のCVD操作により密着性に優れるカーボン被
膜を均一に被覆することができる金属基材へのカーボン
被膜形成法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a carbon film on a metal substrate, which allows a carbon film having excellent adhesion to be uniformly coated on the surface of the metal substrate by a CVD operation at a relatively low temperature.

【0002】[0002]

【従来の技術】カーボンは固有の性状特性として優れた
自己潤滑性を有しているため、古くから固体潤滑材とし
て広く利用されている。潤滑材として用いられるカーボ
ンの形状は、一般に微粒子状の粉体であることが多い
が、各種の部材に潤滑性を付与しようとする場合には対
象部材の表面にカーボンの被覆層を形成する手段が有効
である。このため、機械部材の大部分を占める金属材料
の表面に密着性よくカーボンを被覆させる技術が必要と
なる。
2. Description of the Related Art Since carbon has excellent self-lubricating property as an intrinsic property, it has been widely used as a solid lubricant for a long time. The shape of carbon used as a lubricant is generally in the form of fine particles, but in order to impart lubricity to various members, means for forming a carbon coating layer on the surface of the target member Is effective. Therefore, there is a need for a technique for coating the surface of a metal material that occupies most of the mechanical member with carbon with good adhesion.

【0003】従来、カーボン被膜を形成するための最も
代表的なコーティング技術として、炭化水素ガスを熱分
解させて基材面にカーボン層を気相析出させるCVD法
(化学的気相析出法)が知られている。ところが、CV
D法によりカーボン被膜を効率よく析出させるためには
基材温度を少なくとも800〜1100℃付近に保持す
る必要があり、このため例えば金属のようにカーボンと
極端に熱膨張係数が異なる材料を基材とした場合には、
冷却時に材質間の熱膨張差(熱応力)に起因して形成し
たカーボン被膜が剥離する現象が生じる。そのうえ、金
属基材自体が熱劣化を生じて材質特性の低下を招くこと
がある。
Conventionally, as a most typical coating technique for forming a carbon film, there is a CVD method (chemical vapor deposition method) in which a carbon layer is vapor-deposited on a substrate surface by thermally decomposing a hydrocarbon gas. Are known. However, CV
In order to efficiently deposit a carbon film by the D method, it is necessary to maintain the base material temperature at least around 800 to 1100 ° C. Therefore, for example, a material such as a metal having a coefficient of thermal expansion extremely different from that of carbon is used as the base material. And if
During cooling, a phenomenon occurs in which the formed carbon coating film peels off due to the difference in thermal expansion (thermal stress) between the materials. In addition, the metal base material itself may be deteriorated by heat, resulting in deterioration of material characteristics.

【0004】このようなCVD法の問題を解消するた
め、基材温度が殆ど上昇することのないプラズマCVD
法を用いて金属面にカーボン被膜を形成する方法(特開
平2−30755 号公報) が提案されている。しかし、プラ
ズマCVDには被膜形成するための堆積速度が極めて遅
いという欠点がある。この堆積速度は電力密度を高める
ことにより増大させることは可能であるが、電力密度の
高度化はプロセスのエネルギー消費を高めるうえに金属
基材に損傷を与える原因となる。
In order to solve such a problem of the CVD method, the plasma CVD in which the substrate temperature hardly rises
A method of forming a carbon film on a metal surface using the method (Japanese Patent Laid-Open No. 2-30755) has been proposed. However, plasma CVD has a drawback that the deposition rate for forming a film is extremely slow. Although this deposition rate can be increased by increasing the power density, the higher power density increases the energy consumption of the process and causes damage to the metal substrate.

【0005】このほか、金属基材とカーボン被膜の密着
性を改善するために、両者の間に熱応力の緩和を目的と
する金属粒子とカーボンによる複合中間層を設ける方法
(特開昭59−143498号公報、特開平3−191065号公報)
も提案されているが、製造工程が煩雑となって生産コス
トの高騰を招く問題点がある。また、CVD法以外のカ
ーボン被覆化手段として、金属基材面にフェノール系や
フラン系のような炭化収率の高い熱硬化性樹脂液を塗布
し、塗布層を焼成炭化してカーボン層に転化させる方法
もあるが、塗布した樹脂層は炭素化に際して大きな収縮
を伴うため剥離現象の発生が避けられない。
In addition, in order to improve the adhesion between the metal base material and the carbon coating, a method for providing a composite intermediate layer of metal particles and carbon between them for the purpose of relaxing thermal stress (JP-A-59-59). (143498 gazette, JP-A-3-191065 gazette)
However, there is a problem that the manufacturing process becomes complicated and the production cost rises. Further, as a carbon coating means other than the CVD method, a thermosetting resin liquid having a high carbonization yield such as a phenol type or a furan type is applied to the surface of a metal base material, and the applied layer is baked and carbonized to be converted into a carbon layer. However, since the applied resin layer is greatly shrunk during carbonization, the peeling phenomenon is unavoidable.

【0006】本発明者はCVDを適用して金属基材面に
密着性よくカーボン被膜を形成するための効果的な手段
として、金属基材の表面に酸化ニッケルを被覆担持させ
たのち該酸化ニッケルの被覆面に炭化水素ガスの熱分解
によりカーボン被膜を析出させる方法を開発し、すでに
特願平4−271180号として提案した。このカーボ
ン被覆法によれば、金属基材面に予め担持させた酸化ニ
ッケルが触媒的な機能を営み、この作用で金属基材の保
持温度が400℃以下の低温CVD操作においても密着
性のよいカーボン被覆層を形成することが可能となる。
The present inventor has applied nickel oxide to the surface of a metal base material as an effective means for forming a carbon coating on the surface of the metal base material with good adhesion by applying CVD. Has developed a method for depositing a carbon coating on the coated surface by thermal decomposition of hydrocarbon gas, and has already proposed it as Japanese Patent Application No. 4-271180. According to this carbon coating method, nickel oxide previously supported on the surface of the metal base material has a catalytic function, and by this action, good adhesion is obtained even in a low temperature CVD operation in which the holding temperature of the metal base material is 400 ° C. or lower. It becomes possible to form a carbon coating layer.

【0007】[0007]

【発明が解決しようとする課題】発明者は、引き続き低
温CVD操作が可能な金属基材へのカーボン被覆手段に
ついて研究を重ねた結果、金属基材面に予め放射線を照
射したニッケルめっき層を形成してからCVD操作を適
用すると、400℃程度の基材保持温度域において密着
性よくカーボン被膜を被覆し得ることを確認した。
As a result of repeated research on means for coating a metal base material with carbon capable of low-temperature CVD operation, the present inventors have formed a nickel plating layer on the surface of the metal base material which has been previously irradiated with radiation. After that, it was confirmed that when the CVD operation was applied, the carbon film could be coated with good adhesion in the substrate holding temperature range of about 400 ° C.

【0008】本発明は前記の知見に基づいて開発された
もので、その目的は、金属基材の表面に低温CVD法に
より密着性に優れたカーボン被膜を効率よく形成するこ
とができる金属基材へのカーボン被膜形成法を提供する
ことにある。
The present invention was developed on the basis of the above-mentioned findings, and an object thereof is a metal base material capable of efficiently forming a carbon coating film having excellent adhesion on the surface of a metal base material by a low temperature CVD method. Another object of the present invention is to provide a method for forming a carbon film on the substrate.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による金属基材へのカーボン被膜形成法は、
金属基材の表面にニッケルめっきを施したのち、該ニッ
ケルめっき面の表面温度が200〜600℃に上昇する
エネルギー範囲で放射線を照射し、ついで放射線被覆面
に炭化水素ガスの熱分解によるCVDを介してカーボン
被覆層を気相析出させることを構成上の特徴とする。
The method for forming a carbon coating on a metal substrate according to the present invention for achieving the above object comprises:
After nickel-plating the surface of the metal substrate, the nickel-plated surface is irradiated with radiation in an energy range in which the surface temperature rises to 200 to 600 ° C., and then the radiation-coated surface is subjected to CVD by thermal decomposition of hydrocarbon gas. The constitutional feature is that the carbon coating layer is vapor-deposited through the intermediate layer.

【0010】本発明の基材となる金属材料には、600
℃以上の融点を有する金属類が用いられ、典型的には
鉄、銅またはそれらの合金が対象基材となる。金属基材
の表面ニッケル被膜を形成するためのめっき方法には特
に制約はない。したがって、通常の電気めっき法を用い
ることもできるが、本発明の目的には一般に常用されて
いる建浴方式による無電解めっき法が好ましく適用され
る。
The metal material used as the base material of the present invention is 600
Metals having a melting point of 0 ° C. or higher are used, and typically iron, copper or alloys thereof are used as the target substrate. There is no particular limitation on the plating method for forming the nickel coating on the surface of the metal substrate. Therefore, an ordinary electroplating method can be used, but for the purpose of the present invention, an electroless plating method by a commonly used building bath method is preferably applied.

【0011】形成されたニッケルめっき面には、CVD
によるカーボン被覆を効率化させる触媒活性を高めるた
めに放射線が照射される。使用可能な放射線としては、
マイクロ波、赤外線、可視光線、紫外線、X線、γ線な
どを挙げることができるが、作業性や安全性の面から赤
外線、可視光線もしくは紫外線を用いることが好適であ
る。放射線の照射は、ニッケルめっき面の表面温度が2
00〜600℃に上昇するエネルギー範囲でおこなう必
要がある。表面温度の上昇が200℃未満の放射線照射
ではニッケルめっき層の触媒活性を十分に高めることが
できず、他方、600℃を越える放射線照射ではその後
のCVD工程で形成したカーボン被膜が剥離したり、放
射エネルギーが強すぎて金属基材に損傷を与える等の現
象を招く。このほか、放射線照射時の雰囲気には規制は
なく、大気、真空、不活性ガス雰囲気のいずれでもよ
く、また照射時間は適用する放射線のエネルギー密度や
表面温度の上昇度合を考慮して適宜に設定される。
CVD is applied to the nickel-plated surface thus formed.
Radiation is applied to enhance the catalytic activity that makes the carbon coating efficient by. The radiation that can be used is
Microwaves, infrared rays, visible rays, ultraviolet rays, X-rays, γ-rays and the like can be mentioned, but it is preferable to use infrared rays, visible rays or ultraviolet rays from the viewpoint of workability and safety. When the radiation is applied, the surface temperature of the nickel-plated surface is 2
It is necessary to perform in the energy range which rises to 00-600 degreeC. Irradiation with a surface temperature rise of less than 200 ° C. cannot sufficiently enhance the catalytic activity of the nickel plating layer, while irradiation with radiation over 600 ° C. causes the carbon coating formed in the subsequent CVD step to peel off, The radiant energy is too strong and causes a phenomenon such as damage to the metal substrate. In addition, there are no restrictions on the atmosphere during radiation irradiation, which may be air, vacuum, or an inert gas atmosphere, and the irradiation time is set appropriately in consideration of the energy density of the applied radiation and the degree of increase in surface temperature. To be done.

【0012】表面に放射線照射を施したニッケルめっき
層を有する金属基材は、ついでCVD炉にセットして加
熱し、炉内に炭化水素ガスを導入して熱分解させる。カ
ーボン源となる炭化水素ガスとしては、例えばメタン、
エタン、プロパン、エチレン、アセチレン等を挙げるこ
とができ、いずれも本発明の目的に対して有効的に使用
される。このCVD工程において、金属基材の加熱温度
は300〜400℃の範囲に保持すれば十分であり、こ
の低温度域においてニッケルめっき層の放射線照射面に
均質なカーボン被膜が密着性よく形成される。
The metal base material having the nickel plating layer whose surface is irradiated with radiation is then set in a CVD furnace and heated, and a hydrocarbon gas is introduced into the furnace for thermal decomposition. As the hydrocarbon gas serving as a carbon source, for example, methane,
Examples thereof include ethane, propane, ethylene, and acetylene, all of which are effectively used for the purpose of the present invention. In this CVD process, it is sufficient to keep the heating temperature of the metal base material in the range of 300 to 400 ° C., and in this low temperature range, a uniform carbon coating is formed on the radiation-exposed surface of the nickel plating layer with good adhesion. .

【0013】[0013]

【作用】従来、炭化水素ガスを熱分解してCVD法によ
り金属基材面に効率よくカーボン被膜を形成するために
は、処理条件として金属基材の温度を800℃以上に保
持することが必要条件とされている。この場合、基材面
にニッケルやコバルトのような遷移金属が介在すると、
触媒作用によってカーボンの析出温度が下がることが知
られているが、本発明においては予め金属基材面に形成
したニッケルめっき層の表面に特定エネルギー量の放射
線を照射することによって触媒活性能を一層高めたもの
である。
In order to efficiently form a carbon coating on the surface of a metal base material by the CVD method by thermally decomposing a hydrocarbon gas, it is necessary to keep the temperature of the metal base material at 800 ° C. or higher as a processing condition. It is a condition. In this case, if a transition metal such as nickel or cobalt intervenes on the substrate surface,
It is known that the carbon deposition temperature is lowered by the catalytic action, but in the present invention, the catalytic activity is further enhanced by irradiating the surface of the nickel plating layer previously formed on the surface of the metal substrate with a specific energy amount of radiation. It is an elevated one.

【0014】すなわち、CVDによるカーボン被膜の析
出は炭化水素ガスが基材上で熱分解することによって進
行するが、この析出を円滑化して密着性のよいカーボン
被膜を形成させるためには炭化水素ガスを効率よく基材
面に吸着させる必要がある。本発明によればニッケルめ
っき面に放射線照射を施すことにより無数の微細な格子
欠陥が形成され、この格子欠陥面が炭化水素ガスの吸着
を促進する作用を営んでニッケルめっき層の触媒活性能
を飛躍的に向上させるために機能する。
That is, the deposition of the carbon coating by CVD proceeds by the thermal decomposition of the hydrocarbon gas on the base material, but in order to facilitate this deposition and form a carbon coating with good adhesion, the hydrocarbon gas Must be efficiently adsorbed on the substrate surface. According to the present invention, a number of fine lattice defects are formed by irradiating the nickel-plated surface with radiation, and the lattice-defect surface plays a role of promoting adsorption of hydrocarbon gas to enhance the catalytic activity of the nickel-plated layer. It works to improve dramatically.

【0015】かかる機能を介して、金属基材を400℃
程度に保持したCVD条件においても均質で密着性に優
れるカーボン被膜を効率的に析出させることが可能とな
る。したがって、金属基材面に亀裂や剥離現象を発生さ
せることなしに薄膜のカーボン被膜を形成することがで
きる。
Through such a function, the metal base material is heated to 400 ° C.
It is possible to efficiently deposit a carbon coating that is homogeneous and has excellent adhesiveness even under the CVD conditions maintained at a certain level. Therefore, a thin carbon film can be formed without causing cracks or peeling phenomena on the surface of the metal substrate.

【0016】[0016]

【実施例】以下、本発明の実施例を比較例と対比して具
体的に説明する。
EXAMPLES Examples of the present invention will be specifically described below in comparison with comparative examples.

【0017】実施例1〜3 鉄鋼材〔新日本製鉄(株)製、S45C〕を、塩化パラ
ジウムを溶解した塩酸水溶液に浸漬して活性化処理を施
したのち、硫酸ニッケル、次亜リン酸ナトリウム(還元
剤)、クエン酸ナトリウム(醋化剤)および酢酸ナトリ
ウム(pH緩衝剤)からなる組成の建浴されためっき浴
(温度60℃、pH5)に浸漬して無電解めっき反応を
おこなった。このようにして無電解めっき法によりニッ
ケルめっきを施した金属基材に、ニッケルめっき面の表
面温度が200℃、400℃および600℃に上昇する
エネルギー量で赤外線を照射した。
Examples 1 to 3 A steel material [S45C manufactured by Shin Nippon Steel Co., Ltd.] was immersed in an aqueous hydrochloric acid solution in which palladium chloride was dissolved to carry out activation treatment, and then nickel sulfate and sodium hypophosphite. The electroless plating reaction was carried out by immersing in a plating bath (temperature 60 ° C., pH 5) having a composition of (reducing agent), sodium citrate (feeding agent) and sodium acetate (pH buffer). The metal substrate thus nickel-plated by the electroless plating method was irradiated with infrared rays at an energy amount such that the surface temperature of the nickel-plated surface increased to 200 ° C, 400 ° C and 600 ° C.

【0018】ついで、赤外線照射後の金属基材をCVD
炉にセットし、基材を400℃の温度に加熱保持しなが
ら炉内にエチレンガスを導入して1時間に亘りCVD操
作を継続した。この操作により金属基材面に析出した各
カーボン被膜は、極めて均質で優れた密着性を有してい
ることが確認された。得られた各カーボン被膜の膜厚と
被膜性状を、適用した変動条件と対比させて表1に示し
た。
Then, the metal base material after the infrared irradiation is subjected to CVD.
It was set in a furnace, ethylene gas was introduced into the furnace while heating and holding the substrate at a temperature of 400 ° C., and the CVD operation was continued for 1 hour. It was confirmed that the carbon coatings deposited on the metal substrate surface by this operation were extremely homogeneous and had excellent adhesion. The film thickness and film properties of each of the obtained carbon films are shown in Table 1 in comparison with the applied varying conditions.

【0019】実施例4 放射線を可視光線に代え、ニッケルめっき面の表面温度
が400℃に上昇するエネルギー量で照射した以外は全
て実施例1と同一の条件により金属基材面にカーボン被
膜を形成した。得られたカーボン被膜は、極めて均質で
優れた密着性を備えるものであった。表1に、その膜厚
および被膜性状を併載した。
Example 4 A carbon film was formed on the surface of a metal substrate under the same conditions as in Example 1 except that the radiation was changed to visible light and the nickel plating surface was irradiated with an energy amount such that the surface temperature increased to 400 ° C. did. The obtained carbon coating was extremely homogeneous and had excellent adhesion. Table 1 also shows the film thickness and the film properties.

【0020】実施例5 放射線を紫外線に代え、ニッケルめっき面の表面温度が
400℃に上昇するエネルギー量で照射した以外は全て
実施例1と同一の条件により金属基材面にカーボン被膜
を形成した。得られたカーボン被膜は、極めて均質で密
着性に優れる被覆層であった。表1に、その膜厚および
被膜性状を併載した。
Example 5 A carbon coating was formed on the surface of a metal substrate under the same conditions as in Example 1, except that the radiation was changed to ultraviolet rays and the nickel plating surface was irradiated with an energy amount such that the surface temperature rose to 400 ° C. . The obtained carbon coating was a coating layer that was extremely homogeneous and had excellent adhesion. Table 1 also shows the film thickness and the film properties.

【0021】比較例1 実施例1と同一の金属基材面に、ニッケルめっきを施さ
ずに表面温度が400℃に上昇するエネルギー量で赤外
線を照射した。ついで、実施例1と同一の条件でCVD
操作をおこなったところ、カーボン被膜の析出は認めら
れなかった。
COMPARATIVE EXAMPLE 1 The same metal substrate surface as in Example 1 was irradiated with infrared rays with an amount of energy such that the surface temperature rose to 400 ° C. without nickel plating. Then, CVD is performed under the same conditions as in Example 1.
When the operation was carried out, no carbon film was deposited.

【0022】比較例2 実施例1と同一条件でニッケルめっきを施した金属基材
を、放射線照射せずにCVD炉内にセットし、実施例と
同一の条件でCVD操作をおこなったところ、カーボン
被膜の析出は認められなかった。
Comparative Example 2 A metal base material plated with nickel under the same conditions as in Example 1 was set in a CVD furnace without being irradiated with radiation, and a CVD operation was performed under the same conditions as in Example. No film deposition was observed.

【0023】比較例3 赤外線の照射条件を、ニッケルめっき面の表面温度が1
50℃になるような低エネルギー量に設定した。その他
の条件は全て実施例1と同一条件により金属基材面にカ
ーボン被膜を形成した。この例では、表1に併載したよ
うに形成されるカーボン被膜が極めて薄いものであっ
た。
Comparative Example 3 The infrared irradiation condition was that the surface temperature of the nickel-plated surface was 1
The amount of energy was set so low as to reach 50 ° C. Under all other conditions, the same conditions as in Example 1 were used to form a carbon coating on the metal substrate surface. In this example, the carbon coating formed as shown in Table 1 was extremely thin.

【0024】比較例4 赤外線の照射条件を、ニッケルめっき面の表面温度が6
50℃に上昇するような高エネルギー量に設定した。こ
の例では、表1に併載したように形成されたカーボン被
膜が剥離し、また金属基材は損傷を受け熱劣化により材
質強度が低下していることが認められた。
Comparative Example 4 The infrared irradiation condition was that the surface temperature of the nickel-plated surface was 6
The amount of energy was set to a high value such that the temperature increased to 50 ° C. In this example, it was confirmed that the carbon coating formed as shown in Table 1 was peeled off, and the metal base material was damaged and the material strength was lowered due to thermal deterioration.

【0025】[0025]

【表1】 [Table 1]

【0026】[0026]

【発明の効果】以上のとおり、本発明による金属基材へ
のカーボン被膜形成法に従えば、金属基材の表面に放射
線を照射したニッケルめっき層を形成する簡易な前処理
工程と低温CVD操作を介して金属基材面に密着性の良
好なカーボン被膜を効率よく形成することができる。し
たがって、各種金属基材を対象とする工業的なカーボン
被膜形成手段として極めて有用である。
As described above, according to the method for forming a carbon film on a metal substrate according to the present invention, a simple pretreatment step for forming a nickel plating layer irradiated with radiation on the surface of the metal substrate and a low temperature CVD operation. It is possible to efficiently form a carbon coating film having good adhesion on the surface of the metal base material via. Therefore, it is extremely useful as an industrial carbon film forming means for various metal substrates.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 金属基材の表面にニッケルめっきを施し
たのち、該ニッケルめっき面の表面温度が200〜60
0℃に上昇するエネルギー範囲で放射線を照射し、つい
で放射線照射面に炭化水素ガスの熱分解によるCVDを
介してカーボン被覆層を気相析出させることを特徴とす
る金属基材へのカーボン被膜形成法。
1. The surface temperature of the nickel-plated surface is 200 to 60 after nickel-plating the surface of the metal base material.
Forming a carbon coating film on a metal substrate, which comprises irradiating radiation in an energy range rising to 0 ° C., and then vapor-depositing a carbon coating layer on the irradiation surface through CVD by thermal decomposition of hydrocarbon gas Law.
【請求項2】 放射線として、赤外線、可視光線もしく
は紫外線を用いる請求項1記載の金属基材へのカーボン
被膜形成法。
2. The method for forming a carbon film on a metal substrate according to claim 1, wherein infrared rays, visible rays or ultraviolet rays are used as the radiation.
JP3425093A 1993-01-29 1993-01-29 Formation of carbon coating film on metal substrate Pending JPH06228754A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3425093A JPH06228754A (en) 1993-01-29 1993-01-29 Formation of carbon coating film on metal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3425093A JPH06228754A (en) 1993-01-29 1993-01-29 Formation of carbon coating film on metal substrate

Publications (1)

Publication Number Publication Date
JPH06228754A true JPH06228754A (en) 1994-08-16

Family

ID=12408927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3425093A Pending JPH06228754A (en) 1993-01-29 1993-01-29 Formation of carbon coating film on metal substrate

Country Status (1)

Country Link
JP (1) JPH06228754A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019238A (en) * 2007-07-12 2009-01-29 Tokai Carbon Co Ltd METHOD FOR MANUFACTURING CVD-SiC SINGLE FILM
CN109880143A (en) * 2019-02-18 2019-06-14 东莞市和域战士纳米科技有限公司 A kind of compound super-hydrophobic waterproof nano film of fluorinated polyethylene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009019238A (en) * 2007-07-12 2009-01-29 Tokai Carbon Co Ltd METHOD FOR MANUFACTURING CVD-SiC SINGLE FILM
CN109880143A (en) * 2019-02-18 2019-06-14 东莞市和域战士纳米科技有限公司 A kind of compound super-hydrophobic waterproof nano film of fluorinated polyethylene

Similar Documents

Publication Publication Date Title
US7070833B2 (en) Method for chemical vapor deposition of silicon on to substrates for use in corrosive and vacuum environments
EP0370838B1 (en) Process for the surface protection of metallic articles against high-temperature corrosion, and article treated by this process
WO2009115830A2 (en) Treatment of metal components
US4604168A (en) Pretreatment for electroplating mineral-filled nylon
CH660028A5 (en) PROCESS FOR THE PREPARATION BY DIFFUSION OF A PROTECTIVE LAYER ON ALLOYS BASED ON NICKEL, COBALT AND IRON.
JP2551745B2 (en) Chromium layer with high hardness that can withstand wear, deformation, surface fatigue and corrosion
CN101497998A (en) Preparation of iridium aluminum high temperature oxidation coating
US5824367A (en) Method for the deposition of diamond film on an electroless-plated nickel layer
WO1992017625A1 (en) Coated molybdenum parts and process for their production
JPH06228754A (en) Formation of carbon coating film on metal substrate
KR20130074647A (en) Coated steel sheet and method for manufacturing the same
KR930004494A (en) An improved method of applying a metal film on isotropic boron nitride and articles made therefrom
US3753768A (en) Aliminum plating process
JPH0693449A (en) Method for coating metal substrate with carbon
JP3773341B2 (en) SiC coated carbon material
RU2066715C1 (en) Process of deposition of protective coats on articles
JP3203437B2 (en) Abrasion-resistant plastic molding and method for producing the same
Hood Coating methods for use with the platinum metals
JPH06220638A (en) Formation of carbon coating film
Dabalà et al. Surface hardening of Ti–6Al–4V alloy using combined electroless Ni–B plating and diffusion treatments
US20040175578A1 (en) Method for chemical vapor deposition of silicon on to substrates for use in corrosive and vacuum environments
EP0289432A1 (en) Process for forming at the surface of an aluminium alloy a zone rich in aluminium of at least one of the elements nickel, iron, cobalt
JPH0310076A (en) Method for forming pyrolytic boron nitride film
CN110819989A (en) Surface treatment process for enhancing corrosion resistance of aluminum electrolysis cathode steel bar
JPH0337109A (en) Graphite material