JPH06224017A - Manufacture of rare earth element base inter-metallic compound magnet by high pressure sintering in magnetic field - Google Patents

Manufacture of rare earth element base inter-metallic compound magnet by high pressure sintering in magnetic field

Info

Publication number
JPH06224017A
JPH06224017A JP4229846A JP22984692A JPH06224017A JP H06224017 A JPH06224017 A JP H06224017A JP 4229846 A JP4229846 A JP 4229846A JP 22984692 A JP22984692 A JP 22984692A JP H06224017 A JPH06224017 A JP H06224017A
Authority
JP
Japan
Prior art keywords
magnetic field
rare earth
sintered
manufacture
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4229846A
Other languages
Japanese (ja)
Inventor
Kinya Adachi
吟也 足立
Kenichi Machida
憲一 町田
Terushi Onodera
昭史 小野寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4229846A priority Critical patent/JPH06224017A/en
Publication of JPH06224017A publication Critical patent/JPH06224017A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0596Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of rhombic or rhombohedral Th2Zn17 structure or hexagonal Th2Ni17 structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/059Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2
    • H01F1/0593Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and Va elements, e.g. Sm2Fe17N2 of tetragonal ThMn12-structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To manufacture high performance sintered magnet by a method wherein hardly sintered rare earth element base intermetallic compound particles are oriented in the crystalline axial direction in a magnetic field to be pressure- sintered simultaneously. CONSTITUTION:Any hardly sintering rare earth base intermetallic compounds such as Ln2Fe17Nx, Ln2Fe17CxNy, LnFe11TiNx (Ln = rare earth element) are crushed to particles in a single magnetic domain to be oriented in a magnetic field later simultaneously pressure sintered in the temperature region not to crack the intermetallic compound so as to manufacture the title sintered magnet in excellent mechanical strength having high anisortropical magnetic field and coercive force.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、優れた磁気特性を有す
るが高温下で分解するためこれまで焼結による成形が不
可能であった希土類系金属間化合物を、金属あるいは樹
脂等のバインダーを用いることなしに、金属間化合物が
熱分解しない中温度領域下、磁場中で配向させた試料を
高圧焼結することにより磁石とする技術に関するもので
ある。
BACKGROUND OF THE INVENTION The present invention uses a rare earth-based intermetallic compound, which has excellent magnetic properties but decomposes at high temperature and cannot be formed by sintering, and a binder such as a metal or a resin. The present invention relates to a technique of forming a magnet by high-pressure sintering of a sample oriented in a magnetic field in an intermediate temperature region where an intermetallic compound is not thermally decomposed without using it.

【0002】[0002]

【従来の技術】高温下で分解する難焼結性の希土類系金
属間化合物磁石は、亜鉛などの金属あるいはエポキシ樹
脂等をバインダーとして、金属間化合物が熱分解する温
度よりも低い温度領域で成形したボンド磁石として現在
製造されている。
2. Description of the Related Art A rare earth-based intermetallic compound magnet which is hard to sinter and decomposes at high temperature is formed in a temperature range lower than the temperature at which the intermetallic compound is thermally decomposed by using a metal such as zinc or an epoxy resin as a binder. It is currently manufactured as a bonded magnet.

【0003】[0003]

【発明が解決しようという課題】難焼結性の希土類系金
属間化合物の成形体を製造する従来の方法では、磁性に
寄与しない金属あるいは樹脂等をバインダーとして含む
ため、その磁気特性は本来期待されるものと比べ大幅に
低下し、磁性材料としての高性能化の大きな妨げとなっ
ていた。従って、磁性に寄与しないバインダーを使用す
ることなしに、希土類系金属間化合物のみから成る磁石
を製造し、その本来の磁気特性を発現させる必要があ
る。
In the conventional method for producing a compact of a rare earth-based intermetallic compound that is difficult to sinter, the magnetic properties originally expected are obtained because a metal or resin that does not contribute to magnetism is included as a binder. It was significantly lower than that of the magnetic material, and it was a great obstacle to improving the performance as a magnetic material. Therefore, it is necessary to produce a magnet composed of only a rare earth-based intermetallic compound without using a binder that does not contribute to magnetism, and to exhibit its original magnetic characteristics.

【0004】[0004]

【課題を解決するための手段】前記の目的を達成するた
めには、難焼結性の希土類系金属間化合物を単磁区の粒
子粉末とした後磁場中で粒子の結晶方位をそろえ、これ
らを分解させることなしに焼結する製造プロセスの開発
が不可欠である。本発明では、磁場中で粉末粒子の結晶
方位をそろえた後、200℃から800℃の中温度領域下、10
0気圧以上の圧力で加圧焼結し、磁気特性および機械的
強度に優れた希土類系金属間化合物の焼結磁石を製造す
ることを特徴としている。
Means for Solving the Problems In order to achieve the above-mentioned object, a rare-earth intermetallic compound which is difficult to sinter is made into a single-domain particle powder, and the crystal orientations of the particles are aligned in a magnetic field. Development of a manufacturing process that sinters without decomposing is essential. In the present invention, after aligning the crystallographic orientation of the powder particles in a magnetic field, under a medium temperature range of 200 ℃ ~ 800 ℃, 10
It is characterized in that pressure-sintering is performed at a pressure of 0 atm or more to produce a sintered magnet of a rare earth-based intermetallic compound excellent in magnetic properties and mechanical strength.

【0005】[0005]

【作用】本発明では、難焼結性の希土類系金属間化合物
の焼結磁石を、バインダー等を用いることなしに製造す
ることができる。
In the present invention, it is possible to manufacture a sintered magnet of a rare earth-based intermetallic compound that is difficult to sinter, without using a binder or the like.

【0006】製造は、Ln2Fe17Nx、Ln2Fe17CxNy、LnFe11
TiNx等を始めとする難焼結性の希土類系金属間化合物に
適用することができる。特に、3万気圧前後の高圧で焼
結した場合は、非常に良好な機械的強度を有する焼結体
が得られる。
Production is carried out by Ln 2 Fe 17 N x , Ln 2 Fe 17 C x N y , LnFe 11
It can be applied to rare-earth intermetallic compounds that are difficult to sinter, such as TiN x . In particular, when sintered at a high pressure of around 30,000 atm, a sintered body having very good mechanical strength can be obtained.

【0007】また試料は、磁場中で加圧焼結されるか、
あるいは予め磁場中で結晶方位をそろえた後加圧焼結さ
れるため、高い異方性磁場を有する焼結磁石を製造する
ことができる。
Further, the sample is pressure-sintered in a magnetic field, or
Alternatively, since the crystal orientations are previously aligned in a magnetic field and pressure sintering is performed, a sintered magnet having a high anisotropic magnetic field can be manufactured.

【0008】[0008]

【実施例】図1に示す製造工程により、Ln2Fe17Nx、Ln2
Fe17CxNy、LnFe11TiNx等の希土類系金属間化合物の焼結
磁石を製造することができる。
[Example] By the manufacturing process shown in FIG. 1, Ln 2 Fe 17 N x , Ln 2
It is possible to manufacture a sintered magnet of a rare earth-based intermetallic compound such as Fe 17 C x N y and LnFe 11 TiN x .

【0009】製造は、まず上記の希土類系金属間化合物
を振動ボールミルで粒子径が数μm以下の単磁区粒子と
なるまで十分に粉砕後、高圧発生装置を用いて磁場中、
200℃から800℃の温度範囲、100気圧以上の圧力下で加
圧焼結するか、あるいは予め磁場中で結晶方位をそろえ
て成形した試料について、同様の条件で加圧焼結するこ
とにより行った。磁石としての安定性と機械的強度は加
圧する圧力と共に向上し、3万気圧で作製した試料では
十分な磁気特性と機械的強度を有する焼結磁石が得られ
た。
In the production, first, the above rare earth intermetallic compound is sufficiently pulverized by a vibrating ball mill until it becomes single domain particles having a particle diameter of several μm or less, and then a high pressure generator is used to generate a magnetic field.
Performed by pressure sintering in a temperature range of 200 ° C to 800 ° C under a pressure of 100 atm or more, or by performing pressure sintering under the same conditions on a sample molded in advance by aligning the crystal orientation in a magnetic field. It was The stability and mechanical strength as a magnet increased with the pressure applied, and a sintered magnet having sufficient magnetic characteristics and mechanical strength was obtained in the sample manufactured at 30,000 atm.

【0010】図2に、Sm2Fe17Nx粉末を3万気圧、550℃
で加圧焼結した試料(曲線b)および同試料を予め磁場
中で加圧成形後、同じ圧力と温度で高圧焼結した試料
(曲線c)のX線回折パターンを、未処理試料のそれ
(曲線a)と併せて示す。
In FIG. 2, Sm 2 Fe 17 N x powder was added at 30,000 atm and 550 ° C.
The X-ray diffraction patterns of the sample (curve b) pressure-sintered in 1) (curve b) and the sample pre-pressurized in a magnetic field, and then high-pressure sintered at the same pressure and temperature (curve c), Shown together with (curve a).

【0011】ここでまず、550℃で加圧処理した試料で
は、回折パターンには何らの変化も観察されず(曲線a
とbを参照)、SmNとFeへの分解や窒素の解離等は全く
見られなかった。
First, no change was observed in the diffraction pattern of the sample subjected to pressure treatment at 550 ° C. (curve a)
And b)), no decomposition into SmN and Fe or dissociation of nitrogen was observed.

【0012】また、磁場中で粒子の結晶方位をそろえた
後加圧焼結した場合(曲線c)では、磁場に沿ってc軸
方向に配向した試料が得られた。(なお、Sm2Fe17Nx
晶系は本来三方晶系であるが、ここでは六方晶系の単位
格子として表示してある。)個々の結晶粒子は容易磁化
方向であるc軸に沿って配向しているため、試料からは
高い異方性磁界が出現し、20MGOe以上の最大エネルギー
積をもつ高性能焼結磁石を容易に作製することができ
た。
When pressure-sintering was performed after aligning the crystal orientations of the particles in the magnetic field (curve c), a sample oriented in the c-axis direction along the magnetic field was obtained. (Note that the Sm 2 Fe 17 N x crystal system is originally a trigonal system, but it is shown here as a hexagonal unit cell.) Individual crystal grains are along the c-axis, which is the easy magnetization direction. The high anisotropy field appeared from the sample because it was oriented so that a high-performance sintered magnet with a maximum energy product of 20 MGOe or more could be easily manufactured.

【0013】[0013]

【発明の効果】本発明は、磁場中、200℃から800℃前後
の中温度領域で加圧焼結を行うため、難焼結性の希土類
系金属間化合物について、十分な機械的強度をもつ焼結
磁石を製造することができる。そのため、磁気特性に寄
与しない金属あるいは樹脂等のバインダーが不要とな
り、単位体積あるいは単位重量当たりの磁束密度が増大
し、高性能永久磁石の製造に効果がある。
INDUSTRIAL APPLICABILITY Since the present invention performs pressure sintering in a medium temperature range of about 200 ° C. to 800 ° C. in a magnetic field, it has sufficient mechanical strength for a rare earth intermetallic compound that is difficult to sinter. A sintered magnet can be manufactured. Therefore, a binder such as a metal or a resin that does not contribute to the magnetic characteristics is unnecessary, the magnetic flux density per unit volume or unit weight is increased, and it is effective in manufacturing a high-performance permanent magnet.

【図面の簡単な説明】[Brief description of drawings]

【図1】高圧焼結法による希土類系金属間化合物の製造
工程図である。
FIG. 1 is a manufacturing process drawing of a rare earth-based intermetallic compound by a high pressure sintering method.

【図2】Sm2Fe17Nxの粉末X線回折図である。ただし、
(a)は加圧焼結する前の未処理試料、(b)は加圧焼結後の
試料、(c)は一度磁場中で試料粉末の結晶方位をそろえ
た後加圧焼結した試料である。
FIG. 2 is a powder X-ray diffraction pattern of Sm 2 Fe 17 N x . However,
(a) is an untreated sample before pressure sintering, (b) is a sample after pressure sintering, and (c) is a sample that has been subjected to pressure sintering after aligning the crystal orientations of the sample powder once in a magnetic field. Is.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01F 1/053 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01F 1/053

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 高温下で分解するLn2Fe17Nx、Ln2Fe17Cx
Ny、LnFe11TiNx(Ln=希土類)等の難焼結性希土類系金
属間化合物の単磁区粒子粉末を、磁場中で結晶の配向を
そろえると共に200℃から800℃の中温度領域下、100気
圧以上の圧力で加圧焼結することにより、優れた磁気特
性と機械的強度を有する焼結磁石を製造する技術。
1. Ln 2 Fe 17 N x , Ln 2 Fe 17 C x that decomposes at high temperature
N y , LnFe 11 TiN x (Ln = rare earth) single-domain particle powder of rare-earth intermetallic compound difficult to sinter, such as crystal orientation aligned in a magnetic field and 200 ℃ to 800 ℃ under medium temperature range, A technology that produces sintered magnets with excellent magnetic properties and mechanical strength by pressure sintering at a pressure of 100 atm or more.
JP4229846A 1992-08-28 1992-08-28 Manufacture of rare earth element base inter-metallic compound magnet by high pressure sintering in magnetic field Pending JPH06224017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229846A JPH06224017A (en) 1992-08-28 1992-08-28 Manufacture of rare earth element base inter-metallic compound magnet by high pressure sintering in magnetic field

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229846A JPH06224017A (en) 1992-08-28 1992-08-28 Manufacture of rare earth element base inter-metallic compound magnet by high pressure sintering in magnetic field

Publications (1)

Publication Number Publication Date
JPH06224017A true JPH06224017A (en) 1994-08-12

Family

ID=16898606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229846A Pending JPH06224017A (en) 1992-08-28 1992-08-28 Manufacture of rare earth element base inter-metallic compound magnet by high pressure sintering in magnetic field

Country Status (1)

Country Link
JP (1) JPH06224017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241687A1 (en) * 2001-03-14 2002-09-18 Shin-Etsu Chemical Co., Ltd. Bulk anisotropic rare earth permanent magnet and preparation method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1241687A1 (en) * 2001-03-14 2002-09-18 Shin-Etsu Chemical Co., Ltd. Bulk anisotropic rare earth permanent magnet and preparation method
US6863742B2 (en) 2001-03-14 2005-03-08 Shin-Etsu Chemical Co., Ltd. Bulk anisotropic rare earth permanent magnet and preparation method

Similar Documents

Publication Publication Date Title
Kirchmayr Permanent magnets and hard magnetic materials
Nakayama et al. Microstructures and crystallographic orientation of crystalline grains in anisotropic Nd‐Fe‐Co‐B‐(Ga or Zr) magnet powders produced by the hydrogenation‐decomposition‐desorption‐recombination process
CA1297264C (en) Isotropic rare earth-iron field magnets for magnetic resonance imaging
JPS62291904A (en) Mafufacture of permanent magnet
JPH0420975B2 (en)
KR101345496B1 (en) Powder for magnet, powder compact, rare earth-iron-boron-based alloy material, method for producing powder for magnet, and method for producing rare earth-iron-boron-based alloy material
US3540945A (en) Permanent magnets
EP0542529B1 (en) Method of making alloy powders of the RE-Fe/Co-B-M-type and bonded magnets containing this alloy powder
Horikawa et al. Recent progress in the development of high-performance bonded magnets using rare earth–Fe compounds
Schultz et al. Preparation and properties of mechanically alloyed rare earth permanent magnets
CN108962580B (en) Preparation method of dysprosium-infiltrated/terbium neodymium iron boron magnet
JP2002015907A (en) Switching spring magnet powder and its manufacturing method
JPH02308512A (en) R-fe-b permanent magnet having biased anisotropy and manufacture thereof
Makita et al. Coercivity of Zn evaporation-coated Sm2Fe17Nx fine powder and its bonded magnets
JPH1092617A (en) Permanent magnet and its manufacture
JPH06224017A (en) Manufacture of rare earth element base inter-metallic compound magnet by high pressure sintering in magnetic field
JPH08181009A (en) Permanent magnet and its manufacturing method
Sugimoto et al. HDDR process for the production of high performance rare-earth magnets
CN113416903B (en) Application of alloy powder, hard magnetic material and preparation method and application thereof
JP2004363474A (en) Method for manufacturing particles for permanent magnet
JPH06507676A (en) Magnetostrictive powder composite material and its manufacturing method
JP3209291B2 (en) Magnetic material and its manufacturing method
JPH0142338B2 (en)
JPH07297013A (en) Manufacture method of magnetic powder
Mao et al. Synthesis and characterization of hard magnetic materials: PrFe 10.5 V 1.5 N x