JPH06224076A - Tubular feedthrough capacitor and its manufacture - Google Patents

Tubular feedthrough capacitor and its manufacture

Info

Publication number
JPH06224076A
JPH06224076A JP2723093A JP2723093A JPH06224076A JP H06224076 A JPH06224076 A JP H06224076A JP 2723093 A JP2723093 A JP 2723093A JP 2723093 A JP2723093 A JP 2723093A JP H06224076 A JPH06224076 A JP H06224076A
Authority
JP
Japan
Prior art keywords
sintered tube
feedthrough capacitor
tube
sintered
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2723093A
Other languages
Japanese (ja)
Inventor
Masaru Shimura
優 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2723093A priority Critical patent/JPH06224076A/en
Publication of JPH06224076A publication Critical patent/JPH06224076A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To reduce time taken to eliminate the conductive film at one edge part or both edge parts of a sintered pipe, prevent the outer shape of the sintered pipe being machined from being damaged, and suppress the variation of the capacitance. CONSTITUTION:A conductive film 11 is formed on the outer surface or the inner surface including one edge part or both edge parts of a dielectric sintered pipe 10 which is obtained by sintering a tubular ceramic forming body and one edge part or both edge parts of the sintered pipe 10 are eliminated by sandblasting. thus forming an outer surface electrode 12 and an inner surface electrode 13 on the outer surface and the inner surface of the sintered pipe while they are insulated each other.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高周波ノイズを除去
し、或いはサージ電圧を吸収し、主としてリード線が挿
通する管状貫通コンデンサ及びその製造方法に関する。
更に詳しくは誘電体焼結管の一部の表面又は全面にめっ
き膜のような導電性皮膜を形成した後に焼結管の一端部
又は両端部の導電性皮膜を除去して焼結管の外面及び内
面にそれぞれ外面電極及び内面電極を互いに絶縁した状
態で形成する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a tubular feedthrough capacitor which removes high frequency noise or absorbs surge voltage, and through which lead wires are mainly inserted, and a method for manufacturing the same.
More specifically, after forming a conductive film such as a plating film on a part or the whole surface of the dielectric sintered tube, the conductive film at one end or both ends of the sintered tube is removed to remove the outer surface of the sintered tube. The present invention relates to a method for forming an outer surface electrode and an inner surface electrode on the inner surface and the inner surface in a state of being insulated from each other.

【0002】[0002]

【従来の技術】この種の管状貫通コンデンサは、セラミ
ック粉末とバインダ等を混練した坏土を押出し成形によ
り管状に成形するか、或いはセラミック粉末とバインダ
等を混合した造粒粉末をプレス成形により管状に成形し
た後、この成形体を焼成して誘電体焼結管を作製し、続
いて焼結管の全面に無電解めっきを施し、或いは電極ペ
ーストを塗布し焼付けて導電性皮膜よりなる電極を全面
に形成する。次いでラップ(lap)研磨、バレル研磨等
でその両端面を研磨して焼結管の両端面の導電性皮膜を
除去する。これにより焼結管の外面及び内面にそれぞれ
導電性皮膜よりなる外面電極及び内面電極が互いに絶縁
した状態で形成される。この管状貫通コンデンサを改良
したものとして、管状貫通コンデンサの一方の端部に管
外径より大きな部分を設けることで、シールド板等に挿
入した際の位置決めを容易にしたフランジ付き管状貫通
コンデンサが知られている。このフランジ付き管状貫通
コンデンサも上記と同様の方法で作られる。
2. Description of the Related Art A tubular feedthrough capacitor of this type is formed by extruding a kneaded material obtained by kneading a ceramic powder and a binder into a tubular shape, or by pressing a granulated powder obtained by mixing a ceramic powder and a binder into a tubular shape. After molding, the molded body is fired to produce a dielectric sintered tube, and then electroless plating is applied to the entire surface of the sintered tube, or an electrode paste is applied and baked to form an electrode made of a conductive film. Form on the entire surface. Then, both end faces thereof are polished by lap polishing, barrel polishing or the like to remove the conductive film on both end faces of the sintered tube. As a result, the outer surface electrode and the inner surface electrode made of a conductive film are formed on the outer surface and the inner surface of the sintered tube in a state of being insulated from each other. As an improved version of this tubular feedthrough capacitor, a tubular feedthrough capacitor with a flange is known that facilitates positioning when it is inserted into a shield plate by providing a portion larger than the pipe outer diameter at one end of the tubular feedthrough capacitor. Has been. This flanged tubular feedthrough capacitor is also manufactured in the same manner as above.

【0003】焼結管の両端面に形成されためっき膜又は
焼付け膜からなる導電性皮膜をラップ研磨により除去す
る方法について述べる。先ず焼結管保持用の複数の孔が
形成された円板状のキャリヤを用意し、全面に導電性皮
膜よりなる電極が形成された複数の焼結管をキャリヤの
孔に挿入して保持し、上方と下方で回転する上下のラッ
プ定盤の間に焼結管を保持したキャリヤを挟み込む。次
いで上下のラップ定盤でキャリヤを挟んだ状態で上下の
ラップ定盤を互いに反対方向に回転させながら、キャリ
ヤを自転かつ公転させる。その際、新たに調製した遊離
砥粒を含むスラリーを上下のラップ定盤の間に供給す
る。これにより複数の焼結管の両端面が同時にラップ研
磨され、両端面の導電性皮膜とその皮膜が形成されてい
た焼結管の端面がそれぞれ削り取られる。このことから
従来の焼結管の両端面の導電性皮膜を除去する技術で
は、焼結管の長さのばらつきに加えて、皮膜の厚みのば
らつきを考慮しなければならない。これらのばらつきの
総和は広範囲になるため、従来の研磨では、その削り込
み量を貫通コンデンサとしての容量値、絶縁抵抗値等の
特性が発現するのに必要な最小限度の値よりも大きく設
定し、多数の焼結管の全数についてそれぞれの両端面の
導電性皮膜を確実に除去するようにしていた。
A method of removing the conductive film formed of the plated film or the baked film on both end faces of the sintered tube by lapping will be described. First, prepare a disc-shaped carrier with a plurality of holes for holding sintered tubes, and insert and hold a plurality of sintered tubes with electrodes made of a conductive coating on the entire surface. , A carrier holding a sintered tube is sandwiched between upper and lower lapping plates that rotate above and below. Next, the carrier is rotated and revolved while rotating the upper and lower lap platens in opposite directions while sandwiching the carrier between the upper and lower lap platens. At that time, a slurry containing newly prepared loose abrasive grains is supplied between the upper and lower lapping plates. As a result, both end faces of the plurality of sintered tubes are simultaneously lapped and polished, and the conductive films on both end faces and the end faces of the sintered tubes on which the films have been formed are respectively scraped off. Therefore, in the conventional technique for removing the conductive coating on both end surfaces of the sintered tube, it is necessary to consider the variation in the thickness of the coating in addition to the variation in the length of the sintered tube. Since the total sum of these variations is wide, in conventional polishing, the amount of shaving is set to a value larger than the minimum value necessary for the characteristics such as the capacitance value and insulation resistance value of the feedthrough capacitor to appear. The conductive coating on both end faces of each of a large number of sintered tubes has been surely removed.

【0004】[0004]

【発明が解決しようとする課題】そのため、従来の方法
では次の種々の問題点がある。第一に焼結管の両端面の
導電性皮膜に加え、焼結管をも研磨することは避けられ
ず、研磨時間が長くなりコストをアップさせる。第二に
上ラップ定盤が摩滅消耗してその重量変化により加工加
重が変化したり、砥粒スラリーの濃度が変化したり、或
いは研磨砥粒が消耗して経時的に変化する。これらの加
工条件の変化と加工条件の工程管理により解消されない
変動等により、当然生じてくる研磨ロット間の加工後の
長さのばらつきがコンデンサとしての特性のうち特に重
要な容量値に関してそのばらつきを増大させる。第三に
非常に微細な砥粒が付着した焼結管を洗浄して砥粒を除
去するのに多大な労力を要し、しかも砥粒スラリー中に
混入してくる電極研磨片の除去が不完全である場合、や
はりコンデンサとしての特性のうち特に重要な絶縁抵抗
の悪化を生じる。第四にキャリヤとこれに挿入保持され
た焼結管の隙間に遊離砥粒を含むスラリーが入り込み、
管外面の電極面を摩耗する不都合を生じる。これに起因
して次のはんだ付け工程において貫通コンデンサの外面
電極のはんだ付け性が悪くなる。第五に貫通コンデンサ
のラップ研磨を施した2つの端面と各端面が接する管内
面と管外面とは、互いに直交するため、ラップ研磨中や
その後のハンドリングに伴う僅かな衝撃により端面の周
縁にクラック、欠け等を発生することがあり、貫通コン
デンサとして致命的な欠陥の原因となる。これらの従来
法による種々の問題点はそれぞれ加工コスト、加工の工
程管理、品質的信頼性の観点から極めて重要な改善すべ
き事項である。
Therefore, the conventional method has the following various problems. First, it is unavoidable to polish the sintered tube in addition to the conductive coating on both end surfaces of the sintered tube, which increases the polishing time and increases the cost. Secondly, the upper lapping plate wears away and its weight changes the processing load changes, the concentration of the abrasive grain slurry changes, or the abrasive grains wear out and change over time. Due to these changes in processing conditions and fluctuations that cannot be eliminated by process control of process conditions, the variation in length after processing that naturally occurs between polishing lots causes variations in the capacitance value that is particularly important among the characteristics of the capacitor. Increase. Thirdly, it takes a lot of effort to remove the abrasive grains by cleaning the sintered tube on which very fine abrasive grains adhere, and it is impossible to remove the electrode polishing pieces mixed in the abrasive grain slurry. When it is perfect, the deterioration of the insulation resistance, which is a particularly important characteristic of the capacitor, also occurs. Fourthly, the slurry containing loose abrasive grains enters the gap between the carrier and the sintered tube inserted and held in the carrier,
This causes the inconvenience of abrading the electrode surface on the outer surface of the tube. Due to this, the solderability of the outer surface electrode of the feedthrough capacitor deteriorates in the next soldering step. Fifth, since the two end faces of the feedthrough capacitor that have been lap-polished and the inner and outer surfaces of the pipe where each end is in contact are orthogonal to each other, the peripheral edge of the end face is cracked by a slight impact during lapping and during handling thereafter. May cause chipping or the like, which may cause a fatal defect in the feedthrough capacitor. Various problems caused by these conventional methods are extremely important matters to be improved from the viewpoints of processing cost, processing control of processing, and quality reliability.

【0005】本発明の目的は、端面周縁にクラックや欠
けがなく、所定の静電容量値を有する管状貫通コンデン
サを提供することにある。本発明の別の目的は、焼結管
の一端部又は両端部の導電性皮膜を除去する時間が短く
て済み、加工中の焼結管の外形を損傷する恐れがなく、
かつ静電容量のばらつきを低く抑えることができる管状
貫通コンデンサの製造方法を提供することにある。本発
明の更に別の目的は、所望の容量値に容易に調整できる
管状貫通コンデンサの製造方法を提供することにある。
An object of the present invention is to provide a tubular feedthrough capacitor having a predetermined capacitance value without cracks or chips on the peripheral edge of the end face. Another object of the present invention is that the time for removing the conductive coating on one end or both ends of the sintered tube is short, and there is no fear of damaging the outer shape of the sintered tube during processing,
Another object of the present invention is to provide a method for manufacturing a tubular feedthrough capacitor that can suppress variations in capacitance to a low level. Yet another object of the present invention is to provide a method of manufacturing a tubular feedthrough capacitor that can be easily adjusted to a desired capacitance value.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明の構成を図1(a)〜(d)に基づいて説明す
る。本発明の管状貫通コンデンサは、管状のセラミック
成形体を焼成して誘電体焼結管10を作製し、この焼結
管10の両端部を含む外面及び内面に導電性皮膜11を
形成した後、この焼結管10の両端部の皮膜11をサン
ドブラストにより除去して焼結管10の外面及び内面に
それぞれ外面電極12及び内面電極13を互いに絶縁し
た状態で形成して作られる。
The structure of the present invention for achieving the above object will be described with reference to FIGS. 1 (a) to 1 (d). In the tubular feedthrough capacitor of the present invention, a tubular ceramic molded body is fired to produce a dielectric sintered tube 10, and after the conductive film 11 is formed on the outer surface and the inner surface including both end portions of the sintered tube 10, The film 11 on both ends of the sintered tube 10 is removed by sandblasting to form the outer surface electrode 12 and the inner surface electrode 13 on the outer surface and the inner surface of the sintered tube 10 in a mutually insulated state.

【0007】以下、本発明を詳述する。 <管状成形及び焼成>先ず、貫通コンデンサが高周波ノ
イズを除去することを目的とするときにはチタン酸バリ
ウム系、鉛系等の高誘電率系のセラミック粉末を用意
し、或いは貫通コンデンサが高周波ノイズの除去に加え
てサージ電圧の吸収を目的とするときには容量性及びバ
リスタ特性を有する誘電材料、例えば酸化亜鉛系、チタ
ン酸ストロンチウム系、酸化チタン系等の半導体バリス
タ材料のセラミック粉末を用意する。上記セラミック粉
末を用いて押出し成形、プレス成形等により管状の成形
体を成形する。押出し成形は上記セラミック粉末とバイ
ンダ等を混練した坏土を押出し成形機により押出して管
状に成形する。またプレス成形は上記セラミック粉末と
バインダ等を混合して造粒粉末を作り、この造粒粉末を
プレス成形機によりプレスして管状に成形する。得られ
た成形体は焼成して誘電体焼結管になる。本発明の焼結
管には、図1(a)に示す外面がストレートの円周面で
ある焼結管10以外に、図3に示すフランジ付き焼結管
30を含む。この焼結管30はシャーシ、ブラケット、
シールド板36などの所定の位置に形成された開口部3
7に挿入してはんだ38付けされる。
The present invention will be described in detail below. <Tubular molding and firing> First, when it is intended that the feedthrough capacitor remove high frequency noise, prepare ceramic powder of high dielectric constant such as barium titanate type or lead type, or the feedthrough capacitor removes high frequency noise. In addition to the above, when the surge voltage is to be absorbed, a ceramic powder of a dielectric material having capacitance and varistor characteristics, for example, a semiconductor varistor material of zinc oxide type, strontium titanate type, titanium oxide type or the like is prepared. A tubular compact is formed by extrusion molding, press molding or the like using the above ceramic powder. In extrusion molding, a kneaded material obtained by kneading the above-mentioned ceramic powder and a binder or the like is extruded by an extrusion molding machine to form a tube. In the press molding, the above-mentioned ceramic powder is mixed with a binder or the like to prepare granulated powder, and the granulated powder is pressed by a press molding machine to be formed into a tubular shape. The obtained compact is fired to form a dielectric sintered tube. The sintered tube of the present invention includes a flanged sintered tube 30 shown in FIG. 3 in addition to the sintered tube 10 shown in FIG. 1 (a) whose outer surface is a straight circumferential surface. The sintered tube 30 is a chassis, a bracket,
The opening 3 formed at a predetermined position such as the shield plate 36
7 and solder 38 is applied.

【0008】<導電性皮膜の形成>図1(b)又は図3
(a)に示すように焼結管10又は30はその全面に、
或いは図4(a)又は図4(b)に示すように焼結管1
0又は30はその一端部を残して全面に、それぞれ導電
性皮膜11又は31が形成される。以下、図1に示す焼
結管10を代表して説明する。導電性皮膜11はめっき
膜、焼付け膜、蒸着膜等である。めっき膜の場合には、
図1(b)の拡大図に示すように、皮膜11は例えばニ
ッケルめっき膜11aとその表面に形成されたはんだめ
っき膜11bの2層からなる。はんだめっき膜11は貫
通コンデンサ20のはんだ付け性を良好にする。ニッケ
ルめっき膜11aは無電解バレルめっきにより、または
んだめっき膜11bは電気めっきによりそれぞれ焼結管
10の全面に形成される。焼付け膜の場合には、同様に
Agや,AgとPdを含む導電性ペーストを刷毛や綿棒
のような塗布具によりコーティングし、或いは上記ペー
ストを液状にしてディップコーティングした後、焼付け
て焼結管10の全面(図1(b))又は一部の表面(図
4(a))に形成する。焼付け膜の表面に上述しためっ
き膜を形成してもよい。
<Formation of Conductive Film> FIG. 1 (b) or FIG.
As shown in (a), the sintered tube 10 or 30 is
Alternatively, as shown in FIG. 4A or FIG.
The conductive film 11 or 31 is formed on the entire surface of 0 or 30 except for one end thereof. Hereinafter, the sintered tube 10 shown in FIG. 1 will be described as a representative. The conductive film 11 is a plating film, a baking film, a vapor deposition film, or the like. In the case of plating film,
As shown in the enlarged view of FIG. 1B, the film 11 is composed of, for example, two layers of a nickel plating film 11a and a solder plating film 11b formed on the surface thereof. The solder plating film 11 improves the solderability of the feedthrough capacitor 20. The nickel plating film 11a is formed on the entire surface of the sintered tube 10 by electroless barrel plating, and the plating film 11b is formed by electroplating. In the case of a baked film, similarly, a conductive paste containing Ag or Ag and Pd is coated with an applicator such as a brush or a cotton swab, or the paste is liquefied and dip-coated, and then baked and sintered. It is formed on the entire surface of 10 (FIG. 1B) or a part of the surface (FIG. 4A). You may form the above-mentioned plating film on the surface of a baking film.

【0009】<サンドブラストによる導電性皮膜の除去
>サンドブラスト(sandblasting)は表面処理法であっ
て、本発明のサンドブラストはアルミナ、炭化けい素、
ガラス粉末、くるみの殻等の幅広い種類の粉体からなる
砥粒を圧縮された空気、窒素等の気体の中に混合して高
圧で吹き付ける乾式サンドブラスト法、或いはこの砥粒
を水等の液体に分散して高圧で吹き付ける湿式サンドブ
ラスト法もしくは液体フォーニング法を含む。本発明の
サンドブラスト処理には、(i)焼結管の長さ方向から行
う方法と、(ii)この方向と直交する方向と、(iii)前記
(i)の方向と前記(ii)の方向の中間方向から行う方法が
ある。図1(d)に示すように、管状貫通コンデンサ2
0は外面電極12と内面電極13が互いに重なり部分を
有していること、及び導電性皮膜が連続して分断された
2つの部分により両電極12,13が電気的に互いに絶
縁されていることが必要である。本発明のサンドブラス
トは、2つの導電性皮膜の連続した分断部分のうち少な
くとも1つの部分について行うものである。もう1つの
部分は本発明のサンドブラストによって分断しても、従
来のラップ研磨によって分断しても、或いは最初から導
電性皮膜を形成せずに分断するようにしてもよい。2つ
の部分とも本発明のサンドブラスト処理する場合には、
上記(i)法だけで、又は上記(ii)法だけで行うか、或い
は一方を上記(i)法で行い、他方を上記(ii)法で行って
もよい。
<Removal of Conductive Film by Sandblasting> Sandblasting is a surface treatment method, and the sandblasting of the present invention includes alumina, silicon carbide,
Dry sand blasting method in which abrasive particles consisting of a wide variety of powders such as glass powder and walnut shells are mixed in compressed air, gas such as nitrogen and sprayed at high pressure, or these abrasive particles are made into liquid such as water. It includes a wet sand blasting method or a liquid forming method of dispersing and spraying at high pressure. The sandblast treatment of the present invention, (i) a method of performing from the length direction of the sintered tube, (ii) a direction orthogonal to this direction, (iii) the
There is a method of performing from an intermediate direction between the direction (i) and the direction (ii). As shown in FIG. 1D, the tubular feedthrough capacitor 2
0 indicates that the outer surface electrode 12 and the inner surface electrode 13 have overlapping portions, and that both electrodes 12 and 13 are electrically insulated from each other by the two portions where the conductive film is continuously divided. is necessary. The sandblasting of the present invention is performed on at least one of the continuous divided portions of the two conductive films. The other part may be divided by the sandblasting of the present invention, by conventional lapping, or may be divided without forming a conductive film from the beginning. When both parts are sandblasted according to the present invention,
The above method (i) alone or the above method (ii) alone may be carried out, or one of them may be carried out by the above method (i) and the other may be carried out by the above method (ii).

【0010】(i) 焼結管の長さ方向からのサンドブラス
ト処理 図1(c)に示すように、1本又は2本以上の焼結管1
0を平板や多孔板等の焼結管を保持するに十分な強度を
有する金属板16の上に置く。金属板16は多孔板の方
が吹き付けられた砥粒が板の上面に蓄積しないため好ま
しい。この場合多孔板の孔径は焼結管の外径より小さ
い。例えば、図1(c)及び図2に示すように、焼結管
10の一方の端面を金属板16の上に置いて最密充填構
造になるように多数の焼結管10を固定する。次いで、
多数の焼結管10の他方の端面の導電性皮膜11をサン
ドブラストにより除去する。引続き、一方の端面の皮膜
11を除去するときには、多数の焼結管を反転して各焼
結管10の他方の端面を金属板16の上に置いて最密充
填構造になるように多数の焼結管10を固定し、同様に
多数の焼結管10の一方の端面の皮膜11をサンドブラ
ストにより除去する。図1(c)において符号Aは砥粒
の吹き付け線を示す。
(I) Sandblast treatment from the length direction of the sintered tube As shown in FIG. 1 (c), one or more sintered tubes 1
0 is placed on a metal plate 16 having sufficient strength to hold a sintered tube such as a flat plate or a perforated plate. The metal plate 16 is preferable to the porous plate because abrasive particles sprayed on the porous plate do not accumulate on the upper surface of the plate. In this case, the pore diameter of the perforated plate is smaller than the outer diameter of the sintered tube. For example, as shown in FIGS. 1C and 2, one end surface of the sintered tube 10 is placed on the metal plate 16 and a large number of the sintered tubes 10 are fixed so as to have a close-packed structure. Then
The conductive film 11 on the other end surface of the large number of sintered tubes 10 is removed by sandblasting. Subsequently, when removing the coating film 11 on one end surface, a large number of sintered tubes are turned over so that the other end surface of each sintered tube 10 is placed on the metal plate 16 so as to form a close-packed structure. The sintered tube 10 is fixed, and the film 11 on one end face of the many sintered tubes 10 is similarly removed by sandblasting. In FIG. 1 (c), the symbol A indicates the abrasive grain spray line.

【0011】別の方法として、図6(a)に示すように
焼結管10の挿入可能な孔径と焼結管の長さに相応した
長さを有する孔40aが多数形成された保持プレート4
0と、孔40aに相応する位置にテーパ孔41aが形成
されたローディングプレート41とを重ね合せてベース
プレート42上に置いた後、プレート41の上面に導電
性皮膜11が形成された焼結管10を1本又は2本以上
配置し、両プレート40,41を水平方向に軽く揺動さ
せて焼結管10を孔40aに入れる。次いで図6(b)
に示すようにローディングプレート41を保持プレート
40から外して、この状態で上方からサンドブラスト処
理して焼結管10の一方の端面の導電性皮膜11を除去
する。引続き、他方の端面の皮膜11を除去するときに
は、焼結管を保持したまま保持プレート40を反転して
同様にサンドブラスト処理する。これにより焼結管10
の両端面の導電性皮膜が除去され、図1(d)に示され
る管状貫通コンデンサ20が得られる。(i)法による砥
粒の吹き付け線は焼結管の中心線に一致することが望ま
しいが、一致しない場合、金属板16や保持プレート4
0のような焼結管支持具を回転又は揺動させて端面に均
一に砥粒を吹き付けるようにすることが好ましい。
As another method, as shown in FIG. 6 (a), the holding plate 4 having a large number of holes 40a having a hole diameter into which the sintered tube 10 can be inserted and a length corresponding to the length of the sintered tube is formed.
0 and a loading plate 41 having a tapered hole 41a formed at a position corresponding to the hole 40a are superposed and placed on the base plate 42, and then the sintered tube 10 having the conductive film 11 formed on the upper surface of the plate 41. 1 or 2 or more are arranged, and both plates 40 and 41 are gently rocked in the horizontal direction to insert the sintering tube 10 into the hole 40a. Then, FIG. 6 (b)
As shown in FIG. 3, the loading plate 41 is removed from the holding plate 40, and in this state, the conductive coating 11 on one end surface of the sintered tube 10 is removed by sandblasting from above. Subsequently, when removing the film 11 on the other end surface, the holding plate 40 is inverted while holding the sintered tube, and the sandblasting is performed in the same manner. Thereby, the sintered tube 10
The conductive coatings on both end faces are removed, and the tubular feedthrough capacitor 20 shown in FIG. 1D is obtained. It is desirable that the abrasive grain spray line according to the method (i) coincides with the center line of the sintered tube, but if they do not coincide, the metal plate 16 and the holding plate 4
It is preferable to rotate or oscillate a sintered tube support such as No. 0 so that the abrasive grains are uniformly sprayed on the end surface.

【0012】(ii) 焼結管の長さ方向と直交する方向か
らのサンドブラスト処理 図7に示すように、水平に配置された回転軸50の先端
にチャック51を取付け、このチャック51に導電性皮
膜11付きの焼結管10の一端をその中心が回転中心に
なるように挟んで固定する。次いで焼結管10の他端の
上方より焼結管を回転させながら砥粒の吹き付け線Aに
示すようにサンドブラスト処理して、その外周面の端縁
の皮膜を除去する。図4に示すように焼結管10又は3
0の一端に皮膜11又は31が形成されない場合、或い
は既に上記(i)法によってサンドブラスト処理により皮
膜が除去されている場合には、サンドブラスト処理した
焼結管10又は30をチャック51より取外せば、図5
(a)又は図5(b)に示すような管状貫通コンデンサ
24又は34となる。図1(b)又は図3(a)に示す
ように焼結管10又は30の全面に皮膜11又は31が
形成される場合には、チャックからサンドブラスト処理
した焼結管を取外した後、このサンドブラスト処理した
焼結管の他端をチャックに挟んで固定し、焼結管の一端
を同様にサンドブラスト処理することにより、図5
(c)又は図5(d)に示すような管状貫通コンデンサ
25又は35が得られる。
(Ii) Sandblasting from a direction orthogonal to the length direction of the sintered tube As shown in FIG. 7, a chuck 51 is attached to the tip of a rotary shaft 50 arranged horizontally, and the chuck 51 is made electrically conductive. One end of the sintered tube 10 with the coating 11 is sandwiched and fixed so that its center becomes the center of rotation. Next, while rotating the sintering tube from above the other end of the sintering tube 10, sandblasting is performed as shown by the abrasive grain blasting line A to remove the coating on the edge of the outer peripheral surface. As shown in FIG. 4, the sintered tube 10 or 3
If the coating 11 or 31 is not formed at one end of 0, or if the coating has already been removed by the sandblasting treatment by the method (i), the sandblasted sintering tube 10 or 30 can be removed from the chuck 51. , Fig. 5
(A) or the tubular feedthrough capacitor 24 or 34 as shown in FIG. 5 (b). When the film 11 or 31 is formed on the entire surface of the sintered tube 10 or 30 as shown in FIG. 1 (b) or FIG. 3 (a), after removing the sandblasted sintered tube from the chuck, The other end of the sandblasted sintered tube is sandwiched between chucks and fixed, and one end of the sintered tube is similarly sandblasted to obtain the result shown in FIG.
The tubular feedthrough capacitor 25 or 35 as shown in (c) or FIG. 5 (d) is obtained.

【0013】また別の方法として、特に焼結管の両端縁
をサンドブラスト処理する方法として、図8に示す方法
がある。図示するように同一方向に回転可能な一対のス
ピンドル52及び53の間に焼結管10を挟んだ後、焼
結管10を回転させながら焼結管の一端の上方から(図
8(a))、或いは焼結管の中央部上方から(図8
(b))砥粒の吹き付け線Aに示すようにサンドブラス
ト処理する。この場合、焼結管10の端縁以外は半円筒
状のカバー54で覆って吹き付けられる砥粒から保護す
ることが好ましい。この処理により、図5(c)に示す
ような管状貫通コンデンサ25が得られる。
As another method, there is a method shown in FIG. 8 especially as a method of sandblasting both end edges of the sintered tube. As shown in the figure, after the sintering tube 10 is sandwiched between a pair of spindles 52 and 53 that can rotate in the same direction, the sintering tube 10 is rotated and from above one end of the sintering tube (FIG. 8A). ), Or from above the center of the sintered tube (see FIG. 8).
(B) As shown by the abrasive grain blasting line A, sandblasting is performed. In this case, it is preferable that the portion other than the end edge of the sintered tube 10 is covered with a semi-cylindrical cover 54 to protect it from the abrasive grains sprayed. By this process, the tubular feedthrough capacitor 25 as shown in FIG. 5C is obtained.

【0014】また図9に示すように、一端部又は両端部
を含む外面及び内面に導電性皮膜11が形成された誘電
体焼結管10にリード線45を挿通してはんだ46付け
した後、焼結管10を回転させながら、その長さ方向と
直交する方向から焼結管10の外周面の一端部又は両端
部を砥粒の吹き付け線Aに示すようにサンドブラスト処
理して一端部又は両端部の導電性皮膜11を除去するこ
ともできる。更に図10に示すように、焼結管10にフ
ィルタコネクタのリード線47を挿通してはんだ48付
けし、更に外面電極12をシャーシ49にはんだ48付
けした後、焼結管10を回転させながら、その長さ方向
と直交する方向から焼結管10の外周面の一端部又は両
端部を砥粒の吹き付け線Aに示すようにサンドブラスト
処理して一端部又は両端部の導電性皮膜11を除去する
こともできる。この場合、サンドブラストにより所定の
容量値に調整することもできる。また絶縁状態にない外
面電極と内面電極を互いに絶縁するように調整すること
もできる。なお、図9及び図10に示した焼結管10を
固定して或いは上記のように回転させながら、その長さ
方向或いは前述した(iii)法に対応する前記(i)の方向と
前記(ii)の方向の中間方向であるの斜め上方からサンド
ブラスト処理して焼結管10の両端面又は両端縁の導電
性皮膜を除去するようにしてもよい。また、本発明のフ
ランジレスの管状貫通コンデンサの固定方法には、図1
1に示すように外面電極12にフランジ51をはんだ5
2付けした後、これをシャーシ53等にはんだ54付け
する方法もある。
Further, as shown in FIG. 9, after the lead wire 45 is inserted into the dielectric sintered tube 10 having the conductive film 11 formed on the outer surface and the inner surface including one end portion or both end portions and solder 46 is applied, While rotating the sintered tube 10, one end or both ends of the outer peripheral surface of the sintered tube 10 are sandblasted from the direction orthogonal to the lengthwise direction as shown by the abrasive grain blasting line A, so that one end or both ends. It is also possible to remove the conductive film 11 on the part. Further, as shown in FIG. 10, the lead wire 47 of the filter connector is inserted into the sintered tube 10 and soldered 48, and the outer electrode 12 is soldered 48 to the chassis 49, and then the sintered tube 10 is rotated. , One end or both ends of the outer peripheral surface of the sintered tube 10 are sandblasted from a direction orthogonal to the length direction as shown by the abrasive grain blasting line A to remove the conductive film 11 at one end or both ends. You can also do it. In this case, it is possible to adjust to a predetermined capacity value by sandblasting. It is also possible to adjust the outer surface electrode and the inner surface electrode, which are not in an insulated state, to be insulated from each other. While the sintered tube 10 shown in FIGS. 9 and 10 is fixed or rotated as described above, the length direction or the direction (i) corresponding to the method (iii) and the ( The conductive coating on both end faces or both end edges of the sintered tube 10 may be removed by sandblasting from diagonally above, which is an intermediate direction of the direction ii). In addition, the method of fixing the flangeless tubular feedthrough capacitor of the present invention includes
Solder the flange 51 to the outer electrode 12 as shown in FIG.
There is also a method of soldering 54 to the chassis 53 or the like after soldering the two.

【0015】[0015]

【作用】上記(i)法による本発明の特徴ある作用は、吹
き付けられた圧縮気体等の中に含まれる砥粒が焼結管1
0の内部に入った段階で、砥粒の搬送媒体である気体の
流れが乱れる。この気流の乱れにより、焼結管内部のめ
っき膜である内面電極13に対しては、一定した砥粒の
衝突を生じない。その衝突力は貫通孔である焼結管内部
に行くに従って徐々に弱まるため、適切な条件に設定す
れば、焼結管の上部端面付近の内面電極13のうち、上
部端縁にのみ影響を与えることが推察される。
The characteristic operation of the present invention by the above-mentioned method (i) is that the abrasive grains contained in the blown compressed gas or the like are contained in the sintered tube 1.
When it enters the inside of 0, the flow of gas, which is a carrier medium for the abrasive grains, is disturbed. Due to this turbulence of the air flow, constant collision of the abrasive grains does not occur on the inner surface electrode 13 which is the plating film inside the sintered tube. The collision force gradually weakens as it goes into the inside of the sintered tube, which is a through hole. Therefore, if appropriate conditions are set, only the upper edge of the inner surface electrode 13 near the upper end surface of the sintered tube is affected. It is guessed that.

【0016】ここで貫通コンデンサ20の長さLと貫通
孔15の孔径Dの関係が次式を満たす場合には、 L/D ≧ 1.5 …(1) サンドブラストの砥粒による研磨力が貫通孔内部まで伝
わり難く、貫通孔内部の電極を研磨する作用が上端面付
近に限定されるため、貫通孔内部の内面電極13に摩耗
が生じた場合でも、この電極13と静電容量を決定する
外面電極12との重なり部分の面積の変化の割合は極く
僅かであり、静電容量のばらつきの悪化の程度は低い。
逆に貫通コンデンサ20の長さLと貫通孔15の孔径D
の関係が上式を満たさない場合には、サンドブラストの
砥粒による研磨力が貫通孔内部まで伝わり、貫通孔内部
の電極の摩耗の割合が大きくなるため、静電容量のばら
つきの増大を招く。
When the relationship between the length L of the feedthrough capacitor 20 and the hole diameter D of the through hole 15 satisfies the following equation, L / D ≧ 1.5 (1) The polishing force of the sandblast abrasive grains penetrates. Since it is difficult to reach the inside of the hole and the action of polishing the electrode inside the through hole is limited to the vicinity of the upper end surface, even if the inner surface electrode 13 inside the through hole is worn, the electrode 13 and the capacitance are determined. The rate of change in the area of the overlapping portion with the outer surface electrode 12 is extremely small, and the degree of deterioration of the variation in capacitance is low.
On the contrary, the length L of the feedthrough capacitor 20 and the hole diameter D of the through hole 15
If the above relation does not satisfy the above equation, the polishing force by the abrasive grains of sandblast is transmitted to the inside of the through hole, and the rate of wear of the electrode inside the through hole increases, leading to an increase in the variation in capacitance.

【0017】また、焼結管10の外面に形成された外面
電極12に対しては、例えば多数の焼結管10を図2に
示すように、互いに接するように立てて並べることで、
その外周面と隣接する他の焼結管の外周面との間隔は極
めて小さくなり、内面電極13と同様に上部端縁のみが
サンドブラスト処理される。図6に示すように、保持プ
レート40を用いて焼結管10を保持すれば、その端面
の導電性皮膜のみが実質的に除去される。この結果、サ
ンドブラストによる焼結管外周面の導電性皮膜の摩耗
は、多数の焼結管の配置方法及び保持プレート40のよ
うな支持具の構造により極めて僅かで済む。
Further, with respect to the outer surface electrode 12 formed on the outer surface of the sintered tube 10, for example, by arranging a large number of the sintered tubes 10 so as to be in contact with each other as shown in FIG.
The distance between the outer peripheral surface and the outer peripheral surface of another sintered tube adjacent thereto becomes extremely small, and like the inner surface electrode 13, only the upper edge is sandblasted. As shown in FIG. 6, when the holding plate 40 is used to hold the sintered tube 10, only the conductive film on the end surface is substantially removed. As a result, the abrasion of the conductive coating on the outer peripheral surface of the sintered tube due to sandblasting is extremely small due to the arrangement method of the many sintered tubes and the structure of the supporting member such as the holding plate 40.

【0018】上記(ii)法による本発明の特徴ある作用
は、焼結管の端面の導電性皮膜が砥粒のほぼ同じ吹き付
け方向に位置するため、サンドブラストにより殆ど除去
されない。また、図8に示したカバー54の長さを調整
することで、管状貫通コンデンサの外面電極の内面電極
に重なる面積を加減でき、コンデンサの容量値を調整で
きる。
The characteristic action of the present invention by the above method (ii) is that the conductive coating on the end face of the sintered tube is located in substantially the same direction as the abrasive grains are sprayed, and therefore is hardly removed by sandblasting. Further, by adjusting the length of the cover 54 shown in FIG. 8, the area of the outer surface electrode of the tubular feedthrough capacitor overlapping the inner surface electrode can be adjusted, and the capacitance value of the capacitor can be adjusted.

【0019】そして上記(i)法及び(ii)法とも焼結管の
一端部又は両端部をサンドブラスト処理することによ
り、従来の技術で問題となった焼結管の長さのばらつき
は問題とならず、特に上記(ii)法の場合、焼結管の外周
面端部を覆うに十分なブラスト範囲を設定することで焼
結管の長さのばらつきは問題とならず、皮膜の厚みのば
らつきのみを考慮してブラストによる研磨量を設定すれ
ば、静電容量のばらつきが小さい管状貫通コンデンサが
得られる。
In both the methods (i) and (ii), one end or both ends of the sintered tube are sandblasted, so that the variation in the length of the sintered tube, which has been a problem in the conventional technique, becomes a problem. In particular, in the case of the above method (ii), by setting a blast range sufficient to cover the outer peripheral surface end of the sintered tube, the variation in the length of the sintered tube does not become a problem, and If the polishing amount by blasting is set in consideration of only the variation, a tubular feedthrough capacitor with a small variation in capacitance can be obtained.

【0020】[0020]

【発明の効果】以上述べたように、本発明は次の優れた
効果を奏する。 導電性皮膜の電極材料を主として除去し、誘電体を
殆ど研磨しないため、必要とする研磨量が極めて少な
く、加工時間を著しく短縮できるとともに、静電容量の
ばらつきが小さい所定の容量値を有する管状貫通コンデ
ンサが得られる。 サンドブラストの細かい砥粒の衝突による研磨力
は、電極材料及び焼結管端面付近の誘電体をそれぞれ極
めて僅かずつ除去するのに十分であり、焼結管の端面周
縁に欠け等の欠陥を発生させるまでには至らない。この
ため、加工による貫通コンデンサの外形損傷は回避され
る。 上記(i)法による場合、焼結管の長さLと内径Dの
関係をL/D≧1.5とすることにより、サンドブラス
ト時に貫通孔内面の電極を極度に摩耗することが防止さ
れ、特性の安定した貫通コンデンサが安価に得られる。 上記(ii)法による場合、外面電極の面積を調整する
ことにより、同一形状の焼結管で容量値の異なる管状貫
通コンデンサが得られる。この結果、コネクタに管状貫
通コンデンサを挿着してコネクタを組立るときのコンデ
ンサのハンドリング装置を標準化することができる。 またフランジ付き管状貫通コンデンサにおいても、
フランジレス管状貫通コンデンサと同様の効果を奏す
る。
As described above, the present invention has the following excellent effects. Since the electrode material of the conductive film is mainly removed and the dielectric is scarcely polished, the required polishing amount is extremely small, the processing time can be significantly shortened, and the tubular shape has a predetermined capacitance value with a small variation in capacitance. A feedthrough capacitor is obtained. The polishing force of the sandblast, which is caused by the collision of fine abrasive grains, is sufficient to remove the electrode material and the dielectric near the end surface of the sintered tube very little by little, and causes defects such as chipping at the peripheral edge of the end surface of the sintered tube. Not up to. Therefore, external damage to the feedthrough capacitor due to processing is avoided. In the case of the above (i) method, by setting the relationship between the length L of the sintered tube and the inner diameter D to be L / D ≧ 1.5, it is possible to prevent the electrode on the inner surface of the through hole from being extremely worn during sandblasting, A feedthrough capacitor with stable characteristics can be obtained at low cost. In the case of the above method (ii), by adjusting the area of the outer surface electrode, tubular feedthrough capacitors having the same shape but different capacitance values can be obtained. As a result, it is possible to standardize a capacitor handling device when assembling the connector by inserting the tubular feedthrough capacitor into the connector. Also in flanged tubular feedthrough capacitors,
It has the same effect as the flangeless tubular feedthrough capacitor.

【0021】[0021]

【実施例】以下、本発明の実施例を比較例とともに説明
する。 <実施例1>チタン酸バリウムを主成分とするセラミッ
ク粉末に有機バインダを加え、均一に混合した造粒粉末
をプレス成形機により管状に成形した。この管状成形体
を焼成して、図1(a)に示すように外径が2mm、内
径Dが1mm、長さLが約3.2mmの誘電体焼結管1
0を得た。この焼結管10を400本用意した。そのう
ちの100本の焼結管10をニッケル無電解めっきして
焼結管の全面に厚さ約2μmのニッケルめっき膜11a
を形成した。次いでこの焼結管を電気めっきしてめっき
膜11aの表面に厚さ約10μmのはんだめっき膜11
bを形成した。100本の上記焼結管10を平板状の金
属板16の上に立てて並べ、図2に示すように焼結管の
側面から押し付けて固定し最密充填構造をとるようにし
た。
EXAMPLES Examples of the present invention will be described below together with comparative examples. <Example 1> An organic binder was added to a ceramic powder containing barium titanate as a main component, and uniformly mixed granulated powder was formed into a tube by a press molding machine. This tubular compact is fired to obtain a dielectric sintered tube 1 having an outer diameter of 2 mm, an inner diameter D of 1 mm and a length L of about 3.2 mm as shown in FIG.
I got 0. 400 of the sintering tubes 10 were prepared. 100 of the sintered tubes 10 were electrolessly plated with nickel to form a nickel plated film 11a having a thickness of about 2 μm on the entire surface of the sintered tubes.
Was formed. Next, this sintered tube is electroplated to form a solder plated film 11 having a thickness of about 10 μm on the surface of the plated film 11a.
b was formed. 100 of the above-mentioned sintered tubes 10 were set up on a flat metal plate 16 and arranged, and as shown in FIG.

【0022】続いて乾式サンドブラスト装置により40
0番の炭化けい素砥粒を含む4kg/cm2の圧縮空気
を上記焼結管の上端面に吹き付け、上端面のめっき膜1
1a及び11bを除去した。上端面への吹き付けは2秒
毎に18秒まで行った。その後、焼結管を反転させて下
方にあった下端面を上方に向け、同様にサンドブラスト
処理して下端面のめっき膜11a及び11bを除去し
た。得られた管状貫通コンデンサから20本を無作為に
抽出し、各コンデンサの長さ、その端面の外観、及び静
電容量値を測定した。その結果を表1に示す。 (以下、本頁余白)
Then, by a dry sandblasting device, 40
4 kg / cm 2 of compressed air containing No. 0 silicon carbide abrasive grains was blown onto the upper end surface of the above-mentioned sintered tube to form a plating film 1 on the upper end surface.
1a and 11b were removed. Spraying to the upper end surface was performed every 2 seconds up to 18 seconds. After that, the sintered tube was turned upside down so that the lower end face located below was directed upward, and similarly sandblasting was performed to remove the plating films 11a and 11b on the lower end face. 20 pieces were randomly extracted from the obtained tubular feedthrough capacitor, and the length of each capacitor, the appearance of the end face, and the capacitance value were measured. The results are shown in Table 1. (Hereafter, margins on this page)

【0023】[0023]

【表1】 [Table 1]

【0024】<実施例2>実施例1で用意した400本
の焼結管の残り300本のうち100本の焼結管につい
て実施例1と同様にめっき処理及びサンドブラスト処理
を行った。得られた管状貫通コンデンサから20本を無
作為に抽出し、各コンデンサの長さ、その端面の外観、
及び静電容量値を測定した。その結果を表2に示す。 (以下、本頁余白)
<Example 2> Of the 400 remaining sintered tubes prepared in Example 1, 100 remaining sintered tubes were subjected to the plating treatment and the sandblasting treatment in the same manner as in Example 1. Randomly extract 20 pieces from the obtained tubular feedthrough capacitor, and measure the length of each capacitor, the appearance of the end surface,
And the capacitance value was measured. The results are shown in Table 2. (Hereafter, margins on this page)

【0025】[0025]

【表2】 [Table 2]

【0026】<比較例1>実施例1と同様にして、全面
にめっき膜が形成された誘電体焼結管を600本得た。
これらのうち300本をラップ研磨法により両端面のめ
っき膜を除去した。即ち、60個ずつ孔の形成された円
板状のキャリヤを5枚用意し、キャリヤ1枚当り全ての
孔に焼結管を60個ずつ挿入保持した。これらのキャリ
ヤを上方と下方で回転する上下のラップ定盤の間に挟み
込み、上下のラップ定盤でキャリヤを挟んだ状態で上下
のラップ定盤を互いに反対方向に回転させ、新たに調製
した遊離砥粒を含むスラリーを供給しながら、キャリヤ
を自転かつ公転させた。これにより多数の焼結管の両端
面が同時にラップ研磨され、両端面のめっき膜とその膜
が形成されていた焼結管の端面がそれぞれ削り取られ
た。ここでは焼結管の長さのばらつきや、めっき膜の厚
さのばらつきを考慮して、全数の焼結管の両端面に形成
されためっき膜が確実に除去できるまで削り込み量を設
定しながら、20秒間隔でサンプリングした。得られた
管状貫通コンデンサから20本を無作為に抽出し、各コ
ンデンサの長さ、その端面の外観、及び静電容量値を測
定した。その結果を表3に示す。
<Comparative Example 1> In the same manner as in Example 1, 600 dielectric sintered tubes having a plated film formed on the entire surface were obtained.
The plating films on both end surfaces of 300 of these were removed by lapping. That is, five disk-shaped carriers each having 60 holes were prepared, and 60 sintering tubes were inserted and held in all the holes per carrier. These carriers are sandwiched between upper and lower lap surface plates that rotate upward and downward, and the upper and lower lap surface plates are rotated in opposite directions while the carrier is sandwiched between the upper and lower lap surface plates. The carrier was rotated and revolved while supplying the slurry containing abrasive grains. As a result, both end faces of a large number of sintered pipes were simultaneously lapped and polished, and the plated films on both end faces and the end faces of the sintered pipes on which the films had been formed were respectively scraped off. Here, considering the variation in the length of the sintered tubes and the variation in the thickness of the plating film, the amount of shaving is set until the plating films formed on both end faces of all the sintered tubes can be reliably removed. Meanwhile, sampling was performed at intervals of 20 seconds. 20 pieces were randomly extracted from the obtained tubular feedthrough capacitor, and the length of each capacitor, the appearance of the end face, and the capacitance value were measured. The results are shown in Table 3.

【0027】[0027]

【表3】 [Table 3]

【0028】<比較例2>比較例1で得た600本の焼
結管のうち残りの300本の焼結管について実施例1と
同様にめっき処理を行った後、砥粒が消耗し、めっき膜
と焼結管の誘電体材料の摩耗かすがスラリー中に混在す
る条件下で同様にラップ研磨処理を行った。得られた管
状貫通コンデンサから20本を無作為に抽出し、各コン
デンサの長さ、その端面の外観、及び静電容量値を測定
した。その結果を表4に示す。 (以下、本頁余白)
<Comparative Example 2> Of the 600 sintered tubes obtained in Comparative Example 1, the remaining 300 sintered tubes were plated in the same manner as in Example 1. Lapping was similarly performed under the condition that the abrasion residue of the plated film and the dielectric material of the sintered tube were mixed in the slurry. 20 pieces were randomly extracted from the obtained tubular feedthrough capacitor, and the length of each capacitor, the appearance of the end face, and the capacitance value were measured. The results are shown in Table 4. (Hereafter, margins on this page)

【0029】[0029]

【表4】 [Table 4]

【0030】<評価>比較例1及び比較例2では、両端
面のめっき膜を完全に除去した後の特性として、貫通コ
ンデンサの長さのばらつきと、静電容量のばらつきは小
さく、ラップ研磨の特徴である寸法のばらつきが小さい
ことを反映した結果となった。しかし、比較例1及び比
較例2では削り量が多いため、適切な加工速度を選択し
ても加工に時間を多く費やした。また機械的に研削する
ため、端面周縁に欠けが発生した。更に表3及び表4の
結果を比較すれば明らかなように、時間の経過とともに
砥粒が消耗し、加工時間、加工の状況が影響を受けたこ
とから、最も容易な条件である加工時間を長めに設定せ
ざるを得ず、これにより比較例1のコンデンサと比較例
2のコンデンサとのロット間のばらつきが大きくなっ
た。これに対して、実施例1及び実施例2では貫通コン
デンサの長さのばらつき及び静電容量のばらつきは上記
比較例よりも大きいものの、両端面における削り量は極
めて少なく、加工時間を著しく短縮できる。また端面周
縁に欠けを生じない。更に砥粒の消耗が少なく、表1及
び表2の結果を比較すれば明らかなように、実施例1の
コンデンサと実施例2のコンデンサとのロット間のばら
つきは極めて小さかった。
<Evaluation> In Comparative Example 1 and Comparative Example 2, the characteristics after the plating films on both end surfaces were completely removed were that the variation in the length of the feedthrough capacitor and the variation in the capacitance were small, and the lapping was not performed. The result reflects that the characteristic dimensional variation is small. However, in Comparative Example 1 and Comparative Example 2, since the amount of shaving was large, much time was required for processing even if an appropriate processing speed was selected. In addition, since mechanical grinding was performed, a chip was generated at the peripheral edge of the end surface. Further, as is clear by comparing the results of Tables 3 and 4, the abrasive grains are consumed with the passage of time, and the processing time and the processing situation are affected. Since it had to be set longer, the lot-to-lot variation between the capacitor of Comparative Example 1 and the capacitor of Comparative Example 2 became large. On the other hand, in Example 1 and Example 2, the variation in the length of the feedthrough capacitor and the variation in the capacitance were larger than those in the comparative example, but the amount of scraping on both end faces was extremely small, and the processing time could be significantly shortened. . Moreover, no chipping occurs at the edge of the end face. Further, the consumption of the abrasive grains was small, and as is clear by comparing the results of Table 1 and Table 2, the lot-to-lot variation between the capacitors of Example 1 and Example 2 was extremely small.

【0031】<実施例3>誘電体焼結管の寸法を表5に
示すように変化させ、かつサンドブラストの砥粒の吹き
付け時間を10秒間と一定にした以外は、実施例1と同
様にして管状貫通コンデンサを得た。表5において、ロ
ットNoが1〜3、5〜7、9〜11及び13、14がL
/Dの値が1.5以上の実施例データである。 <比較例3>実施例3と同様にして管状貫通コンデンサ
を得た。表5において、ロットNoが4、8、12及び1
5がL/Dの値が1.5未満の比較例データである。実
施例3及び比較例3の各コンデンサの長さ及び静電容量
値を測定した。その結果を表5に示す。 (以下、本頁余白)
Example 3 The same as Example 1 except that the dimensions of the dielectric sintered tube were changed as shown in Table 5 and the abrasive blasting time of sandblast was kept constant at 10 seconds. A tubular feedthrough capacitor was obtained. In Table 5, lot numbers 1 to 3, 5 to 7, 9 to 11 and 13 and 14 are L
It is the example data in which the value of / D is 1.5 or more. <Comparative Example 3> A tubular feedthrough capacitor was obtained in the same manner as in Example 3. In Table 5, lot numbers 4, 8, 12 and 1
5 is comparative example data in which the value of L / D is less than 1.5. The length and capacitance value of each capacitor of Example 3 and Comparative Example 3 were measured. The results are shown in Table 5. (Hereafter, margins on this page)

【0032】[0032]

【表5】 [Table 5]

【0033】<評価>実施例3及び比較例3とも、貫通
コンデンサの長短に拘らず、サンドブラスト処理後のコ
ンデンサの長さの変化は少なかった。貫通コンデンサの
静電容量値のばらつき(σn-1/静電容量値の平均)は
L/Dの値が1.5未満の比較例3では6.9%以上と
極めて高いのに対して、L/Dの値が1.5以上の実施
例3では3.2%以下と極めて低く良好であることが判
明した。
<Evaluation> In both Example 3 and Comparative Example 3, there was little change in the length of the capacitor after sandblasting, regardless of the length of the feedthrough capacitor. The variation in the capacitance value of the feedthrough capacitor (σ n-1 / average of the capacitance values) is extremely high at 6.9% or more in Comparative Example 3 in which the value of L / D is less than 1.5. , L / D value of 1.5 or more, Example 3 was 3.2% or less, which was extremely low and was found to be good.

【0034】<実施例4>外径が2.0mm、内径が
1.0mmの誘電体焼結管の長さを表6に示すように変
化させ、かつ金属板として多孔板を用いた以外は、実施
例3と同様にして管状貫通コンデンサを得た。表6にお
いて、ロットNoが1〜3がL/Dの値が1.5以上の実
施例データである。 <比較例3>実施例4と同様にして管状貫通コンデンサ
を得た。表6において、ロットNoが4がL/Dの値が
1.5未満の比較例データである。実施例4及び比較例
4の各コンデンサの長さ及び静電容量値を測定した。そ
の結果を表6示す。
Example 4 Except that the length of the dielectric sintered tube having an outer diameter of 2.0 mm and an inner diameter of 1.0 mm was changed as shown in Table 6 and a perforated plate was used as the metal plate. A tubular feedthrough capacitor was obtained in the same manner as in Example 3. In Table 6, lot Nos. 1 to 3 are example data having L / D values of 1.5 or more. <Comparative Example 3> A tubular feedthrough capacitor was obtained in the same manner as in Example 4. In Table 6, lot No. 4 is comparative example data in which the L / D value is less than 1.5. The length and capacitance value of each capacitor of Example 4 and Comparative Example 4 were measured. The results are shown in Table 6.

【0035】[0035]

【表6】 [Table 6]

【0036】<評価>実施例4及び比較例4とも、貫通
コンデンサの長短に拘らず、サンドブラスト処理後のコ
ンデンサの長さの変化は少なかった。金属板が多孔板で
あっても、貫通コンデンサの静電容量値のばらつき(σ
n-1/静電容量値の平均)はL/Dの値が1.5未満の
比較例4では9.2%と極めて高いのに対して、L/D
の値が1.5以上の実施例4では3.6%以下と極めて
低く良好であることが判明した。
<Evaluation> In both Example 4 and Comparative Example 4, the change in the length of the capacitor after sandblasting was small, regardless of the length of the feedthrough capacitor. Even if the metal plate is a perforated plate, variations in the capacitance value of the feedthrough capacitor (σ
n-1 / average capacitance value) is extremely high at 9.2% in Comparative Example 4 in which the L / D value is less than 1.5, while L / D
It was found that in Example 4 having a value of 1.5 or more, the value was 3.6% or less, which was extremely low and good.

【0037】<実施例5>実施例1で用意した400本
の焼結管の残り200本のうち100本の焼結管につい
て実施例1と同様にめっき処理した。次いで図7に示す
ように焼結管のそれぞれ一端をその中心が回転中心にな
るようにチャック51に挟んで固定した後、水平に配置
された回転軸50を一定速度で回転させた。次に焼結管
の他端の上方から実施例1と同じ条件で図7に示すよう
にサンドブラスト処理し、焼結管の外周面の一方の端縁
のめっき膜11a及び11bを除去した。端縁への砥粒
の吹き付けは2秒毎に18秒まで行った。その後、チャ
ックからサンドブラスト処理した焼結管を取外した後、
このサンドブラスト処理した焼結管の他端をチャックに
挟んで固定し、焼結管の一端を同様にサンドブラスト処
理して他方の端縁のめっき膜11a及び11bを除去し
た。得られた管状貫通コンデンサから20本を無作為に
抽出し、各コンデンサの端縁の外観、及び静電容量値を
測定した。その結果を表7に示す。 (以下、本頁余白)
Example 5 Of the remaining 200 sintered 400 tubes prepared in Example 1, 100 of the remaining 200 sintered tubes were plated in the same manner as in Example 1. Next, as shown in FIG. 7, one end of each of the sintered tubes was fixed by being sandwiched between the chucks 51 so that the center thereof became the center of rotation, and then the rotating shaft 50 arranged horizontally was rotated at a constant speed. Next, sandblasting was performed from above the other end of the sintered tube under the same conditions as in Example 1 as shown in FIG. 7 to remove the plating films 11a and 11b on one edge of the outer peripheral surface of the sintered tube. The abrasive grains were sprayed onto the edge every 2 seconds up to 18 seconds. After that, after removing the sandblasted sintered tube from the chuck,
The other end of the sandblasted sintered tube was sandwiched and fixed by a chuck, and one end of the sintered tube was similarly sandblasted to remove the plating films 11a and 11b at the other edge. 20 pieces were randomly extracted from the obtained tubular feedthrough capacitors, and the appearance of the edge of each capacitor and the capacitance value were measured. The results are shown in Table 7. (Hereafter, margins on this page)

【0038】[0038]

【表7】 [Table 7]

【0039】<実施例6>実施例1で用意した400本
の焼結管のうち残りの100本の焼結管について実施例
5と同様にめっき処理及びサンドブラスト処理を行っ
た。得られた管状貫通コンデンサから20本を無作為に
抽出し、各コンデンサの端面の外観、及び静電容量値を
測定した。その結果を表8に示す。 (以下、本頁余白)
<Example 6> Of the 400 sintered tubes prepared in Example 1, the remaining 100 sintered tubes were plated and sandblasted in the same manner as in Example 5. 20 pieces were randomly extracted from the obtained tubular feedthrough capacitors, and the appearance of the end face of each capacitor and the capacitance value were measured. The results are shown in Table 8. (Hereafter, margins on this page)

【0040】[0040]

【表8】 [Table 8]

【0041】<評価>比較例1及び比較例2では、前述
したように機械的に研削するため、端面周縁に欠けが発
生し、更に比較例1のコンデンサと比較例2のコンデン
サとのロット間のばらつきが大きくなった。これに対し
て、実施例5及び実施例6では両端縁における削り量は
極めて少なくて済み、加工時間を著しく短縮できる。細
かい砥粒が衝突する衝撃はめっき膜や、焼結管表面付近
の誘電体を極めて僅かずつ除去するには十分であって、
貫通コンデンサの端面周縁に欠けを生じるまでには至ら
ない。更に砥粒の消耗等の経時的変化が極めて小さく、
表7及び表8の結果を比較すれば明らかなように、実施
例5のコンデンサと実施例6のコンデンサとのロット間
のばらつきは極めて小さかった。
<Evaluation> In Comparative Example 1 and Comparative Example 2, since mechanical grinding was performed as described above, chipping occurred at the peripheral edge of the end face, and further between lots of the capacitors of Comparative Example 1 and Comparative Example 2. The variability of was large. On the other hand, in Examples 5 and 6, the amount of shaving at both edges is extremely small, and the processing time can be significantly shortened. The impact of fine abrasive grains is sufficient to remove the plating film and the dielectric near the surface of the sintered tube very little by little,
It does not occur that the peripheral edge of the feedthrough capacitor is chipped. Furthermore, changes over time such as wear of abrasive grains are extremely small,
As is clear from the comparison of the results in Tables 7 and 8, the lot-to-lot variation between the capacitor of Example 5 and the capacitor of Example 6 was extremely small.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の(i)法により製造した管状貫通コンデ
ンサを断面図で製造順に示す図。(a)はその誘電体焼
結管の断面図。(b)は導電性皮膜を全面に形成したそ
の焼結管の断面図。(c)はサンドブラスト処理中の複
数の焼結管の断面図。(d)はその管状貫通コンデンサ
の断面図。
FIG. 1 is a cross-sectional view showing a tubular feedthrough capacitor manufactured by a method (i) of the present invention in the order of manufacturing. (A) is sectional drawing of the dielectric sintered tube. (B) is a cross-sectional view of the sintered tube on which a conductive film is formed. (C) is a cross-sectional view of a plurality of sintered tubes during sandblasting. (D) is sectional drawing of the tubular feedthrough capacitor.

【図2】図1(c)の管状貫通コンデンサを上方から視
た図。
FIG. 2 is a view of the tubular feedthrough capacitor of FIG. 1 (c) viewed from above.

【図3】(a)は本発明の導電性皮膜を形成したフラン
ジ付き焼結管の断面図。(b)は(i)法により製造した
そのフランジ付き管状貫通コンデンサの断面図。
FIG. 3A is a cross-sectional view of a flanged sintered tube on which a conductive film of the present invention is formed. (B) is sectional drawing of the tubular feedthrough capacitor with a flange manufactured by the (i) method.

【図4】本発明の導電性皮膜を一端部を残して形成した
誘電体焼結管の断面図。(a)はフランジレスの焼結管
の断面図。(b)はフランジ付き焼結管の断面図。
FIG. 4 is a cross-sectional view of a dielectric sintered tube in which the conductive film of the present invention is formed with one end left. (A) is sectional drawing of a flangeless sintered tube. (B) is sectional drawing of the sintered tube with a flange.

【図5】本発明の(ii)法により製造した管状貫通コンデ
ンサの断面図。(a)及び(b)は焼結管の一端縁のみ
(ii)法によりサンドブラスト処理した管状貫通コンデン
サの断面図。(c)及び(d)は焼結管の両端縁を(ii)
法によりサンドブラスト処理した管状貫通コンデンサの
断面図。
FIG. 5 is a cross-sectional view of a tubular feedthrough capacitor manufactured by the method (ii) of the present invention. (A) and (b) are only one edge of the sintered tube
Sectional drawing of the tubular feedthrough capacitor sandblasted by the method (ii). (C) and (d) show both edges of the sintered tube (ii)
Sectional view of the tubular feedthrough capacitor that has been sandblasted by the method.

【図6】本発明の(i)法による誘電体焼結管の保持プレ
ート及びローディングプレートの断面図。
FIG. 6 is a sectional view of a holding plate and a loading plate of the dielectric sintered tube according to the method (i) of the present invention.

【図7】本発明の(ii)法による誘電体焼結管の保持用チ
ャック及び回転軸の側面図。
FIG. 7 is a side view of a chuck for holding a dielectric sintered tube and a rotating shaft according to the method (ii) of the present invention.

【図8】本発明の(ii)法による誘電体焼結管の保持用ス
ピンドルの側面図。
FIG. 8 is a side view of a spindle for holding a dielectric sintered tube according to the method (ii) of the present invention.

【図9】リード線がはんだ付けされた状態で本発明の(i
i)法により製造される誘電体焼結管の側面図。
FIG. 9 shows that the lead wire is soldered ((i)
The side view of the dielectric sintered tube manufactured by the i) method.

【図10】リード線がはんだ付けされかつ外面電極がシ
ャーシにはんだ付けされた状態で本発明の(ii)法により
製造される誘電体焼結管の側面図。
FIG. 10 is a side view of the dielectric sintered tube manufactured by the method (ii) of the present invention with the lead wire soldered and the outer surface electrode soldered to the chassis.

【図11】本発明のフランジレスの管状貫通コンデンサ
の固定方法の一例を示すその断面図。
FIG. 11 is a sectional view showing an example of a method for fixing a flangeless tubular feedthrough capacitor of the present invention.

【符号の説明】 10,30 誘電体焼結管 11,31 導電性皮膜(めっき膜) 11a ニッケルめっき膜 11b はんだめっき膜 12,32 外面電極 13,33 内面電極 15 貫通孔 16 金属板 20,24,25,34,35 管状貫通コンデンサ 45,47 リード線[Explanation of reference signs] 10,30 Dielectric sintered tube 11,31 Conductive film (plating film) 11a Nickel plating film 11b Solder plating film 12,32 Outer surface electrode 13,33 Inner surface electrode 15 Through hole 16 Metal plate 20,24 , 25, 34, 35 Tubular feedthrough capacitors 45, 47 Lead wire

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 誘電体焼結管(10,30)の外面及び内面に
それぞれ導電性皮膜(11,31)よりなる外面電極(12,32)及
び内面電極(13,33)を互いに絶縁した状態で有する管状
貫通コンデンサにおいて、 前記絶縁状態が前記焼結管(10,30)の一端部又は両端部
の導電性皮膜(11,31)をサンドブラストにより除去して
作られたことを特徴とする管状貫通コンデンサ。
1. An outer surface electrode (12, 32) and an inner surface electrode (13, 33) made of a conductive film (11, 31) are insulated from each other on the outer surface and the inner surface of the dielectric sintered tube (10, 30), respectively. In the tubular feedthrough capacitor having a state, the insulating state is characterized in that the conductive film (11, 31) at one end or both ends of the sintered tube (10, 30) is removed by sandblasting. Tubular feedthrough capacitor.
【請求項2】 サンドブラストにより除去された導電性
皮膜(11,31)が誘電体焼結管(10,30)の一端面又は両端面
に形成された皮膜である請求項1記載の管状貫通コンデ
ンサ。
2. The tubular feedthrough capacitor according to claim 1, wherein the conductive film (11, 31) removed by sandblasting is a film formed on one end surface or both end surfaces of the dielectric sintered tube (10, 30). .
【請求項3】 サンドブラストにより除去された導電性
皮膜(11,31)が誘電体焼結管(10,30)の外周面の一端縁又
は両端縁に形成された皮膜である請求項1記載の管状貫
通コンデンサ。
3. The conductive film (11, 31) removed by sandblasting is a film formed on one end edge or both end edges of the outer peripheral surface of the dielectric sintered tube (10, 30). Tubular feedthrough capacitor.
【請求項4】 導電性皮膜(11,31)がめっき膜である請
求項1記載の管状貫通コンデンサ。
4. The tubular feedthrough capacitor according to claim 1, wherein the conductive film (11, 31) is a plated film.
【請求項5】 導電性皮膜(11,31)が焼付け膜である請
求項1記載の管状貫通コンデンサ。
5. The tubular feedthrough capacitor according to claim 1, wherein the conductive film (11, 31) is a baked film.
【請求項6】 導電性皮膜(11,31)が焼付け膜と前記焼
付け膜の表面に形成されためっき膜とを備えた請求項5
記載の管状貫通コンデンサ。
6. The conductive film (11, 31) comprises a baking film and a plating film formed on the surface of the baking film.
The tubular feedthrough capacitor described.
【請求項7】 誘電体焼結管(10,30)が容量性又はバリ
スタ特性のいずれか一方又は双方を有する請求項1記載
の管状貫通コンデンサ。
7. The tubular feedthrough capacitor according to claim 1, wherein the dielectric sintered tube (10, 30) has one or both of capacitive and varistor characteristics.
【請求項8】 管状のセラミック成形体を焼成して誘電
体焼結管(10,30)を作製し、 前記焼結管(10,30)の一端部又は両端部を含む外面及び
内面に導電性皮膜(11,31)を形成し、 前記焼結管(10,30)の一端部又は両端部の前記皮膜(11,3
1)をサンドブラストにより除去して前記焼結管の外面及
び内面にそれぞれ外面電極(12,32)及び内面電極(13,33)
を互いに絶縁した状態で形成する管状貫通コンデンサの
製造方法。
8. A dielectric sintered tube (10, 30) is produced by firing a tubular ceramic molded body, and the outer and inner surfaces including one end or both ends of the sintered tube (10, 30) are electrically conductive. A film (11, 31) is formed, and the film (11, 3) at one end or both ends of the sintered tube (10, 30) is formed.
1) is removed by sandblasting, and the outer surface electrode (12, 32) and the inner surface electrode (13, 33) are respectively formed on the outer surface and the inner surface of the sintered tube.
A method for manufacturing a tubular feedthrough capacitor, wherein the tubular feedthrough capacitor is formed while being insulated from each other.
【請求項9】 誘電体焼結管(10,30)の長さをL、前記
焼結管(10,30)の内径をDとするとき、管状のセラミッ
ク成形体を L/D ≧ 1.5 …(1) になるように成形し、 前記焼結管(10,30)の長さ方向から前記焼結管の一端面
又は両端面をサンドブラスト処理して前記一端面又は両
端面の導電性皮膜(11,31)を除去する請求項8記載の管
状貫通コンデンサの製造方法。
9. When the length of the dielectric sintered tube (10, 30) is L and the inner diameter of the sintered tube (10, 30) is D, the tubular ceramic compact is L / D ≧ 1. 5 ... (1) is formed, and one end surface or both end surfaces of the sintered tube is sandblasted in the length direction of the sintered tube (10, 30) to make the one end surface or both end surfaces electrically conductive. The method for manufacturing a tubular feedthrough capacitor according to claim 8, wherein the film (11, 31) is removed.
【請求項10】 誘電体焼結管(10,30)の長さ方向と直
交する方向から前記焼結管(10,30)の外周面の一端縁又
は両端縁をサンドブラスト処理して前記一端縁又は両端
縁の導電性皮膜(11,31)を除去する請求項8記載の管状
貫通コンデンサの製造方法。
10. One end edge or both end edges of the outer peripheral surface of the sintered tube (10, 30) is sandblasted from a direction orthogonal to the length direction of the dielectric sintered tube (10, 30) to perform the one edge. Alternatively, the method of manufacturing the tubular feedthrough capacitor according to claim 8, wherein the conductive films (11, 31) on both edges are removed.
【請求項11】 一端部又は両端部を含む外面及び内面
に導電性皮膜(11,31)が形成された誘電体焼結管(10,30)
にリード線(45,47)を挿通してはんだ付けした後、前記
焼結管(10,30)の長さ方向又は長さ方向と直交する方向
から前記前記焼結管(10,30)の外周面の一端部又は両端
部をサンドブラスト処理して前記一端部又は両端部の導
電性皮膜(11,31)を除去する請求項8記載の管状貫通コ
ンデンサの製造方法。
11. A dielectric sintered tube (10, 30) having a conductive film (11, 31) formed on its outer surface and inner surface including one end or both ends.
After the lead wires (45, 47) are inserted into and soldered, the sintering tube (10, 30) is lengthwise of the sintering tube (10, 30) or a direction orthogonal to the lengthwise direction of the sintering tube (10, 30). 9. The method for manufacturing a tubular feedthrough capacitor according to claim 8, wherein one end or both ends of the outer peripheral surface are sandblasted to remove the conductive film (11, 31) at the one end or both ends.
JP2723093A 1993-01-22 1993-01-22 Tubular feedthrough capacitor and its manufacture Withdrawn JPH06224076A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2723093A JPH06224076A (en) 1993-01-22 1993-01-22 Tubular feedthrough capacitor and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2723093A JPH06224076A (en) 1993-01-22 1993-01-22 Tubular feedthrough capacitor and its manufacture

Publications (1)

Publication Number Publication Date
JPH06224076A true JPH06224076A (en) 1994-08-12

Family

ID=12215283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2723093A Withdrawn JPH06224076A (en) 1993-01-22 1993-01-22 Tubular feedthrough capacitor and its manufacture

Country Status (1)

Country Link
JP (1) JPH06224076A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076070A2 (en) * 2009-01-05 2010-07-08 Robert Bosch Gmbh Anti-interference system for an electric machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010076070A2 (en) * 2009-01-05 2010-07-08 Robert Bosch Gmbh Anti-interference system for an electric machine
WO2010076070A3 (en) * 2009-01-05 2011-06-23 Robert Bosch Gmbh Anti-interference system for an electric machine
KR20110119632A (en) * 2009-01-05 2011-11-02 로베르트 보쉬 게엠베하 Anti-interference system for an electric machine
US20120013226A1 (en) * 2009-01-05 2012-01-19 Robert Bosch Gmbh Interference suppression arrangement for an electric machine
JP2012514966A (en) * 2009-01-05 2012-06-28 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Noise suppression equipment for electric machines

Similar Documents

Publication Publication Date Title
CN112652486B (en) Method for manufacturing laminated ceramic electronic component
JP4066329B2 (en) Electrostatic chuck manufacturing method and electrostatic chuck obtained using the same
US20060117799A1 (en) Method for coating doughnut-type glass substrates
JPH06224076A (en) Tubular feedthrough capacitor and its manufacture
JP3921946B2 (en) Manufacturing method of ceramic electronic component
JP4111340B2 (en) Chip-type electronic components
EP1201367B1 (en) Dresser for polishing cloth and manufacturing method therefor
JP4493276B2 (en) Manufacturing method of chip-shaped ceramic parts
JPH06344264A (en) Conductive grinding wheel
JP2005327929A (en) Method for manufacturing semiconductor ceramic electronic component
CN114643532A (en) Chemical mechanical polishing pad for improving utilization efficiency of polishing solution
US6099919A (en) Method for manufacturing dielectric filter
JP2001239449A (en) Pad conditioner for cmp
JPH08316088A (en) Ceramic electronic component manufacturing method
JP3609059B2 (en) Dresser for CMP processing
JPS6146271B2 (en)
KR200303718Y1 (en) CMP pad conditioner
JP3103187B2 (en) Deburring method for voltage non-linear resistor electrode surface
JPH0621707A (en) Electrode forming method for dielectric resonator
JPH07183158A (en) Tubular electronic component with insulating film and their manufacture
JPS63111704A (en) Manufacture of dielectric resonator
JP2705152B2 (en) Manufacturing method of dielectric resonator
JP2996060B2 (en) Manufacturing method of ceramic parts
JPH08213719A (en) Ceramic board for chip-like electronic device and production thereof
JP2765172B2 (en) Porous multilayer electrodeposited grinding wheel and method for producing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20000404