JPH06228742A - Oxide superconducting tape producing heater and production of oxide superconducting tape - Google Patents

Oxide superconducting tape producing heater and production of oxide superconducting tape

Info

Publication number
JPH06228742A
JPH06228742A JP5016637A JP1663793A JPH06228742A JP H06228742 A JPH06228742 A JP H06228742A JP 5016637 A JP5016637 A JP 5016637A JP 1663793 A JP1663793 A JP 1663793A JP H06228742 A JPH06228742 A JP H06228742A
Authority
JP
Japan
Prior art keywords
base material
coil portion
coil
heater
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5016637A
Other languages
Japanese (ja)
Other versions
JP3428054B2 (en
Inventor
Kazunori Onabe
和憲 尾鍋
Nobuyuki Sadakata
伸行 定方
Takashi Saito
隆 斉藤
Tsukasa Kono
宰 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP01663793A priority Critical patent/JP3428054B2/en
Publication of JPH06228742A publication Critical patent/JPH06228742A/en
Application granted granted Critical
Publication of JP3428054B2 publication Critical patent/JP3428054B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Abstract

PURPOSE:To provide a heater for producing a large-sized oxide superconducting tape and the method therefor. CONSTITUTION:A heater 5 is provided in a vacuum chamber to form the thin film of the precursor of an oxide superconducting layer on a substrate to heat a tape-shaped substrate passing on the heater. The heater 5 consists of a heating coil 7 and a case 6 enclosing the coil 7. The coil 7 is formed with a coil 8 on the inlet side of the substrate, a coil 10 on the outlet side of the substrate and a central coil 9 connecting the coils 8 and 10, and the coils 8 and 10 are more coarsely wound than the central coil 9. Consequently, the precursor thin film is heated with an almost ideal temp. gradient.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、数m〜数kmオーダー
の長尺の酸化物超電導テープを製造する方法に用いる加
熱ヒータおよび酸化物超電導テープの製造方法に関する
もので、この種の超電導テープは、電力輸送用、超電導
マグネット用、超電導エネルギー貯蔵用などの分野で応
用開発が進められているものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heater and a method for producing an oxide superconducting tape used in a method for producing a long oxide superconducting tape of the order of several m to several km. Is being applied and developed in fields such as power transportation, superconducting magnets, and superconducting energy storage.

【0002】[0002]

【従来の技術】酸化物超電導体は、液体窒素温度を超え
る臨界温度を示す優れた超電導体であるが、この酸化物
超電導体を前記のような実用的な超電導体として使用す
るためには、酸化物超電導体の結晶配向性を揃えて臨界
電流密度の高いものを得る必要がある。即ち、酸化物超
電導体は、その結晶構造の特定の方向に電気を流し易
く、特定の方向に電気を流しにくい性質があるために、
できるだけ結晶配向性の良好な酸化物超電導体を製造す
る必要がある。また、酸化物超電導体は、その組成が規
定の組成から多少でも外れたり、微量の不純物を含むよ
うであると、臨界電流密度が低下する傾向がある。そこ
で従来、基板や金属テープなどの基材上に、結晶配向性
が良好で組成が整った酸化物超電導層を形成するため
に、種々の手段が試みられている。その1つの方法とし
て、酸化物超電導体と結晶構造の類似したMgO、ある
いはSrTiO3などの単結晶基材を用い、これらの単
結晶基材上にスパッタリングやレーザ蒸着法などの成膜
法により酸化物超電導体の前駆体薄膜を形成し、これを
熱処理して酸化物超電導層を形成する方法が実施されて
いる。
2. Description of the Related Art Oxide superconductors are excellent superconductors exhibiting a critical temperature exceeding liquid nitrogen temperature. In order to use this oxide superconductor as a practical superconductor as described above, It is necessary to obtain an oxide superconductor having a high critical current density by aligning the crystal orientations. That is, since the oxide superconductor has the property of easily passing electricity in a specific direction of its crystal structure and having difficulty in passing electricity in a specific direction,
It is necessary to manufacture an oxide superconductor having crystal orientation as good as possible. Further, when the composition of the oxide superconductor deviates from the specified composition to some extent or when a slight amount of impurities are included, the critical current density tends to decrease. Therefore, various means have heretofore been attempted in order to form an oxide superconducting layer having a good crystal orientation and a well-defined composition on a substrate such as a substrate or a metal tape. As one of the methods, a single crystal base material such as MgO or SrTiO 3 having a crystal structure similar to that of the oxide superconductor is used, and the single crystal base material is oxidized by a film forming method such as sputtering or laser deposition method. A method of forming a precursor thin film of a semiconductor superconductor and heat treating the precursor thin film to form an oxide superconducting layer is practiced.

【0003】前記MgOやSrTiO3などの単結晶材
料の基材上に成膜法により酸化物超電導層を形成するな
らば、基材の結晶に整合するように酸化物超電導層が生
成するので、結晶の配向性を良好にできるとともに薄膜
の組成を揃えることができるので、臨界電流密度の高い
酸化物超電導層を得ることができる。ところが、前述の
実用的な使用目的を考慮して長尺の酸化物超電導体を得
るためには、前記単結晶の基材ではなく、金属製のテー
プ状の基材上に、成膜法により酸化物超電導層を形成し
て長尺の超電導体を製造する必要がある。そして、この
ように長尺テープ状の基材上に酸化物超電導層を形成す
るためには、基材上に酸化物超電導体の前駆体薄膜を形
成した後に、酸素存在雰囲気中において700〜750
℃で前駆体薄膜を加熱して薄膜の結晶構造を整えるとと
もに、前駆体薄膜中に十分な量の酸素を供給する必要が
ある。
If an oxide superconducting layer is formed on a base material of a single crystal material such as MgO or SrTiO 3 by a film forming method, the oxide superconducting layer is formed so as to match the crystal of the base material. Since the crystal orientation can be improved and the thin film composition can be made uniform, an oxide superconducting layer having a high critical current density can be obtained. However, in order to obtain a long oxide superconductor in consideration of the above practical use purpose, a film-forming method is used on a metal tape-shaped substrate instead of the single-crystal substrate. It is necessary to form an oxide superconducting layer to manufacture a long superconductor. Then, in order to form the oxide superconducting layer on the long tape-shaped substrate in this manner, after forming a precursor thin film of the oxide superconductor on the substrate, 700 to 750 in an oxygen existing atmosphere.
It is necessary to heat the precursor thin film at ℃ to adjust the crystal structure of the thin film and to supply a sufficient amount of oxygen into the precursor thin film.

【0004】図4、図5(a)は、酸化物超電導体製造
用のスパッタリング装置やレーザ蒸着装置などの成膜装
置に備えられる真空チャンバの内部に設けられ、前記の
ようなテープ状の基材と前駆体薄膜を加熱するための加
熱ヒータの一構造例を示す。この加熱ヒータ1は、金属
などの熱伝導体からなるケース体の内部に電熱コイルを
備えてなり、成膜装置の真空チャンバの内底部に固定さ
れているものであって、その上面に対してテープ状の基
材2を順次送り込むことができるように、また、その上
面から基材2を順次引き取ることができるように、ヒー
タ1の両側には図示略のテープ状基材の送出装置と巻取
装置が備えられている。また、加熱ヒータ1の上方に
は、スパッタリング装置のターゲットやレーザ蒸着装置
のターゲットが設けられていて、これらのターゲットか
ら発生させられた粒子を加熱ヒータ1上の基材2の上面
に順次堆積させて酸化物超電導体の前駆体薄膜を形成で
きるようになっている。
FIG. 4 and FIG. 5 (a) are provided inside a vacuum chamber provided in a film forming apparatus such as a sputtering apparatus or a laser deposition apparatus for producing an oxide superconductor, and the tape-shaped substrate as described above. A structural example of a heater for heating a material and a precursor thin film is shown. This heater 1 is provided with an electrothermal coil inside a case body made of a heat conductor such as metal, and is fixed to the inner bottom of a vacuum chamber of a film forming apparatus. In order that the tape-shaped base material 2 can be sequentially fed and the base material 2 can be sequentially drawn from the upper surface thereof, a tape-shaped base material feeding device (not shown) and a winding device are provided on both sides of the heater 1. A take-up device is provided. A target of a sputtering apparatus and a target of a laser vapor deposition apparatus are provided above the heater 1, and particles generated from these targets are sequentially deposited on the upper surface of the base material 2 on the heater 1. It is possible to form a precursor thin film of an oxide superconductor.

【0005】[0005]

【発明が解決しようとする課題】前記構成の装置におい
ては、加熱ヒータ1の上面側で基材2を移動させながら
基材2の上面に前駆体薄膜を形成し、同時に、加熱ヒー
タ1により基材2と前駆体薄膜とを加熱できるようにな
っている。しかしながら、このような加熱ヒータ1で前
駆体薄膜の加熱を行なうと、基材2が加熱ヒータ1の端
部に到達した時点で基材2が急激に加熱されるととも
に、基材2が加熱ヒータ1から離れる時点で基材2が急
激に冷却されることになる。このような加熱冷却状態に
おける基材の温度分布を図5(b)に示す。
In the apparatus having the above-mentioned structure, the precursor thin film is formed on the upper surface of the base material 2 while moving the base material 2 on the upper surface side of the heater 1, and at the same time, the base material is heated by the heater 1. The material 2 and the precursor thin film can be heated. However, when the precursor thin film is heated by such a heater 1, the base material 2 is rapidly heated when the base material 2 reaches the end portion of the heater 1, and the base material 2 is heated by the heater. The substrate 2 is rapidly cooled when the substrate 2 is separated from 1. FIG. 5B shows the temperature distribution of the base material in such a heating and cooling state.

【0006】図5(b)においては、図5(a)に示す
電熱コイル3を備えた加熱ヒータ1の断面位置と、加熱
ヒータ1の温度分布と、基材2の表面温度分布のそれぞ
れの関係を図示したものである。基材2の表面温度は、
基材2の上面に熱電対4を設置し、基材2とともにこの
熱電対4を移動させて温度を測定した際に得られた数値
である。図5(b)に示す結果から明らかなように、基
材2が加熱ヒータ1に到達したA地点の手前側における
基材2の温度変化は急激であり、基材2が加熱ヒータ1
から離れるB地点の後方側の基材2の温度変化も急激で
ある。
In FIG. 5B, the cross-sectional position of the heater 1 having the electrothermal coil 3 shown in FIG. 5A, the temperature distribution of the heater 1 and the surface temperature distribution of the substrate 2 are shown. The relationship is illustrated. The surface temperature of the base material 2 is
It is a numerical value obtained when the thermocouple 4 was installed on the upper surface of the base material 2 and the temperature was measured by moving the thermocouple 4 together with the base material 2. As is clear from the result shown in FIG. 5B, the temperature change of the base material 2 on the front side of the point A where the base material 2 reaches the heater 1 is rapid, and the base material 2 is the heater 1.
The temperature change of the base material 2 on the rear side of the point B away from is also rapid.

【0007】従って、基材2の移動過程において、加熱
ヒータ1の中央部上面のC地点においてスパッタリング
や蒸着により形成された前駆体薄膜が、B地点から急激
に冷却されるわけであるが、この場合、酸素が前駆体薄
膜中に十分に取り込まれないうちに前駆体薄膜が冷却さ
れてしまうと、酸素が必要以上に欠損した組成を有し、
非晶質部分の多い結晶性の不良な酸化物超電導体の前駆
体薄膜が生成されてしまうことになり、良好な臨界電流
密度を発揮する酸化物超電導体を得ることができない問
題がある。また、基材2と前駆体薄膜の熱膨張係数が異
なる場合、両者を急激に冷却すると、両者間に熱応力を
生じ、前駆体薄膜にクラックを生じる問題があり、この
場合に臨界電流密度の高い酸化物超電導体を得ることが
できない問題があった。
Therefore, in the process of moving the substrate 2, the precursor thin film formed by sputtering or vapor deposition at the point C on the upper surface of the central portion of the heater 1 is rapidly cooled from the point B. In this case, if the precursor thin film is cooled before oxygen is sufficiently incorporated into the precursor thin film, oxygen has a composition in which oxygen is deficient more than necessary,
Since a precursor thin film of an oxide superconductor having many amorphous parts and poor crystallinity is generated, there is a problem that an oxide superconductor exhibiting a good critical current density cannot be obtained. Further, when the base material 2 and the precursor thin film have different coefficients of thermal expansion, when both are rapidly cooled, there is a problem that thermal stress is generated between them and cracks occur in the precursor thin film. There was a problem that a high oxide superconductor could not be obtained.

【0008】なお、このような急激な冷却の問題は、基
材2の移動速度を上げるほど顕著であるので、基材の移
動速度を上げることができなくなり、酸化物超電導体の
生産性が低下する問題がある。また、このような酸素欠
損量の多い前駆体薄膜は、例え、この後に酸素ガス雰囲
気中において500℃で2時間程度加熱する熱処理を施
しても、高い臨界電流密度を有する酸化物超電導体を得
ることはできず、例えば、1×102〜103程度の低い
臨界電流密度を示す酸化物超電導体しか得られない問題
がある。
Since such a rapid cooling problem becomes more remarkable as the moving speed of the base material 2 increases, it becomes impossible to increase the moving speed of the base material, and the productivity of the oxide superconductor decreases. I have a problem to do. Further, such a precursor thin film having a large amount of oxygen deficiency can obtain an oxide superconductor having a high critical current density even if a heat treatment of heating at 500 ° C. for about 2 hours in an oxygen gas atmosphere is performed thereafter. However, there is a problem that only an oxide superconductor having a low critical current density of about 1 × 10 2 to 10 3 can be obtained.

【0009】ところで本発明者らは、固定された基板上
に成膜法によって酸化物超電導体の前駆体薄膜を形成
し、それを熱処理して酸化物超電導体を製造する実験を
種々試みているが、これらの種々の実験結果から、YB
aCuO系の酸化物超電導体の前駆体薄膜を成膜する時
に採用する加熱条件として、図6に示す条件が好ましい
ことを知見している。即ち、図6に示すように基板を常
温から加熱ヒータで加熱する場合の昇温速度を+10K
〜+20K/分に設定し、所定の成膜温度になった時点
で成膜を開始し、成膜後は降温速度を−10K/分に設
定する加熱冷却条件に設定すれば、特性の優れた超電導
薄膜が得られる。
By the way, the inventors of the present invention have made various experiments to form a precursor thin film of an oxide superconductor on a fixed substrate by a film forming method and heat-treat the precursor thin film. However, from these various experimental results, YB
It has been found that the heating condition adopted when forming the precursor thin film of the aCuO-based oxide superconductor is preferably the condition shown in FIG. That is, as shown in FIG. 6, the temperature rising rate when the substrate is heated from room temperature by the heater is + 10K.
If the heating and cooling conditions are set such that the temperature is set to +20 K / min, the film formation is started when the temperature reaches a predetermined film formation temperature, and the temperature lowering rate is set to -10 K / min after the film formation, excellent characteristics can be obtained. A superconducting thin film can be obtained.

【0010】本発明は前記事情に鑑みてなされたもので
あり、基材上にスパッタリングやレーザ蒸着法などの成
膜法により酸化物超電導体の前駆体薄膜を形成する際
に、前駆体薄膜に急激な温度変化を与えることなく、前
駆体薄膜を理想に近い温度勾配で加熱冷却できる加熱ヒ
ータを提供することと、前駆体薄膜を理想に近い温度勾
配で加熱できて良好な臨界電流密度を示す酸化物超電導
テープを得ることができる方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and when a precursor thin film of an oxide superconductor is formed on a substrate by a film forming method such as sputtering or laser deposition, the precursor thin film is formed. To provide a heater that can heat and cool the precursor thin film with a temperature gradient close to the ideal without giving a sudden temperature change, and to heat the precursor thin film with a temperature gradient close to the ideal, showing a good critical current density. It is an object to provide a method by which an oxide superconducting tape can be obtained.

【0011】[0011]

【課題を解決するための手段】請求項1記載の発明は前
記課題を解決するために、基材上に酸化物超電導層の前
駆体薄膜を成膜法により形成するための真空チャンバの
内部に設けられて上方を通過するテープ状の基材を加熱
する加熱ヒータにおいて、前記加熱ヒータが、加熱コイ
ルとこの加熱コイルを囲むケース体とからなり、前記加
熱コイルが、テープ状の基材の導配入側の導入コイル部
と、テープ状の基材の導出側の導出コイル部と、前記導
入コイル部と導出コイル部とを接続する中央コイル部と
からなり、前記導入側コイル部と導出側コイル部のコイ
ルがいずれも中央コイル部のコイルよりも疎になるよう
に巻回されてなることを特徴とするものである。
In order to solve the above problems, the present invention provides a vacuum chamber for forming a precursor thin film of an oxide superconducting layer on a substrate by a film forming method. In a heater for heating a tape-shaped substrate that is provided and passes above, the heater includes a heating coil and a case body surrounding the heating coil, and the heating coil is configured to guide the tape-shaped substrate. The introduction side coil portion on the distribution side, the derivation coil portion on the derivation side of the tape-shaped substrate, and the central coil portion connecting the introduction coil portion and the derivation coil portion, and the introduction side coil portion and the derivation side. All of the coils of the coil section are wound so as to be sparser than the coils of the central coil section.

【0012】請求項2記載の発明は前記課題を解決する
ために、導入コイル部の発熱量が、導入コイル部の上方
を通過するテープ状の基材を+10K〜+20K/分の
割合で昇温する強さに設定され、中央コイル部の発熱量
が、中央コイル部の上方を通過する基材を所定の成膜温
度に加熱する発熱量に設定され、導出コイル部の発熱量
が、導出コイルの上方を通過する基材を−10K/分の
割合で降温する強さに設定されてなるものである。
In order to solve the above-mentioned problems, the heat generation amount of the introducing coil portion is increased at a rate of + 10K to + 20K / min for the tape-shaped substrate passing above the introducing coil portion. The heat generation amount of the central coil portion is set to the heat generation amount that heats the substrate passing above the central coil portion to a predetermined film forming temperature, and the heat generation amount of the derivation coil portion is set to The strength is set such that the temperature of the base material passing above is lowered at a rate of -10 K / min.

【0013】請求項3記載の発明は前記課題を解決する
ために、コイルが疎に巻回された導入コイル部および導
出コイル部と、コイルが密に巻回された中央コイル部と
からなる加熱コイルを用い、この加熱コイルを真空チャ
ンバの内部に設置し、この加熱コイルの上方でテープ状
の基材を移動させ、中央コイル部の上方を通過する基材
を成膜時に望まれる所定の成膜温度に、導入コイル部と
導出コイル部の上方を通過する基材を前記規定温度より
も低い温度に加熱しながら中央コイル部の上方の基材に
酸化物超電導層の前駆体薄膜を形成するものである。
In order to solve the above-mentioned problems, the invention as set forth in claim 3 comprises heating including an introducing coil part and an extracting coil part in which coils are loosely wound, and a central coil part in which coils are tightly wound. A coil is used and the heating coil is installed inside the vacuum chamber, the tape-shaped substrate is moved above the heating coil, and the substrate passing above the central coil portion is formed in a predetermined shape desired at the time of film formation. A precursor thin film of the oxide superconducting layer is formed on the base material above the central coil portion while heating the base material passing above the introduction coil portion and the extraction coil portion to a temperature lower than the specified temperature at the film temperature. It is a thing.

【0014】請求項4記載の発明は前記課題を解決する
ために、移動中の基材を前記加熱コイルの導入コイル部
により、+10K〜+20K/分の割合で昇温し、移動
中の基材を前記中央コイル部により所定の成膜温度に加
熱し、移動中の基材を前記導出コイル部により−10K
/分の割合で降温するものである。
In order to solve the above-mentioned problems, the invention according to claim 4 raises the temperature of the moving base material at a rate of + 10K to + 20K / min by the introduction coil portion of the heating coil, and moves the moving base material. Is heated to a predetermined film forming temperature by the central coil section, and the moving base material is -10 K by the lead-out coil section.
The temperature is lowered at a rate of / minute.

【0015】[0015]

【作用】本発明に係る加熱ヒータは、加熱コイルを中央
コイル部で密に、その他の導入コイル部と導出コイル部
で疎に形成してあり、中央コイル部での発熱量を多く、
導入コイル部と導出コイル部での発熱量を中央コイル部
よりも少なくできるので、基材を加熱する場合に徐々に
加熱し、基材と前駆体薄膜を冷却する場合に徐冷するこ
とができ、酸化物超電導体の前駆体薄膜製造用として所
望の温度勾配が得られる。その際の温度勾配として、昇
温時は+10K〜+20K/分の割合が好ましく、徐冷
時は−10K/分の割合が好ましい。また、中央コイル
部で所定の成膜温度に加熱された基材と、その基材上に
形成された前駆体薄膜は、導出コイル部で徐々に降温さ
れて徐冷されるので、基材上に形成された前駆体薄膜は
雰囲気中の酸素を十分に取り込むことができる。よって
前駆体薄膜中に所望量の酸素を供給することができ、結
晶性の良好な特性の優れた酸化物超電導体の前駆体薄膜
の生成が可能になる。
In the heater according to the present invention, the heating coil is densely formed in the central coil portion and sparsely formed in the other introduction coil portion and the derivation coil portion, and a large amount of heat is generated in the central coil portion.
Since the amount of heat generated in the introduction coil part and the derivation coil part can be made smaller than that in the central coil part, it can be gradually heated when heating the base material and gradually cooled when cooling the base material and the precursor thin film. A desired temperature gradient can be obtained for producing a precursor thin film of an oxide superconductor. As the temperature gradient at that time, a rate of +10 K to +20 K / min is preferable when the temperature is raised, and a rate of -10 K / min is preferable when the cooling is slow. In addition, since the base material heated to a predetermined film forming temperature in the central coil portion and the precursor thin film formed on the base material are gradually cooled and gradually cooled in the lead-out coil portion, The precursor thin film formed in 1 can sufficiently take in oxygen in the atmosphere. Therefore, a desired amount of oxygen can be supplied into the precursor thin film, and the precursor thin film of the oxide superconductor having good crystallinity and excellent characteristics can be produced.

【0016】更に、基材の送り速度が速い場合は、加熱
ヒータの全長を調整し、導入コイル部と中央コイル部と
導出コイル部の長さを長く調整することで基材の送り速
度の上昇に容易に対応できる。更に、導入コイル部と中
央コイル部と導出コイル部の長さを調整して設計するこ
とにより、種々の基材の送り速度に容易に対応できるよ
うになる。具体的な昇温条件と降温条件としては、移動
中の基材を前記加熱コイルの導入コイル部により、+1
0K〜+20K/分の割合で昇温し、移動中の基材を前
記中央コイル部により所定の成膜温度に加熱し、移動中
の基材を前記導出コイル部により−10K/分の割合で
降温することが好ましい。
Further, when the feeding speed of the substrate is high, the feeding speed of the substrate is increased by adjusting the total length of the heater and adjusting the lengths of the introduction coil portion, the central coil portion and the derivation coil portion. Can be easily dealt with. Furthermore, by adjusting and designing the lengths of the introduction coil portion, the central coil portion, and the extraction coil portion, it becomes possible to easily cope with various feeding speeds of the base material. As a specific temperature raising condition and temperature lowering condition, the moving base material is set to +1 by the introduction coil portion of the heating coil.
The temperature is raised at a rate of 0 K to +20 K / min, the moving base material is heated to a predetermined film forming temperature by the central coil section, and the moving base material is set at a rate of -10 K / minute by the lead-out coil section. It is preferable to lower the temperature.

【0017】[0017]

【実施例】以下、図面を参照して本発明の実施例につい
て説明する。図1(a)は、酸化物超電導体製造用のレ
ーザ蒸着装置やスパッタリング装置などの成膜装置の真
空チャンバの内部に設置される本発明に係る加熱ヒータ
の一例を示している。なお、前記成膜装置の真空チャン
バは真空排気装置に接続されて内部を減圧雰囲気にでき
るようになっているとともに、酸素ガス供給源に接続さ
れていて減圧雰囲気下に所望量の酸素ガスを供給できる
ようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 (a) shows an example of a heater according to the present invention installed inside a vacuum chamber of a film forming apparatus such as a laser vapor deposition apparatus or a sputtering apparatus for producing an oxide superconductor. The vacuum chamber of the film forming apparatus is connected to a vacuum exhaust device so that a reduced pressure atmosphere can be created inside, and is connected to an oxygen gas supply source to supply a desired amount of oxygen gas under the reduced pressure atmosphere. You can do it.

【0018】この例の加熱ヒータ5は、横長のもので、
全体を覆う横長のケース体6の内部に、加熱コイル7が
収納されてなるものである。前記ケース体6は、金属な
どの熱伝導体からなり、加熱コイル7が発生させた熱を
上方に均一に放射するものである。前記加熱コイル7
は、電熱体からなり、通電により発熱するもので、図1
(a)の右側から順に、導入コイル部8と中央コイル部
9と導出コイル部10とからなり、各コイル部におい
て、中央コイル部10のコイルが密に巻かれ、導入コイ
ル部8のコイルと導出コイル部10のコイルとが、中央
コイル部10のコイルよりも疎に巻回されている。
The heater 5 in this example is a horizontally long heater,
A heating coil 7 is housed inside a horizontally long case body 6 that covers the entire body. The case body 6 is made of a heat conductor such as metal, and radiates the heat generated by the heating coil 7 uniformly upward. The heating coil 7
Is composed of an electric heating element and generates heat when energized.
In order from the right side of (a), it is composed of an introduction coil portion 8, a central coil portion 9, and a derivation coil portion 10. In each coil portion, the coil of the central coil portion 10 is densely wound to form a coil of the introduction coil portion 8. The coil of the lead-out coil section 10 is wound more sparsely than the coil of the central coil section 10.

【0019】前記加熱ヒータ5の上方には、テープ状の
基材11が図1(a)の右側から左側に向けてケース体
6の上面を平行移動されるようになっている。この基材
11としては、ハステロイや貴金属などからなる金属テ
ープを用いても良く、更には、金属テープの上に中間層
としてのYSZ(イットリウム安定化ジルコニア)層や
MgO層などを被覆したものを用いても良い。更に、基
材11の移動機構としては、加熱ヒータ5の右側方にテ
ープ状の基材11の送出装置が設けられ、加熱ヒータ5
の左側方にテープ状の基材11の巻取装置が設けられて
いて、前記送出装置から巻取装置側に基材11を送り出
して移動できるようになっているためである。また、基
材11の上面には温度測定用の熱電対12が設置されて
いる。
Above the heater 5, a tape-shaped base material 11 is adapted to be moved in parallel on the upper surface of the case body 6 from the right side to the left side in FIG. 1 (a). As the base material 11, a metal tape made of Hastelloy, a noble metal or the like may be used, and a metal tape coated with an YSZ (yttrium-stabilized zirconia) layer or an MgO layer as an intermediate layer may be used. You may use. Further, as a moving mechanism of the base material 11, a tape-shaped base material 11 delivery device is provided on the right side of the heater 5.
This is because a tape-shaped winding device for the base material 11 is provided on the left side, and the base material 11 can be sent out from the delivery device to the winding device side and moved. A thermocouple 12 for temperature measurement is installed on the upper surface of the base material 11.

【0020】前記構成の加熱コイル7に通電して加熱コ
イル7によりその上方空間を加熱するとともに、基材1
1を加熱コイル7上で移動させると、基材11が加熱コ
イル7により加熱される。ここで導入コイル部8と導出
コイル部10はコイルが疎に巻回され、中央コイル部1
0はコイルが密に巻回されているので、加熱コイル7の
長手方向中央側の発熱能力は高く、その両側の発熱能力
は低くなっている。従って基材11が加熱コイル7の導
入コイル部8に接近すると、基材は徐々に加熱されて緩
やかに温度が上昇する。そして導入コイル部8側から中
央コイル部10側に基材11が移動すると、基材11は
強く熱されるので基材11は所定の成膜温度まで上昇さ
せられてその温度で維持される。
The heating coil 7 having the above-mentioned structure is energized to heat the space above it by the heating coil 7, and the substrate 1
When 1 is moved on the heating coil 7, the base material 11 is heated by the heating coil 7. Here, the introduction coil portion 8 and the derivation coil portion 10 are coiled loosely, and the central coil portion 1
In 0, since the coil is wound tightly, the heating capacity of the heating coil 7 on the center side in the longitudinal direction is high and the heating capacity of both sides thereof is low. Therefore, when the base material 11 approaches the introduction coil portion 8 of the heating coil 7, the base material is gradually heated and the temperature gradually rises. When the base material 11 moves from the introduction coil portion 8 side to the central coil portion 10 side, the base material 11 is heated strongly, so that the base material 11 is raised to a predetermined film forming temperature and maintained at that temperature.

【0021】ここで真空チャンバの内部に設けられたス
パッタリングターゲットあるいはレーザ蒸着用ターゲッ
トなどから発生させた粒子を飛ばすことにより基材11
上に酸化物超電導体の前駆体薄膜を成膜する。次に、基
材11が導出コイル部10側に移動すると前駆体薄膜は
導出コイル部10により緩やかに加熱されるので、温度
が徐々に低下して徐冷されてゆく。図1(b)に、前記
加熱ヒータ5によって加熱し徐冷される基材11の温度
変化状態を示すが、基材11は緩やかに昇温された後で
所定の成膜温度に加熱され、次いで再び緩やかに徐冷さ
れる。この加熱冷却の際には、移動中の基材11を前記
加熱コイル7の導入コイル部8により、+10K〜+2
0K/分の割合で昇温し、移動中の基材11を前記中央
コイル部9により700〜750℃に加熱し、移動中の
基材11と前駆体薄膜を前記導出コイル部10により−
10K/分の割合で降温することが好ましい。
Here, the base material 11 is produced by ejecting particles generated from a sputtering target or a laser deposition target provided inside the vacuum chamber.
A precursor thin film of an oxide superconductor is formed thereon. Next, when the base material 11 moves to the lead-out coil portion 10 side, the precursor thin film is gently heated by the lead-out coil portion 10, so that the temperature gradually decreases and is gradually cooled. FIG. 1B shows a temperature change state of the substrate 11 which is heated by the heater 5 and gradually cooled. The substrate 11 is gradually heated and then heated to a predetermined film forming temperature, Then, it is slowly cooled again. During this heating and cooling, the moving base material 11 is moved to + 10K to +2 by the introduction coil portion 8 of the heating coil 7.
The temperature is raised at a rate of 0 K / min, the moving base material 11 is heated to 700 to 750 ° C. by the central coil portion 9, and the moving base material 11 and the precursor thin film are moved by the derivation coil portion 10.
It is preferable to lower the temperature at a rate of 10 K / min.

【0022】以上のように前駆体薄膜を加熱処理できる
ので、前駆体薄膜中に雰囲気中の酸素を十分に取り込ま
せることができ、組成の整った結晶性の良好な前駆体薄
膜を得ることができる。また、基材11と酸化物超電導
体の前駆体薄膜との熱膨張係数が異なる場合は、両者を
急冷すると両者の間に熱応力を生じて前駆体薄膜にクラ
ックを生じるおそれがあるが、前述のように基材11と
前駆体薄膜を徐冷することにより熱応力の問題も少なく
することができる。そして、この前駆体薄膜に対して更
に酸素雰囲気中において熱処理を施すことにより超電導
薄膜を得ることができる。
Since the precursor thin film can be heat-treated as described above, oxygen in the atmosphere can be sufficiently taken into the precursor thin film, and a precursor thin film having a well-defined composition and good crystallinity can be obtained. it can. Further, when the base material 11 and the precursor thin film of the oxide superconductor have different thermal expansion coefficients, rapid cooling of both may cause thermal stress between the two to cause cracks in the precursor thin film. By gradually cooling the base material 11 and the precursor thin film as described above, the problem of thermal stress can be reduced. Then, the precursor thin film is further heat-treated in an oxygen atmosphere to obtain a superconducting thin film.

【0023】なお、前記構造の加熱コイル7において、
基材11を徐々に加熱して徐冷するためには、導入コイ
ル部8と導出コイル部10それぞれを中央コイル部9よ
りも長く形成することが好ましい。そして、これらのコ
イル部8、10の長さを基材11の送り速度に対応させ
て適宜変更するならば、常に基材11を好適な加熱徐冷
条件とすることができ、種々の基材送り速度に容易に対
応することができる。
In the heating coil 7 having the above structure,
In order to gradually heat and gradually cool the base material 11, it is preferable to form each of the introducing coil portion 8 and the extracting coil portion 10 longer than the central coil portion 9. Then, if the lengths of these coil portions 8 and 10 are appropriately changed in accordance with the feeding speed of the base material 11, the base material 11 can always be under suitable heating / slow cooling conditions, and various base materials can be used. The feed rate can be easily adjusted.

【0024】図2は前記の構造の加熱ヒータ5を備えた
酸化物超電導薄膜形成用のレーザ蒸着装置の一例を示す
ものである。この例のレーザ蒸着装置20は、処理容器
21を有し、この処理容器21の内部の蒸着処理室22
に、基材11とターゲット23を設置できるようになっ
ている。即ち、蒸着処理室22の底部には、基台24が
設けられ、この基台24の上部に加熱ヒータ5が設けら
れ、その上方において基材11を水平状態で移動できる
ようになっているとともに、加熱ヒータ5の斜め上方に
支持ホルダ26によって支持されたターゲット23が傾
斜状態で設けられている。処理容器21は、排気孔27
を介して図示略の真空排気装置に接続されて内部を減圧
できるようになっている。
FIG. 2 shows an example of a laser vapor deposition apparatus for forming an oxide superconducting thin film, which is provided with the heater 5 having the above structure. The laser vapor deposition apparatus 20 of this example has a processing container 21, and a vapor deposition processing chamber 22 inside the processing container 21.
In addition, the base material 11 and the target 23 can be installed. That is, the base 24 is provided at the bottom of the vapor deposition processing chamber 22, and the heater 5 is provided above the base 24 so that the substrate 11 can be moved horizontally above the heater 5. A target 23 supported by a support holder 26 is provided obliquely above the heater 5. The processing container 21 has an exhaust hole 27.
It is connected to a vacuum exhaust device (not shown) via the so that the inside pressure can be reduced.

【0025】前記ターゲット23は、形成しようとする
酸化物超電導薄膜と同等または近似した組成、あるい
は、成膜中に逃避しやすい成分を多く含有させた複合酸
化物の焼結体あるいは酸化物超電導体などの板体からな
っている。前記基台24は加熱ヒータ5を支持するもの
であり、この加熱ヒータ5は、先の例で説明したよう
に、導入コイル部8と中央コイル部9と導出コイル部1
0とからなり、基材11を前述のように所望の温度に緩
やかに加熱するとともに降温して徐冷できるようになっ
ている。勿論その際の加熱冷却条件は、移動中の基材1
1を加熱コイル7の導入コイル部8により、+10K〜
+20K/分の割合で昇温し、移動中の基材11を前記
中央コイル部9により700〜750℃に加熱し、移動
中の基材11と前駆体薄膜を前記導出コイル部10によ
り−10K/分の割合で降温することが好ましいので、
各コイル部8、9、10の発熱量を基材11の移動速度
に合わせて適宜設定するものとする。
The target 23 has a composition similar to or similar to that of the oxide superconducting thin film to be formed, or a composite oxide sintered body or oxide superconductor containing a large amount of components that easily escape during film formation. It consists of a plate such as. The base 24 supports the heater 5, and the heater 5 has the introduction coil portion 8, the central coil portion 9, and the derivation coil portion 1 as described in the previous example.
0, the base material 11 can be gently heated to a desired temperature as described above, and can be cooled to be gradually cooled. Of course, the heating and cooling conditions at that time are as follows:
1 by the introduction coil portion 8 of the heating coil 7 + 10K ~
The temperature is raised at a rate of +20 K / min, the moving base material 11 is heated to 700 to 750 ° C. by the central coil portion 9, and the moving base material 11 and the precursor thin film are moved to −10 K by the derivation coil portion 10. Since it is preferable to lower the temperature at a rate of / minute,
The calorific value of each coil portion 8, 9, 10 is appropriately set according to the moving speed of the base material 11.

【0026】一方、処理容器21の側方には、レーザ発
光装置28と第1反射鏡29と集光レンズ30と第2反
射鏡31とが設けられ、レーザ発光装置28が発生させ
たレーザビームを処理容器21の側壁に取り付けられた
透明窓32を介してターゲット23に集光照射できるよ
うになっている。レーザ発光装置20はターゲット23
から構成粒子をえぐり出すか蒸発させることができるも
のであれば、YAGレーザ、CO2レーザ、エキシマレ
ーザなどのいずれのものを用いても良い。
On the other hand, a laser emitting device 28, a first reflecting mirror 29, a condenser lens 30, and a second reflecting mirror 31 are provided on the side of the processing container 21, and a laser beam generated by the laser emitting device 28 is provided. The target 23 can be focused and irradiated through the transparent window 32 attached to the side wall of the processing container 21. The laser emitting device 20 is a target 23.
Any of YAG laser, CO 2 laser, excimer laser, etc. may be used as long as the constituent particles can be scooped out or evaporated.

【0027】また、図2の加熱ヒータ5の右側にはテー
プ状の基材11を繰り出す送出装置35が設けられると
ともに、加熱ヒータ5の左側にはテープ状の基材11の
巻取装置36が設けられていて、送出装置35から基材
11を加熱ヒータ5の上面側に送り込み、加熱ヒータ5
の上面を通過させた後に、巻取装置36で巻き取ること
ができるようになっている。
A feeding device 35 for feeding the tape-shaped substrate 11 is provided on the right side of the heater 5 in FIG. 2, and a winding device 36 for the tape-shaped substrate 11 is provided on the left side of the heater 5. The heater 11 is provided and sends the base material 11 from the delivery device 35 to the upper surface side of the heater 5.
After passing through the upper surface of, the winding device 36 can wind it.

【0028】次に、基材11上に、中間層としてのYS
Z(イットリウム安定化ジルコニア)などの多結晶薄膜
を形成し、その後に酸化物超電導薄膜を形成する場合に
ついて説明する。基材11上に、中間層としてのYSZ
の多結晶薄膜を形成するには、YSZのターゲットを用
いてスパッタリング装置、あるいは、レーザ蒸着装置に
より基材上に多結晶薄膜を形成する。この多結晶薄膜の
中間層は、それ自身の結晶構造が酸化物超電導体の結晶
構造に類似しているので、結晶整合性を配慮して設ける
とともに、基材11とその上に形成される酸化物超電導
体の前駆体薄膜との元素拡散反応を抑制し、基材11と
前駆体薄膜の熱膨張率の差異に起因する熱応力の解消を
ねらうためのものである。
Next, YS as an intermediate layer is formed on the base material 11.
A case where a polycrystalline thin film such as Z (yttrium-stabilized zirconia) is formed and then an oxide superconducting thin film is formed will be described. YSZ as an intermediate layer on the base material 11
To form the polycrystalline thin film, the polycrystalline thin film is formed on the base material by a sputtering device using a YSZ target or a laser vapor deposition device. Since the intermediate layer of this polycrystalline thin film has a crystal structure similar to that of the oxide superconductor, the intermediate layer is provided in consideration of crystal matching, and at the same time, the base material 11 and the oxide formed on the base material 11 are formed. This is intended to suppress the element diffusion reaction of the precursor superconductor with the precursor thin film, and to eliminate the thermal stress caused by the difference in the coefficient of thermal expansion between the base material 11 and the precursor thin film.

【0029】前記のように基材11上にYSZの多結晶
薄膜を形成したならば、この多結晶薄膜上に酸化物超電
導体の前駆体薄膜を形成する。この前駆体薄膜を多結晶
薄膜上に形成するには、図2に示すレーザ蒸着装置20
を使用する。多結晶薄膜が形成された基材11を図2に
示すレーザ蒸着装置20の送出装置35にセットし、蒸
着処理室22を真空ポンプで減圧する。ここで蒸着処理
室22に酸素ガスを導入して蒸着処理室22を酸素雰囲
気とする。また、送出装置35を作動させて基材11を
加熱ヒータ5の上方側に順次送り出すとともに、加熱ヒ
ータ5を作動させて基材11を所望の温度に加熱する。
After the YSZ polycrystalline thin film is formed on the base material 11 as described above, a precursor thin film of an oxide superconductor is formed on the polycrystalline thin film. In order to form this precursor thin film on the polycrystalline thin film, the laser deposition apparatus 20 shown in FIG. 2 is used.
To use. The substrate 11 on which the polycrystalline thin film is formed is set in the delivery device 35 of the laser vapor deposition device 20 shown in FIG. 2, and the vapor deposition processing chamber 22 is decompressed by a vacuum pump. Here, oxygen gas is introduced into the vapor deposition processing chamber 22 so that the vapor deposition processing chamber 22 has an oxygen atmosphere. Further, the delivery device 35 is operated to sequentially deliver the base material 11 to the upper side of the heater 5, and the heater 5 is operated to heat the base material 11 to a desired temperature.

【0030】次にレーザ発光装置28から発生させたレ
ーザビームを蒸着処理室22のターゲット23に集光照
射する。これによってターゲット23の構成粒子がえぐ
り出されるか蒸発されてその粒子が基材11上の多結晶
薄膜上に堆積する。この粒子の堆積は、加熱ヒータ5の
中央部上方の基材11に対して行なわれる。
Next, the laser beam generated from the laser emitting device 28 is focused and irradiated on the target 23 in the vapor deposition processing chamber 22. As a result, the constituent particles of the target 23 are scooped out or evaporated and the particles are deposited on the polycrystalline thin film on the substrate 11. The deposition of the particles is performed on the base material 11 above the central portion of the heater 5.

【0031】前記基材11は加熱ヒータ5の導入コイル
部8と中央コイル部9と導出コイル部10とによって徐
々に加熱された後で所定の成膜温度に維持され、この成
膜温度において前述のように粒子の堆積が行われて前駆
体薄膜が形成され、次いで徐冷される。従って基材11
上に堆積された前駆体薄膜は前述した好適な加熱条件で
加熱徐冷処理されるので、成膜後に前駆体薄膜中に雰囲
気中の酸素を十分に取り込ませることができる。また、
前述の加熱冷却条件で基材11と前駆体薄膜を熱処理す
るならば、基材11と前駆体薄膜の間に生じる熱応力を
少なくすることもできるので、前駆体薄膜に負荷される
熱応力も少なくすることができ、クラックを生じさせる
こともない。よってこの前駆体薄膜を熱処理するなら
ば、良好な超電導特性を発揮する超電導層を備えた酸化
物超電導体を製造することができる。
The base material 11 is gradually heated by the introduction coil portion 8, the central coil portion 9 and the extraction coil portion 10 of the heater 5 and then maintained at a predetermined film forming temperature. Particles are deposited as described above to form a precursor thin film, and then slowly cooled. Therefore, the base material 11
Since the precursor thin film deposited above is heated and gradually cooled under the above-mentioned suitable heating conditions, oxygen in the atmosphere can be sufficiently taken into the precursor thin film after the film formation. Also,
If the base material 11 and the precursor thin film are heat-treated under the heating and cooling conditions described above, the thermal stress generated between the base material 11 and the precursor thin film can be reduced, so that the thermal stress applied to the precursor thin film is also reduced. It can be reduced, and cracks are not generated. Therefore, if this precursor thin film is heat-treated, an oxide superconductor having a superconducting layer exhibiting good superconducting properties can be manufactured.

【0032】(製造例)図3(a)に示すように、横長
形状であって、全長aが350mm、導入コイル部の長
さbが150mm、中央コイル部の長さcが50mm、
導出コイル部の長さdが150mmであって、構成材料
がPtからなる加熱コイルを作成した。この加熱コイル
を覆うケース体は、構成材料がインコネルからなるもの
である。この加熱ヒータを図2に示すレーザ蒸着装置の
真空チャンバに収納し、加熱ヒータの上でハステロイか
らなる基材を150mm/時間の速度で移動させた。そ
して、基材上面に設置した熱電対で基材の温度を計測し
た結果を図3(b)に曲線Tで示し、加熱ヒータの温度
を曲線Hで示す。
(Manufacturing Example) As shown in FIG. 3 (a), it has a laterally long shape, the total length a is 350 mm, the length b of the introducing coil portion is 150 mm, and the length c of the central coil portion is 50 mm.
A heating coil having a lead-out coil portion length d of 150 mm and a constituent material of Pt was prepared. The case body covering this heating coil is made of Inconel as a constituent material. This heater was housed in the vacuum chamber of the laser deposition apparatus shown in FIG. 2, and the base material made of Hastelloy was moved on the heater at a speed of 150 mm / hour. Then, the result of measuring the temperature of the base material by the thermocouple installed on the upper surface of the base material is shown by the curve T in FIG. 3B, and the temperature of the heater is shown by the curve H.

【0033】図3(b)に示す結果から明らかなよう
に、加熱ヒータの導入コイル部の入口部分のA地点に到
達した基材11は、約+10K/分の昇温速度により6
0分間かけて120℃から720℃まで昇温された後、
中央コイル部の一端部のX地点から他端部のY地点まで
720℃で20分間、同一温度に維持された後、Y地点
から徐々に降温されて−10K/分の降温速度により6
0分かけて120℃まで冷却された。以上のことから、
本発明に係る加熱ヒータを用いてテープ状の基材を加熱
することで、酸化物超電導体製造用として理想的な加熱
冷却条件を得ることができることが判明した。
As is clear from the results shown in FIG. 3 (b), the substrate 11 reaching the point A at the inlet of the introduction coil of the heater has a temperature rise rate of about +10 K / min.
After heating from 120 ° C to 720 ° C over 0 minutes,
After maintaining the same temperature at 720 ° C. for 20 minutes from the X point at one end of the central coil section to the Y point at the other end, the temperature was gradually decreased from the Y point to 6 at a temperature decrease rate of −10 K / min.
It was cooled to 120 ° C. over 0 minutes. From the above,
It has been found that by heating the tape-shaped substrate using the heater according to the present invention, it is possible to obtain ideal heating and cooling conditions for producing an oxide superconductor.

【0034】次に前記レーザ蒸着装置と加熱ヒータを用
いて前記基材上に酸化物超電導薄膜を形成する場合につ
いて説明する。まず、長さ1m、幅5mm、厚さ0.1
mmのハステロイからなる金属テープを基材として用
い、この基材にスパッタリングにより中間層として厚さ
0.5μmのYSZの中間層を形成した後、図2に示す
レーザ蒸着装置にセットした。レーザ蒸着用のターゲッ
トはY1Ba2Cu37-xなる組成の酸化物ターゲットを
用いた。
Next, a case where an oxide superconducting thin film is formed on the base material using the laser vapor deposition apparatus and a heater will be described. First, length 1m, width 5mm, thickness 0.1
A metal tape made of Hastelloy of mm was used as a base material, and an intermediate layer of YSZ having a thickness of 0.5 μm was formed as an intermediate layer on the base material by sputtering. Then, the metal tape was set in the laser deposition apparatus shown in FIG. As the target for laser vapor deposition, an oxide target having a composition of Y 1 Ba 2 Cu 3 O 7-x was used.

【0035】まず、基材の送り速度を150mm/時間
に設定し、前記と同等の条件で加熱ヒータによる加熱を
行ないつつ蒸着処理室の内部を1×10-5Torr以下
に減圧し、0.2Torrの酸素ガス雰囲気としてから
厚さ1.0μmの酸化物超電導体の前駆体薄膜を成膜し
た。次いでこの前駆体薄膜に760Torrの酸素ガス
雰囲気中において500℃×2時間の熱処理を施してY
1Ba2Cu37-xなる組成の酸化物超電導層を有する超
電導テープを得た。得られた超電導テープの臨界温度を
測定したところ、全長1mにわたり、臨界温度(Tc)
は88〜89Kを示し、臨界電流密度(Jc)は1×1
3〜104A/cm2(77K、0テスラ)の高い特性
を発揮した。
First, the substrate feed rate was set to 150 mm / hour, and the inside of the vapor deposition processing chamber was depressurized to 1 × 10 -5 Torr or less while heating with a heater under the same conditions as described above, and the pressure was reduced to 0. After forming an oxygen gas atmosphere of 2 Torr, a precursor thin film of an oxide superconductor having a thickness of 1.0 μm was formed. Next, this precursor thin film is heat-treated at 500 ° C. for 2 hours in an oxygen gas atmosphere of 760 Torr to obtain Y.
A superconducting tape having an oxide superconducting layer having a composition of 1 Ba 2 Cu 3 O 7-x was obtained. When the critical temperature of the obtained superconducting tape was measured, the critical temperature (Tc) was found over the entire length of 1 m.
Indicates 88 to 89K, and the critical current density (Jc) is 1 × 1.
It exhibited high characteristics of 0 3 to 10 4 A / cm 2 (77K, 0 Tesla).

【0036】[0036]

【発明の効果】以上説明したように本発明に係る加熱ヒ
ータは、加熱コイルを中央コイル部で密に、その他の導
入コイル部と導出コイル部で疎に形成してあり、中央コ
イル部での発熱を多く、導入コイル部と導出コイル部で
の発熱を中央コイル部よりも少なくできるので、基材を
加熱する場合に徐々に加熱し、基材と前駆体薄膜を冷却
する場合に徐冷することができ、酸化物超電導体の前駆
体薄膜製造用として所望の温度勾配を得ることができ
る。その際の温度勾配として、昇温時に+10K〜+2
0K/分の割合となるように導入コイル部の発熱量を設
定することが好ましく、徐冷時に−10K/分の割合と
なるように導出コイル部の発熱量を設定することが好ま
しい。
As described above, in the heater according to the present invention, the heating coil is densely formed in the central coil portion and sparsely formed in the other introduction coil portion and the derivation coil portion. Since the amount of heat generated is large and the amount of heat generated in the introduction coil part and the derivation coil part can be made smaller than that in the central coil part, the base material is gradually heated when it is heated and gradually cooled when the base material and the precursor thin film are cooled. It is possible to obtain a desired temperature gradient for producing a precursor thin film of an oxide superconductor. The temperature gradient at that time is + 10K to +2 when the temperature is raised.
It is preferable to set the heat generation amount of the introduction coil portion so as to be 0 K / min, and it is preferable to set the heat generation amount of the extraction coil portion so as to be -10 K / min during slow cooling.

【0037】また、中央コイル部で所定の成膜温度に加
熱された基材と、その基材上に形成された前駆体薄膜
は、導出コイル部で徐々に降温されて徐冷されるので、
基材上に形成された前駆体薄膜に雰囲気中の酸素を十分
に取り込ませることができる。よって前駆体薄膜中に所
望量の酸素を供給することができ、結晶性の良好な酸化
物超電導体の前駆体薄膜の生成が可能になる。また、前
記の条件で加熱冷却するならば、基材と前駆体薄膜との
間の熱膨張差異に起因する熱応力も少なくできるので、
前駆体薄膜にクラックを生じさせることもない。よって
この前駆体薄膜を酸素雰囲気中において熱処理するなら
ば、臨界電流密度の高い超電導特性の優れた酸化物超電
導層を備えた超電導テープを得ることができる。
Further, since the base material heated to the predetermined film forming temperature in the central coil portion and the precursor thin film formed on the base material are gradually cooled and gradually cooled in the lead-out coil portion,
Oxygen in the atmosphere can be sufficiently taken into the precursor thin film formed on the substrate. Therefore, a desired amount of oxygen can be supplied into the precursor thin film, and the precursor thin film of the oxide superconductor having good crystallinity can be generated. If heated and cooled under the above conditions, the thermal stress due to the difference in thermal expansion between the base material and the precursor thin film can be reduced,
It does not cause cracks in the precursor thin film. Therefore, if this precursor thin film is heat-treated in an oxygen atmosphere, a superconducting tape having an oxide superconducting layer having a high critical current density and excellent superconducting properties can be obtained.

【0038】更に、基材の送り速度が速い場合は、加熱
ヒータの全長を調整し、導入コイル部と中央コイル部と
導出コイル部の長さをそれぞれ長く調整することで基材
の送り速度の上昇に容易に対応でき、基材の送り速度が
高くても所望の温度勾配で加熱降温処理できる効果があ
る。更に、導入コイル部と中央コイル部と導出コイル部
の長さを調整して設計することにより、種々の基材の送
り速度に容易に対応できるようになる。また、基材と前
駆体薄膜を加熱徐冷する具体的な昇温条件と降温条件と
しては、移動中の基材を前記加熱コイルの導入コイル部
により、+10K〜+20K/分の割合で昇温し、移動
中の基材を前記中央コイル部により所定の成膜温度に加
熱し、移動中の基材を前記導出コイル部により−10K
/分の割合で降温することが好ましい。この条件で加熱
徐冷するならば、良好な結晶性の前駆体薄膜を得ること
ができ、この前駆体薄膜を熱処理することで、臨界電流
密度の高い良好な特性の酸化物超電導層を備えた超電導
テープを得ることができる。
Further, when the feeding speed of the base material is high, the total length of the heater is adjusted, and the lengths of the introducing coil portion, the central coil portion, and the extracting coil portion are adjusted to be long, thereby increasing the feeding speed of the substrate. There is an effect that it can easily cope with the rise and that the heating and cooling treatment can be performed with a desired temperature gradient even if the feed rate of the base material is high. Furthermore, by adjusting and designing the lengths of the introduction coil portion, the central coil portion, and the extraction coil portion, it becomes possible to easily cope with various feeding speeds of the base material. Further, as specific temperature raising and lowering conditions for heating and gradually cooling the base material and the precursor thin film, the moving base material is heated by the introduction coil portion of the heating coil at a rate of + 10K to + 20K / min. Then, the moving base material is heated to a predetermined film forming temperature by the central coil portion, and the moving base material is −10 K by the lead-out coil portion.
It is preferable to lower the temperature at a rate of / minute. If heated and gradually cooled under these conditions, a precursor thin film with good crystallinity can be obtained. By heat-treating this precursor thin film, an oxide superconducting layer having good characteristics with high critical current density was provided. A superconducting tape can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(a)は本発明に係る加熱ヒータと基材を
示す構成図、図1(b)は本発明に係る加熱ヒータの温
度分布と基材の温度分布を示すグラフである。
FIG. 1 (a) is a configuration diagram showing a heater and a base material according to the present invention, and FIG. 1 (b) is a graph showing a temperature distribution of the heater and a base material temperature distribution according to the present invention. .

【図2】図2は本発明に係る加熱ヒータを備えたレーザ
蒸着装置の構成図である。
FIG. 2 is a configuration diagram of a laser vapor deposition apparatus provided with a heater according to the present invention.

【図3】図3(a)は製造例で用いた本発明に係る加熱
ヒータの構成図、図3(b)は図3(a)に示す加熱ヒ
ータで加熱した基材の温度分布を示すグラフである。
3 (a) is a configuration diagram of a heater according to the present invention used in a manufacturing example, and FIG. 3 (b) shows a temperature distribution of a base material heated by the heater shown in FIG. 3 (a). It is a graph.

【図4】図4は従来の加熱ヒータの一例と基材の位置関
係を示す説明図である。
FIG. 4 is an explanatory diagram showing a positional relationship between an example of a conventional heater and a base material.

【図5】図5(a)は従来の加熱ヒータの一例と基材を
示す構成図、図5(b)は図5(a)に示す加熱ヒータ
の温度分布と基材の温度分布を示すグラフである。
5 (a) is a configuration diagram showing an example of a conventional heater and a substrate, and FIG. 5 (b) shows a temperature distribution of the heater and a substrate temperature distribution shown in FIG. 5 (a). It is a graph.

【図6】図6は加熱冷却条件として好ましいものの一例
を示す図である。
FIG. 6 is a diagram showing an example of preferable heating and cooling conditions.

【符号の説明】[Explanation of symbols]

5 加熱ヒータ、 6 ケース
体、7 加熱コイル、8 導入コイル部、
9 中央コイル部、10 導出コイル部、
11 基材、
5 heaters, 6 case bodies, 7 heating coils, 8 introduction coil parts,
9 central coil part, 10 derivation coil part,
11 base material,

───────────────────────────────────────────────────── フロントページの続き (72)発明者 河野 宰 東京都江東区木場一丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Osamu Kono 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基材上に酸化物超電導層の前駆体薄膜を
成膜法により形成するための真空チャンバの内部に設け
られて上方を通過するテープ状の基材を加熱する加熱ヒ
ータにおいて、 前記加熱ヒータが、加熱コイルとこの加熱コイルを囲む
ケース体とからなり、前記加熱コイルが、テープ状の基
材の導入側の導入コイル部と、テープ状の基材の導出側
の導出コイル部と、前記導入コイル部と導出コイル部と
を接続した中央コイル部とからなり、前記導入コイル部
と導出コイル部のコイルが、中央コイル部のコイルより
いずれも疎になるように巻回されてなることを特徴とす
る酸化物超電導テープ製造用加熱ヒータ。
1. A heater for heating a tape-shaped base material which is provided inside a vacuum chamber for forming a precursor thin film of an oxide superconducting layer on a base material by a film forming method and which heats a tape-shaped base material passing therethrough, The heating heater includes a heating coil and a case body surrounding the heating coil, and the heating coil includes an introduction coil portion on the introduction side of the tape-shaped base material and a derivation coil portion on the extraction side of the tape-shaped base material. And a central coil portion that connects the introduction coil portion and the derivation coil portion, and the coils of the introduction coil portion and the derivation coil portion are wound so as to be less dense than the coils of the central coil portion. A heater for producing an oxide superconducting tape, which is characterized by:
【請求項2】 導入コイル部の発熱量が、導入コイル部
の上方を通過するテープ状の基材を+10K〜+20K
/分の割合で昇温する強さに設定され、中央コイル部の
発熱量が、中央コイル部の上方を通過する基材を所定の
成膜温度に加熱する発熱量に設定され、導出コイル部の
発熱量が、導出コイルの上方を通過する基材を−10K
/分の割合で降温する強さに設定されてなることを特徴
とする請求項1記載の酸化物超電導テープ製造用ヒー
タ。
2. The amount of heat generated by the introduction coil portion is + 10K to + 20K when the tape-shaped substrate passing above the introduction coil portion.
The heat generation amount of the central coil portion is set to a heating rate at a rate of 1 / min, and the heat generation amount of the base material passing above the center coil portion is set to a predetermined film forming temperature. The amount of heat generated by the substrate is -10K
The heater for producing an oxide superconducting tape according to claim 1, wherein the heater is set to have a strength for cooling at a rate of / min.
【請求項3】 コイルが疎に巻回された導入コイル部お
よび導出コイル部と、コイルが密に巻回された中央コイ
ル部とからなる加熱コイルを用い、この加熱コイルを真
空チャンバの内部に設置し、この加熱コイルの上方でテ
ープ状の基材を移動させ、中央コイル部の上方を通過す
る基材を成膜時に望まれる所定の成膜温度に、導入コイ
ル部と導出コイル部の上方を通過する基材を前記規定温
度よりも低い温度に加熱しながら中央コイル部の上方の
基材に酸化物超電導層の前駆体薄膜を形成することを特
徴とする酸化物超電導テープの製造方法。
3. A heating coil comprising an introduction coil part and a derivation coil part in which coils are loosely wound, and a central coil part in which coils are tightly wound, and the heating coil is placed inside a vacuum chamber. The tape-shaped base material is placed above the heating coil, and the base material passing above the central coil portion is placed above the introduction coil portion and the derivation coil portion at a predetermined film formation temperature desired for film formation. A method for producing an oxide superconducting tape, which comprises forming a precursor thin film of an oxide superconducting layer on the base material above the central coil portion while heating the base material passing through the substrate to a temperature lower than the specified temperature.
【請求項4】 移動中の基材を前記加熱コイルの導入コ
イル部により、+10K〜+20K/分の割合で昇温
し、移動中の基材を前記中央コイル部により所定の成膜
温度に加熱し、移動中の基材と前駆体薄膜を前記導出コ
イル部により−10K/分の割合で降温することを特徴
とする請求項3記載の酸化物超電導テープの製造方法。
4. The moving substrate is heated by the introduction coil portion of the heating coil at a rate of +10 K to +20 K / min, and the moving substrate is heated to a predetermined film forming temperature by the central coil portion. The method for producing an oxide superconducting tape according to claim 3, wherein the moving base material and the precursor thin film are cooled by the derivation coil portion at a rate of -10 K / min.
JP01663793A 1993-02-03 1993-02-03 Heater for producing oxide superconducting tape and method for producing oxide superconducting tape Expired - Fee Related JP3428054B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01663793A JP3428054B2 (en) 1993-02-03 1993-02-03 Heater for producing oxide superconducting tape and method for producing oxide superconducting tape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01663793A JP3428054B2 (en) 1993-02-03 1993-02-03 Heater for producing oxide superconducting tape and method for producing oxide superconducting tape

Publications (2)

Publication Number Publication Date
JPH06228742A true JPH06228742A (en) 1994-08-16
JP3428054B2 JP3428054B2 (en) 2003-07-22

Family

ID=11921881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01663793A Expired - Fee Related JP3428054B2 (en) 1993-02-03 1993-02-03 Heater for producing oxide superconducting tape and method for producing oxide superconducting tape

Country Status (1)

Country Link
JP (1) JP3428054B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130119296A1 (en) * 2010-04-16 2013-05-16 Ut-Battelle, Llc Methods for Providing Surface Treatments in a Magnetic Field

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130119296A1 (en) * 2010-04-16 2013-05-16 Ut-Battelle, Llc Methods for Providing Surface Treatments in a Magnetic Field

Also Published As

Publication number Publication date
JP3428054B2 (en) 2003-07-22

Similar Documents

Publication Publication Date Title
US7087113B2 (en) Textured substrate tape and devices thereof
JP2757284B2 (en) Method for producing metal oxide superconducting material layer by laser evaporation
EP1386979B1 (en) Method of producing polycrystalline thin film and method of producing an oxide superconducting element
JP2866265B2 (en) Method for producing high critical temperature superconducting flexible conductor
JP3568561B2 (en) Structure of oxide superconductor with stabilizing metal layer
US5439877A (en) Process for depositing high temperature superconducting oxide thin films
JP4131771B2 (en) Polycrystalline thin film, manufacturing method thereof and oxide superconducting conductor
JP3428054B2 (en) Heater for producing oxide superconducting tape and method for producing oxide superconducting tape
JP2010103021A (en) Thin film laminate and method for manufacturing the same, and oxide superconductor and method for manufacturing the same
JPH06314609A (en) Abacuo based superconducting coil and its manufacture
JP3634078B2 (en) Oxide superconducting conductor
JP4071569B2 (en) Method and apparatus for forming stabilization layer
JPH06231940A (en) Abacuo superconducting coil and its manufacture
JP2011146234A (en) Method of manufacturing oxide superconducting film
JP2767298B2 (en) LAMINATED THIN FILM AND PROCESS FOR PRODUCING THE SAME
JP4593300B2 (en) Manufacturing method and manufacturing apparatus for oxide superconducting wire
JP3206924B2 (en) Method and apparatus for producing oxide superconducting wire
JPH06228741A (en) Oxide superconducting tape producing heater and production of the tape
JP2583552B2 (en) Method for producing oxide superconducting thin film
JP5658891B2 (en) Manufacturing method of oxide superconducting film
JP3856995B2 (en) Oxide superconducting thin film manufacturing apparatus and oxide superconducting thin film manufacturing method
JP4921813B2 (en) Tape-like oxide superconducting wire manufacturing method and intermediate layer heat treatment apparatus
JPH0238310A (en) Production of oxide high temperature superconductive thin film
JP2742418B2 (en) Method for producing oxide superconducting thin film
JP3732780B2 (en) Polycrystalline thin film and method for producing the same, and oxide superconducting conductor and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees