JPH06228586A - Electro rheological fluid composition - Google Patents

Electro rheological fluid composition

Info

Publication number
JPH06228586A
JPH06228586A JP3620193A JP3620193A JPH06228586A JP H06228586 A JPH06228586 A JP H06228586A JP 3620193 A JP3620193 A JP 3620193A JP 3620193 A JP3620193 A JP 3620193A JP H06228586 A JPH06228586 A JP H06228586A
Authority
JP
Japan
Prior art keywords
fine particles
solid fine
fluid
dispersion medium
effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3620193A
Other languages
Japanese (ja)
Inventor
Yasunobu Fujita
安伸 藤田
Atsushi Yokouchi
敦 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP3620193A priority Critical patent/JPH06228586A/en
Publication of JPH06228586A publication Critical patent/JPH06228586A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an ER fluid which is not limited in the kinds of fine solid particles and dispersion medium and can retain an ER effect for a long period of time without sedimentation of the fine solid particles even in an electric field-free state. CONSTITUTION:An electrical insulating dispersion medium is blended with fine solid particles and a thixotropic agent to prepare an ER fluid. Addition of the thixotropic agent forms a network structure in the ER fluid to impart thixotropic properties to the ER fluid. The network structure is broken by application thereto of an external shear force such as vibration or agitation, but restored to the original state to prevent sedimentation of the fine solid particles when the ER fluid is allowed to let stand.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ショックアブソーバー
やダンパー、クラッチ、バルブ、エンジンマウント等に
使用可能な電気粘性流体(Electro Rheol
ogicalFluid;以下ER流体を略記)に係
り、特に経時安定性に優れたER流体に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrorheological fluid (Electro Rheol) which can be used in shock absorbers, dampers, clutches, valves, engine mounts and the like.
organic Fluid; hereinafter referred to as ER fluid), and particularly to ER fluid excellent in stability over time.

【0002】[0002]

【従来の技術】電気絶縁性液体からなる分散媒に固体微
粒子を分散させた懸濁液に外部電場を印加すると、印加
電圧に応じて分散媒の流動性が変化する現象は、ウィン
ズロ効果又は電気粘性効果(Electro Rheo
logical Effect;以下ER効果と略記)
として古くから知られている。しかもこのER効果は、
印加電圧に対するリニアリティが良好で、その制御性に
優れていることに加え、応答時間が数m秒以下と短く応
答性にも優れていることから、ER効果を有する流体
(以下ER流体と略記)を、ショックアブソーバーやダ
ンパー、クラッチ、バルブ、エンジンマウント等に応用
することが試みられている。
2. Description of the Related Art When an external electric field is applied to a suspension in which fine solid particles are dispersed in a dispersion medium composed of an electrically insulating liquid, the phenomenon that the fluidity of the dispersion medium changes in accordance with the applied voltage is known as the Winsro effect or the electric Viscous effect (Electro Rheo
(logical effect; hereinafter abbreviated as ER effect)
Has been known for a long time. Moreover, this ER effect is
A fluid with an ER effect (hereinafter abbreviated as ER fluid) because it has good linearity with respect to the applied voltage, excellent controllability, and a short response time of a few milliseconds or less and excellent responsiveness. Has been attempted to be applied to shock absorbers, dampers, clutches, valves, engine mounts, and the like.

【0003】このER流体に分散される固体微粒子とし
ては、セルロースやシリカゲル、デンプン、イオン交換
樹脂(特開昭50−92278号公報参照)等からなる
吸水性又は親水性を有する固体微粒子に水又は多価アル
コール等を含ませた含水系固体微粒子や、金属や半導体
等からなる導電性微粒子あるいは有機固体微粒子に導電
性薄膜層を形成した導電性微粒子(特開昭63−976
94号公報参照)に絶縁被膜を施した非水系固体微粒子
が知られている。
As the solid fine particles dispersed in the ER fluid, water-soluble or hydrophilic solid fine particles made of cellulose, silica gel, starch, ion exchange resin (see Japanese Patent Laid-Open No. 50-92278) or the like are used. Conductive fine particles in which a conductive thin film layer is formed on water-containing solid fine particles containing polyhydric alcohol or the like, conductive fine particles made of metal or semiconductor, or organic solid fine particles (JP-A-63-976).
Non-aqueous solid fine particles having an insulating coating (see Japanese Patent Laid-Open No. 94) are known.

【0004】ER効果は、分散媒中の固体微粒子が外部
電場により内部分極を起こし、分極した固体微粒子同士
が静電的に結合することにより、剪断力が増加し、分散
媒の見掛け粘度を増加させるものである。そのため、前
記含水系固体微粒子または非水系固体微粒子に限らず、
これら固体微粒子が局所的な凝集を起こして分散媒中で
沈降したり、或いは保管時のように無電場状態で長時間
放置される場合に、分散媒と固体微粒子との比重差によ
り固体微粒子が分散媒中で沈降したりして、固体微粒子
と分散媒との相分離が生じ、その結果ER効果が低減す
るという問題を抱えている。
The ER effect is that the solid fine particles in the dispersion medium are internally polarized by an external electric field, and the polarized solid fine particles are electrostatically coupled to each other, thereby increasing the shearing force and increasing the apparent viscosity of the dispersion medium. It is what makes me. Therefore, not limited to the water-containing solid particles or non-aqueous solid particles,
When these solid fine particles cause local agglomeration and settle in the dispersion medium, or when the solid fine particles are left for a long time in the absence of an electric field such as during storage, the solid fine particles are separated due to the difference in specific gravity between the dispersion medium and the solid fine particles. There is a problem that the fine particles and the dispersion medium are phase-separated by sedimentation in the dispersion medium, and as a result, the ER effect is reduced.

【0005】この問題の解決のために、従来より分散媒
と固体微粒子との比重差の調整(特開平3−13959
9号公報参照)や、界面活性剤の添加(特開平3−84
095号公報参照)等により、固体微粒子の分散媒中で
の沈降を抑制するとともに、その分散性を向上させて固
体微粒子と分散媒との相分離を防止する方法が提案され
ている。
In order to solve this problem, the difference in specific gravity between the dispersion medium and the solid fine particles has conventionally been adjusted (Japanese Patent Laid-Open No. 13959/1993).
No. 9) and addition of a surfactant (JP-A-3-84).
(See Japanese Patent Publication No. 095), there is proposed a method of suppressing sedimentation of solid fine particles in a dispersion medium and improving the dispersibility thereof to prevent phase separation between the solid fine particles and the dispersion medium.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、前記特
開平3−139599号公報に開示される分散媒と固体
微粒子との比重差の調整は、分散媒を比重の大きな油
(特にホスファゼン油)にすることにより固体微粒子と
の比重差を小さくするものであるが、油の比重が大きく
てもそれ以上に大きな比重を有する固体微粒子には適応
できないという根本的な問題がある。
However, the adjustment of the specific gravity difference between the dispersion medium and the solid fine particles disclosed in JP-A-3-139599 described above makes the dispersion medium an oil having a large specific gravity (particularly phosphazene oil). This reduces the difference in specific gravity from the solid fine particles, but there is a fundamental problem that even if the specific gravity of oil is large, it cannot be applied to solid fine particles having a larger specific gravity.

【0007】一般に、ER効果の大きさや経時安定性、
使用温度等の使用条件等において、非水系固体微粒子の
方が含水系固体微粒子より優れているが、この非水系固
体微粒子は、一般に金属や半導体等の無機材料から構成
されているため、含水系固体微粒子に比べて比重が大き
く、これに対応できる高比重の分散媒は制限される。こ
れとは逆に、固体微粒子の比重が分散媒のそれより小さ
い場合は、分散媒の液面付近に浮遊する成分が多くな
り、この場合も、分散媒中に均一に分散し難くなる。
Generally, the magnitude of the ER effect and the stability over time,
In use conditions such as use temperature, the non-aqueous solid fine particles are superior to the water-containing solid fine particles, but since the non-aqueous solid fine particles are generally composed of an inorganic material such as metal or semiconductor, The specific gravity is larger than that of solid fine particles, and the dispersion medium having a high specific gravity that can cope with this is limited. On the contrary, when the specific gravity of the solid fine particles is smaller than that of the dispersion medium, the amount of components floating near the liquid surface of the dispersion medium increases, and in this case also, it becomes difficult to uniformly disperse in the dispersion medium.

【0008】このように、固体微粒子と分散媒との比重
差の調整により、固体微粒子の沈降を抑制し、分散性を
向上させるには、両者の比重差をできる限り小さく、好
ましくはほぼゼロにする必要があるため、分散媒と固体
微粒子との組み合わせが制約され、場合によってはER
効果の大きな固体微粒子を使用できないこともある。ま
た、複数種の分散媒を混合して固体微粒子の比重に整合
させる場合もあり、分散媒の調製が複雑になるという問
題もある。
As described above, in order to suppress sedimentation of solid fine particles and improve dispersibility by adjusting the difference in specific gravity between the solid fine particles and the dispersion medium, the difference in specific gravity between the two is as small as possible, preferably substantially zero. Therefore, the combination of the dispersion medium and the solid fine particles is restricted, and in some cases the ER
In some cases, solid fine particles having a large effect cannot be used. In addition, there are cases where a plurality of types of dispersion media are mixed to match the specific gravity of the solid fine particles, and there is the problem that the preparation of the dispersion media becomes complicated.

【0009】一方、前記特開平3−84095号公報に
開示される界面活性剤を分散媒中に添加して固体微粒子
の分散性を向上させる方法では、この界面活性剤の作用
によりある程度の分散性の向上は認められるものの、実
用に耐え得る程度のER効果を得るためには、固体微粒
子の大きさが平均粒径数μm〜数十μm程度必要とされ
ており、このような大径粒子を分散媒中に均一に分散さ
せるには、界面活性剤を添加するだけでは不充分であ
る。特に、保管時のように無電場状態で長時間放置され
る場合には殆ど効果が得られず、固体微粒子が沈降して
相分離を起こしてしまう。この一度沈降した固体微粒子
は、場合によってはケーキングを起こして再分散が困難
となり、新たに電圧を印加した際にER効果が発現し難
くなる。
On the other hand, in the method disclosed in JP-A-3-84095, in which the surfactant is added to the dispersion medium to improve the dispersibility of the solid fine particles, the dispersibility to a certain extent is caused by the action of the surfactant. However, in order to obtain an ER effect that can be practically used, the size of solid fine particles is required to have an average particle size of several μm to several tens of μm. In order to disperse it uniformly in the dispersion medium, it is not enough to add the surfactant. In particular, when left for a long time in an electric field-free state such as during storage, almost no effect is obtained, and solid fine particles settle to cause phase separation. The once settled solid fine particles cause caking in some cases to make redispersion difficult, and it becomes difficult to exhibit the ER effect when a new voltage is applied.

【0010】更に、界面活性剤を添加することにより、
無添加の場合よりもER効果自体が著しく減少すること
もある。このため、ER効果発生のためにより大きな印
加電圧を必要とし、電力消費が多くなるという欠点があ
る。以上説明した如く、従来のように固体微粒子と分散
媒との比重差の調製や界面活性剤を添加する方法では、
固体微粒子や分散媒の選択の制約や、相分離特に、保管
時のような無電場状態における相分離といった問題を完
全に解決できない。
Furthermore, by adding a surfactant,
The ER effect itself may be significantly reduced as compared with the case of no addition. Therefore, there is a drawback that a larger applied voltage is required to generate the ER effect and power consumption increases. As described above, in the conventional method of adjusting the specific gravity difference between the solid fine particles and the dispersion medium or adding the surfactant,
Problems such as restrictions on selection of solid fine particles and dispersion medium and phase separation, especially phase separation in the absence of electric field such as during storage, cannot be solved completely.

【0011】本発明は、ER効果を引き出す固体微粒子
や分散媒に制約を与えず、無電場状態での粒子の沈降を
防止することを目的として提案されたものである。
The present invention has been proposed for the purpose of preventing settling of particles in an electric field-free state without restricting the solid fine particles or dispersion medium that bring out the ER effect.

【0012】[0012]

【課題を解決するための手段】上記課題は、電気絶縁性
を有する分散媒と固体微粒子とチキソトロピック剤とか
らなる電気粘性流体により解決される。本発明に用いら
れる電気絶縁性液体は、特に制限されるものではなく、
従来のER流体に使用される物質を適宜選択することが
できる。高いER効果や安定性を得るためには、絶縁破
壊電圧が高く、好ましくは5kV/mm以上の絶縁破壊
電圧を有し、潤滑性や耐寒性、化学的安定性等に優れ、
低揮発性の物質が好ましい。
The above-mentioned problems can be solved by an electrorheological fluid composed of a dispersion medium having electric insulation properties, solid fine particles and a thixotropic agent. The electrically insulating liquid used in the present invention is not particularly limited,
The substance used in the conventional ER fluid can be appropriately selected. In order to obtain a high ER effect and stability, the dielectric breakdown voltage is high, preferably having a dielectric breakdown voltage of 5 kV / mm or more, excellent in lubricity, cold resistance, chemical stability, etc.,
Low volatility materials are preferred.

【0013】このような電気絶縁性液体としては、エス
テル油、エーテル油、シリコン油、塩化ジフェニル、塩
化ベンゼン、セバシン酸ブチル、スピンドル油、パラフ
ィン油、トランス油、フッ素油等の絶縁油が挙げられ
る。また、トルエンやベンゼン等の有機溶剤を単独に、
あるいは前記絶縁油と混合して用いることもできる。本
発明に係る固体微粒子も特に制限はなく、含水系、非水
系固体微粒子の区別なく、従来から用いられているもの
は全て使用することができる。例えば、シリカゲル等の
無機物や、セルロースやデンプン等の有機物、あるいは
イオン交換樹脂等からなる含水系固体微粒子、また金属
や半導体等の導電性粒子に絶縁処理を施したり、有機固
体粒子に金属を被覆して導電性を付与したものに絶縁処
理を施した非水系固体微粒子を使用することができる。
Examples of such electrically insulating liquids include insulating oils such as ester oil, ether oil, silicon oil, diphenyl chloride, benzene chloride, butyl sebacate, spindle oil, paraffin oil, transformer oil and fluorine oil. . In addition, an organic solvent such as toluene or benzene alone,
Alternatively, it can be used as a mixture with the insulating oil. The solid fine particles according to the present invention are also not particularly limited, and any conventionally used solid fine particles can be used without distinction between water-containing and non-aqueous solid fine particles. For example, inorganic substances such as silica gel, organic substances such as cellulose and starch, or water-containing solid fine particles made of ion-exchange resin, conductive particles such as metal or semiconductor are subjected to insulation treatment, or organic solid particles are coated with metal. It is possible to use non-aqueous solid fine particles that have been electrically conductive and then subjected to insulation treatment.

【0014】これら固体微粒子は、平均粒径0.01〜
300μm、好ましくは0.1〜100μm程度のもの
が用いられる。また、ER流体中の固体微粒子の濃度と
しては、5〜50vol%程度混合される。本発明に係
るER流体は、チキソトロピック剤を添加することによ
り電気絶縁性液体自体にチキソトロピー性(揺変性)を
付与せしめ、固体微粒子の沈降を防止するものである。
These solid fine particles have an average particle diameter of 0.01 to
Those having a thickness of 300 μm, preferably 0.1 to 100 μm are used. The concentration of solid fine particles in the ER fluid is about 5 to 50 vol%. The ER fluid according to the present invention imparts thixotropic property (thixotropic property) to the electrically insulating liquid itself by adding a thixotropic agent to prevent the precipitation of solid fine particles.

【0015】このチキソトロピック剤は、電気絶縁性液
体中で網目構造を作り、軽度のチキソトロピー性を発現
する。この網目構造は、軽い攪拌で容易に壊れる程度の
ファンデルワールス力や水素結合のような弱い結合から
なり、振動や攪拌等の外部からの剪断力によって編目構
造が切断され、静置すると再び網目構造が復元するもの
である。従って、このチキソトロピック剤が添加された
ER流体は、剪断力が外部から加わっている時は粘性が
下がり、静置すると網目構造が復元してゲル化し、固体
粒子の沈降を防げる機構になっている。
The thixotropic agent forms a network structure in the electrically insulating liquid and exhibits a slight thixotropic property. This mesh structure consists of van der Waals forces that are easily broken by light agitation and weak bonds such as hydrogen bonds, and the mesh structure is cut by external shearing forces such as vibration and agitation. The structure is to be restored. Therefore, the ER fluid to which the thixotropic agent is added has a reduced viscosity when a shearing force is applied from the outside, and when left standing, the network structure restores to a gel to prevent the precipitation of solid particles. There is.

【0016】本発明に用いられるチキソトロピック剤
は、親油性のチキソトロピック剤であり、代表的な例と
して粘土鉱物を親油性に改質した例えば親油性スメクタ
イトや有機ベントナイト、その他にステアリン酸アルミ
ニウム、ステアリン酸亜鉛、オクチル酸アルミニウム等
の金属せっけん類、水添ヒマシ油ワックス、ポリアマイ
ドワックス系、酸化ポリエチレン、デキストリン脂肪酸
エステル、ジベンジリデンソルビトール、植物油系重合
油、シリカ、表面処理炭酸カルシウム等を挙げることが
できる。特に、ポリアマイドワックス系は熱に対しても
比較的安定なものである。
The thixotropic agent used in the present invention is a lipophilic thixotropic agent, and as a typical example, lipophilic smectite or organic bentonite obtained by modifying a clay mineral to be lipophilic, aluminum stearate, Metal soaps such as zinc stearate and aluminum octylate, hydrogenated castor oil wax, polyamide wax, polyethylene oxide, dextrin fatty acid ester, dibenzylidene sorbitol, vegetable oil polymerized oil, silica, surface-treated calcium carbonate, etc. You can Particularly, the polyamide wax system is relatively stable against heat.

【0017】これらチキソトロピック剤は、単独あるい
は混合物としてER流体全量に対して0.01〜30w
t%程度配合される。特に、ER流体として一般に使用
される比重1.5〜2.5g/cm3 、粒径10μm程
度の固体微粒子に関しては、前記何れのチキソトロピッ
ク剤の場合もER流体全量に対して1〜10wt%程度
添加することにより、固体微粒子の沈降を防止すること
ができる。
These thixotropic agents are used alone or as a mixture in an amount of 0.01 to 30 w based on the total amount of the ER fluid.
About t% is blended. In particular, with regard to solid fine particles having a specific gravity of 1.5 to 2.5 g / cm 3 and a particle size of about 10 μm, which are generally used as ER fluids, in the case of any of the above thixotropic agents, it is 1 to 10 wt% with respect to the total amount of ER fluid. By adding to some extent, sedimentation of solid fine particles can be prevented.

【0018】更に、この配合割合により任意に流体の粘
性を制御することができるため、種々の固体微粒子の比
重に応じることが可能である。
Furthermore, since the viscosity of the fluid can be arbitrarily controlled by this blending ratio, it is possible to respond to the specific gravity of various solid fine particles.

【0019】[0019]

【実施例】本発明に係るER流体を、実施例に基づいて
より詳細に説明する。但し、本実施例は一例であり、こ
の組成のものに限定されるものではない。 実施例1 ・親油性スメクタイト(コープケミカル、SAN) 3wt%(全体の) ・微細セルロース(含水率4wt%) (MERCK,アビセル2330) 10vol% ・アルキルジフェニルエーテル油 (松村石油、ネオバックSY) 90vol% 上記を混合分散し試料Aを調製した。 実施例2 ・水添ヒマシ油(楠本化成、ディスパロン#305) 1wt%(全体の) ・微細セルロース 10vol% ・ジメチルエステル油(花王、トリメックスT−08) 90vol% 上記を混合分散し試料Bを調製した。 実施例3 ・微細シリカ(日本アエロジル、アエロジル200) 1wt%(全体の) ・シリカゲル(高純度化学研究所) 10vol% ・シリコン油(信越化学工業) 90vol% 上記を混合分散し試料Cを調製した。 比較例1 ・ポリオキシエチレンノニル フェニルエーテル(日光ケミカル、NP−2) 0.2wt%(全体の) ・微細セルロース 10vol% ・アルキルジフェニルエーテル油 90vol% 上記を混合分散し試料Dを調製した。 比較例2 ・微細セルロース 10vol% ・アルキルジフェニルエーテル油 90vol% 上記を混合分散し試料Eを調製した。
EXAMPLES The ER fluid according to the present invention will be described in more detail based on examples. However, this example is an example, and the present invention is not limited to this composition. Example 1-Lipophilic smectite (Cope Chemical, SAN) 3 wt% (overall) -Fine cellulose (water content 4 wt%) (MERCK, Avicel 2330) 10 vol% -Alkyl diphenyl ether oil (Matsumura Sekiyu, Neovac SY) 90 vol% Was mixed and dispersed to prepare Sample A. Example 2 ・ Hydrogenated castor oil (Kusumoto Kasei, Disparon # 305) 1 wt% (overall) ・ Fine cellulose 10 vol% ・ Dimethyl ester oil (Kao, Trimex T-08) 90 vol% The above was mixed and dispersed to prepare Sample B. Prepared. Example 3 Fine silica (Aerosil 200, Nippon Aerosil 200) 1 wt% (whole) Silica gel (High purity chemical laboratory) 10 vol% Silicon oil (Shin-Etsu Chemical Co., Ltd.) 90 vol% The above was mixed and dispersed to prepare Sample C. . Comparative Example 1 • Polyoxyethylene nonyl phenyl ether (Nikko Chemical, NP-2) 0.2 wt% (overall) • Fine cellulose 10 vol% • Alkyl diphenyl ether oil 90 vol% The above was mixed and dispersed to prepare Sample D. Comparative Example 2 Fine cellulose 10 vol% Alkyl diphenyl ether oil 90 vol% The above was mixed and dispersed to prepare Sample E.

【0020】このようにして調製したER流体A〜Eに
対して、分散安定性とER効果の評価を行なった。分散
安定性の評価は、試料調製後静置し、固体微粒子と分散
媒との相分離の発生を目視により観察した。観察の結
果、チキソトロピック剤を添加した試料Aは、30日経
過後でも相分離は確認されなかったが、非イオン界面活
性剤添加の試料Dでは14日目に、またチキソトロピッ
ク剤及び界面活性剤とも無添加の試料Eでは、1日後に
早くも相分離が認められた。
The ER fluids A to E thus prepared were evaluated for dispersion stability and ER effect. The dispersion stability was evaluated by allowing the sample to stand and then visually observing the occurrence of phase separation between the solid fine particles and the dispersion medium. As a result of observation, in the sample A containing the thixotropic agent, no phase separation was confirmed even after 30 days, but in the sample D containing the nonionic surfactant, the phase separation was observed on the 14th day, and also with the thixotropic agent and the surfactant. In addition, in the sample E containing no addition, phase separation was recognized as early as 1 day later.

【0021】また、ER効果の評価は、各試料を同時期
に調製し、時間毎にそのER効果の大きさを測定して行
った。測定は、同軸二重円筒型の粘度計を用いて行い、
内筒(外径50mm)と外筒(内径51mm)との間隙
(0.5mm)に試料を約50cm3 入れ、所定の時間
無電場状態で静置した後、4kVmm-1の直流電圧を印
加するとともに、内筒を回転して79.4sec-1のず
り速度を発生し、その時の外筒のトルクを測定した。こ
の電圧印加時のトルク値を無電場時のトルク値で割った
値即ち、電圧印加による粘度の増加率を表1に示す。
The ER effect was evaluated by preparing each sample at the same time and measuring the magnitude of the ER effect at each time. The measurement is performed using a coaxial double cylindrical viscometer,
A sample of about 50 cm 3 was placed in the gap (0.5 mm) between the inner cylinder (outer diameter 50 mm) and the outer cylinder (inner diameter 51 mm), and allowed to stand for a predetermined time in the absence of electric field, and then a DC voltage of 4 kV mm −1 was applied. At the same time, the inner cylinder was rotated to generate a shear rate of 79.4 sec −1 , and the torque of the outer cylinder at that time was measured. Table 1 shows a value obtained by dividing the torque value when the voltage is applied by the torque value when there is no electric field, that is, the increase rate of the viscosity when the voltage is applied.

【0022】[0022]

【表1】 [Table 1]

【0023】表1から明らかなように、チキソトロピッ
ク剤及び界面活性剤とも無添加の試料Eは、3日後には
完全に相分離を起こし、ER効果を示さなくなった。ま
た、非イオン界面活性剤添加の試料Dは、ある程度の分
散性の向上は認められたものの、固体微粒子の沈降を防
ぐことができず、30日後には増粘比が1/3程度まで
低下した。更に、調製直後の増粘比も他の試料に比べて
小さく、界面活性剤の添加によりER効果の大きさ自体
が低減することが判明した。
As is clear from Table 1, the sample E, in which neither the thixotropic agent nor the surfactant was added, completely phase-separated after 3 days and no longer showed the ER effect. Further, although the nonionic surfactant-added Sample D was found to have some degree of improvement in dispersibility, it could not prevent the precipitation of solid fine particles, and the viscosity increase ratio decreased to about 1/3 after 30 days. did. Furthermore, the thickening ratio immediately after preparation was smaller than that of the other samples, and it was found that the addition of the surfactant reduces the magnitude of the ER effect itself.

【0024】これに対し本発明による試料Aは、固体微
粒子の沈降も全くみられず、ER効果に関しても、試料
Dにみられた調製直後の増粘比の低下もなく、更には3
0日経過後も調製直後の増粘比を維持しており、経時安
定性に優れていることが分かった。また、試料B,Cに
関しても同様の評価を行ったところ、試料Aと同様の結
果を示し、その分散安定性及びER効果は長期的に安定
であった。
On the other hand, in the sample A according to the present invention, no precipitation of solid fine particles was observed, the ER effect was not observed, and the thickening ratio immediately after preparation, which was observed in the sample D, was not decreased.
It was found that the viscosity ratio immediately after preparation was maintained even after the lapse of 0 days, and the stability with time was excellent. Further, when the same evaluation was performed on the samples B and C, the same results as those of the sample A were shown, and the dispersion stability and the ER effect were stable for a long term.

【0025】[0025]

【発明の効果】以上説明したように本発明によれば、E
R流体にチキソトロピック剤を添加することにより、電
気絶縁性液体にチキソトロピー性を付与し得るので、保
管時のように無電場状態に長期間静置しても固体微粒子
が沈降することがなく、調製初期のER効果を長期間に
わたり保持することができる。これにより、ダンパーや
クラッチ、ショックアブゾーバー等に応用した際に、こ
れらの部品をマウントした装置を未使用のまま長期間放
置した後でも、ER効果を応答性よく発現させることが
可能となり、これらの製品寿命を長くすることができ
る。
As described above, according to the present invention, E
By adding a thixotropic agent to the R fluid, it is possible to impart thixotropic properties to the electrically insulating liquid, so that solid fine particles do not sediment even when left standing for a long time in an electric field-free state during storage, The ER effect at the initial stage of preparation can be maintained for a long period of time. As a result, when applied to dampers, clutches, shock absorbers, etc., it becomes possible to express the ER effect with good responsiveness even after leaving the device mounted with these parts unused for a long period of time. The product life can be extended.

【0026】また、従来では保存が困難であったため大
量生産に向いていなかったものが、長期保存が可能にな
ったことにより大量生産が可能となり、製品管理の容易
さに加え、生産性も向上させることができる。更に、従
来の界面活性剤添加の際にみられたER効果自体の劣化
の問題や、比重差の調製の際にみられた固体微粒子や分
散媒の制約も無く、加えてチキソトロピック剤の添加量
を変えることで固体微粒子の比重に応じることが可能で
あるため、取扱性が向上するとともに、種々の用途や要
求に容易に対応することができる。
Further, although it has been difficult to store in the past because it was difficult to store it, it becomes possible to mass-produce it because it can be stored for a long period of time, which facilitates product management and improves productivity. Can be made. Furthermore, there is no problem of deterioration of the ER effect itself that has been observed when conventional surfactants are added, and there are no restrictions on the solid fine particles or dispersion medium that have been observed when adjusting the difference in specific gravity. In addition, addition of thixotropic agents Since the specific gravity of the solid fine particles can be adjusted by changing the amount, the handleability is improved and various applications and requirements can be easily met.

【0027】このように、本発明に係るER流体は、産
業上極めて有用なものである。
As described above, the ER fluid according to the present invention is extremely useful industrially.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 C10M 107:50 125:26 159:08 105:32) C10N 20:06 Z 8217−4H 30:02 40:14 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical display location C10M 107: 50 125: 26 159: 08 105: 32) C10N 20:06 Z 8217-4H 30:02 40:14

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電気絶縁性を有する分散媒と固体微粒子
とチキソトロピック剤とからなる電気粘性流体。
1. An electrorheological fluid comprising a dispersion medium having electrical insulation properties, solid fine particles and a thixotropic agent.
JP3620193A 1993-02-02 1993-02-02 Electro rheological fluid composition Pending JPH06228586A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3620193A JPH06228586A (en) 1993-02-02 1993-02-02 Electro rheological fluid composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3620193A JPH06228586A (en) 1993-02-02 1993-02-02 Electro rheological fluid composition

Publications (1)

Publication Number Publication Date
JPH06228586A true JPH06228586A (en) 1994-08-16

Family

ID=12463132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3620193A Pending JPH06228586A (en) 1993-02-02 1993-02-02 Electro rheological fluid composition

Country Status (1)

Country Link
JP (1) JPH06228586A (en)

Similar Documents

Publication Publication Date Title
JP2800892B2 (en) Magneto-rheological fluid
US5032307A (en) Surfactant-based electrorheological materials
JPH01170693A (en) Electric fluidized fluid
CN1092460A (en) Magnetorheological materials based on alloying pellet
DE102005030613A1 (en) Magnetorheological fluid
EP0361931B1 (en) Non-aqueous electro-rheological fluid
JPH07103392B2 (en) Electrorheological fluid
EP0395359B1 (en) Electroviscous electrically insulating fluids
JPH06228586A (en) Electro rheological fluid composition
EP0342041A1 (en) Electro-rheological fluid
US5910269A (en) Electrorheological fluid composition including hydrocarbon compound having at least one unsaturated bond
US5445759A (en) Preparation of electrorheological fluids using fullerenes and other crystals having fullerene-like anisotropic electrical properties
US5266230A (en) Electroviscous fluid containing antioxidant and/or corrosion inhibitor
US7001532B2 (en) Electro-rheological composition
JPH03181597A (en) Electric viscous fluid
JPH05271679A (en) Electroviscous fluid
EP0372366B1 (en) Electroviscous fluid
JP3095868B2 (en) Electrorheological fluid composition
JPH08127790A (en) Electro-rheological fluid composition and device using the same
JPH07238292A (en) Electroviscous fluid
JP3115672B2 (en) Manufacturing method of electrorheological fluid composition
JPH0525489A (en) Electroviscous fluid
JPH04120194A (en) Electric viscous fluid
JP2599963B2 (en) Electrorheological fluid with excellent high temperature stability, responsiveness and thickening effect
JPH0593192A (en) Electroviscous fluid